首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Correction for ‘Efficient removal of cobalt from aqueous solution using β-cyclodextrin modified graphene oxide’ by Wencheng Song et al., RSC Adv., 2013, 3, 9514–9521.

The authors regret that Fig. 1 and and33 were incorrect in the original article. The SEM images of both GO and β-CD, and the Raman spectra of both, were confused with other samples. The correct versions of Fig. 1 and and33 are presented below.Open in a separate windowFig. 1SEM images of (a) GO and (b) β-CD-GO.Open in a separate windowFig. 2Raman spectra of GO and β-CD-GO.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

4.
5.
Correction for ‘An indenocarbazole-based host material for solution processable green phosphorescent organic light emitting diodes’ by Eun Young Park et al., RSC Adv., 2021, 11, 29115–29123. DOI: 10.1039/D1RA04855D.

The authors regret that an incorrect version of Fig. 1 was included in the original article. The correct version of Fig. 1 is presented below.Open in a separate windowFig. 1HOMO, LUMO distributions and energy level of PCIC predicted through DFT and TD-DFT calculations.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

6.
Correction for ‘iTRAQ-based quantitative proteomic analysis for identification of biomarkers associated with emodin against severe acute pancreatitis in rats’ by Hong Xiang et al., RSC Adv., 2016, 6, 72447–72457.

The authors regret that Fig. 2–4 were shown incorrectly in the original article. An incorrect section of the SAP group in the MPO-immunohistochemical staining (Fig. 2A) and HE staining (Fig. 3) experiments was used in error. In addition, Fig. 4 has been revised to show the zymogen granule, in order to better represent the ultrastructure of the pancreas. The correct versions of Fig. 2–4 are shown below.Open in a separate windowFig. 2Emodin down-regulated the MPO protein expression in pancreas of SAP rats. (A) Effect of emodin on MPO-immunopositive area (brown) staining of pancreatic tissue in SAP rats by immunohistochemical detection. (B) Effect of emodin on MPO-immunopositive area (red) staining of pancreatic tissue in SAP rats by immunofluorescence detection. Images are presented at 200× magnification. The data are presented as the mean ± SD, n = 6. **P < 0.01 versus SO; #P < 0.05 versus SAP, ##P < 0.01 versus SAP.Open in a separate windowFig. 3Emodin improved pancreatic histopathology of SAP rats. Effect of emodin on H&E staining of pancreatic tissue in SAP rats. Images are presented at 200× magnification. The data are presented as the mean ± SD, n = 6. **P < 0.01 versus SO; #P < 0.05 versus SAP, ##P < 0.01 versus SAP.Open in a separate windowFig. 4Emodin attenuated cellular structure changes in pancreas of SAP rats. Representative images of the cells’ ultrastructure in the SO (A), SAP (B), 60 mg kg−1 emodin (C), 30 mg kg−1 emodin (D) and 15 mg kg−1 emodin (E) groups. Images are presented at 25 000× magnification.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

7.
Correction for ‘A sensitive OFF–ON–OFF fluorescent probe for the cascade sensing of Al3+ and F ions in aqueous media and living cells’ by Lingjie Hou et al., RSC Adv., 2020, 10, 21629–21635, DOI: 10.1039/D0RA02848G.

The authors regret that an incorrect version of Fig. 4 was included in the original article. The correct version of Fig. 4 is presented below.Open in a separate windowFig. 4The ESI-MS spectrum of Al3+–HNS complex.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

8.
Li Han  Tao Wang 《RSC advances》2018,8(37):21029
Correction for ‘Preparation of glycerol monostearate from glycerol carbonate and stearic acid’ by Li Han et al., RSC Adv., 2016, 6, 34137–34145.

The authors regret that Fig. 6 in the original article was incorrect. The caption referred to 13C NMR spectra, whereas the figure itself was an expanded version of the 1H NMR shown in Fig. 5. The correct version of Fig. 6 is presented below.Open in a separate windowFig. 6 13C NMR spectra of GMS.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

9.
Correction for ‘Dipyrrolyl-bis-sulfonamide chromophore based probe for anion recognition’ by Namdev V. Ghule et al., RSC Adv., 2014, 4, 27112–27115, DOI: 10.1039/C4RA04000G.

The authors regret that an incorrect version of Fig. 1 was included in the original article. The correct version of Fig. 1 is presented below.Open in a separate windowFig. 1Color changes of receptor DPBS in chloroform upon addition of 5 equiv. of F, Cl, Br, I, H2PO4, HSO4, ClO4 and AcO (tetrabutylammonium salts).The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

10.
Correction for ‘Green-synthesised cerium oxide nanostructures (CeO2-NS) show excellent biocompatibility for phyto-cultures as compared to silver nanostructures (Ag-NS)’ by Qaisar Maqbool, RSC Adv., 2017, 7, 56575–56585, https://doi.org/10.1039/c7ra12082f.

The author regrets that Fig. 4 and and55 of the original article did not appropriately represent the findings.Open in a separate windowFig. 4Comparative TGA analysis of CeO2-NS and Ag-NS.Open in a separate windowFig. 5FTIR spectrum of CeO2-NS and Ag-NS.The correct version of Fig. 4 is shown below. In addition, the associated text on page 56578 “Experimental findings show total mass loss…” should be changed to “Experimental findings show total mass loss of 57.53% by CeO2-NS and 61.12% by Ag-NS.” Fig. 5 of the original article shows only the plot of selected data points. In order to provide clarity to readers, it should be replaced with the following original FTIR plots (complete scan).The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

11.
Correction for ’Three-dimensional directional nerve guide conduits fabricated by dopamine-functionalized conductive carbon nanofibre-based nanocomposite ink printing’ by Shadi Houshyar et al., RSC Adv., 2020, 10, 40351–40364, DOI: 10.1039/D0RA06556K.

The authors regret that an incorrect version of Fig. 2 was included in the original article. The correct version of Fig. 2 is presented below.Open in a separate windowFig. 2(a) FTIR spectra of pure PCL and PCL printed with CNF and DA (40 and 100 μg mL−1), where circles emphasize the OH peak (3700 cm−1) of the carboxylated CNF and NH peak (1565 cm−1) of dopamine. (b) Shear stress of the CNF and CNF + DA nanocomposite inks versus shear rate. (c) Viscosity versus shear rate of the prepared nanocomposite inks.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

12.
Correction for ‘A novel G·G·T non-conventional intramolecular triplex formed by the double repeat sequence of Chlamydomonas telomeric DNA’ by Aparna Bansal et al., RSC Adv., 2022, 12, 15918–15924, https://doi.org/10.1039/D2RA00861K.

The authors regret that an incorrect version of Fig. 6 was included in the original article. The correct version of Fig. 6 is presented below.Open in a separate windowFig. 6Proposed model of the non-conventional triplex comprising G·G·T triplets formed by Chlm2.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

13.
Correction for ‘A p-type multi-wall carbon nanotube/Te nanorod composite with enhanced thermoelectric performance’ by Dabin Park et al., RSC Adv., 2018, 8, 8739–8746.

The authors regret that an incorrect version of Fig. 8 was included in the original article. The correct version of Fig. 8 is presented below.Open in a separate windowFig. 1FE-SEM images of MWCNT/Te nanorod composites with various MWCNT contents (a) 1 wt%, (b) 3 wt%, and (c) 5 wt%.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

14.
Correction for ‘Chemoselective and one-pot synthesis of novel coumarin-based cyclopenta[c]pyrans via base-mediated reaction of α,β-unsaturated coumarins and β-ketodinitriles’ by Behnaz Farajpour et al., RSC Adv., 2022, 12, 7262–7267, DOI: 10.1039/D2RA00594H.

The authors regret that an incorrect version of Fig. 4 was included in the original article. The correct version of Fig. 4 is presented below. The CCDC number was also incorrectly cited for this same compound (compound 3d) and should instead be cited as 1970237.Open in a separate windowFig. 1ORTEP diagram of 3d (CCDC 1970237).The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

15.
Correction for ‘Chrysomycins A–C, antileukemic naphthocoumarins from Streptomyces sporoverrucosus’ by Shreyans K. Jain et al., RSC Adv., 2013, 3, 21046–21053, https://doi.org/10.1039/c3ra42884b.

The authors regret that incorrect versions of Fig. 6 and Fig. 7 were included in the original article. The correct versions of Fig. 6 and and77 are presented below.Open in a separate windowFig. 6Influence of compounds 1–3 on the nuclear morphology of human leukaemia HL-60 cells. The cells were treated with 1, 3 and 5 μM concentrations of these compounds for 24 h and stained with Hoechst 33258 for 40 min. The altered nuclear morphology and apoptotic bodies indicated by white arrows are seen in treated cells while the nuclei of the untreated cells were round and intact.Open in a separate windowFig. 7Phase contrast microscopy of compound-treated leukaemia HL-60 cells. Cells were treated with compounds 1–3 at 1, 3 and 5 μM for 24 h and visualized using a phase contrast microscope (Olympus1X72). The morphology of treated cells altered in a concentration-dependent manner, while the untreated cells remained healthy.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

16.
Correction for ‘Structure evolution, amorphization and nucleation studies of carbon-lean to -rich SiBCN powder blends prepared by mechanical alloying’ by Daxin Li et al., RSC Adv., 2016, 6, 48255–48271.

The authors regret that Fig. 13 was displayed incorrectly in the original article. Due to a data processing error, partially repetitive data was displayed for the entry for 10 h. The correct version of Fig. 13 is shown below.Open in a separate windowFig. 13Solid-state 29Si NMR spectra of carbon-lean C2 (a) and carbon-rich C9 (b) powder blends subjected to different hours of milling.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

17.
Correction for ‘Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application’ by Kalaiyarasan Thiyagarajan et al., RSC Adv., 2018, 8, 23213–23229, DOI: 10.1039/C8RA03649G.

The authors regret that an incorrect version of Fig. 3(D) was included in the original article. The correct version of Fig. 3(D) is presented below.Open in a separate windowFig. 3(D) TEM image of AgNPs-EW after freeze-drying.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

18.
Correction for ‘Synthesis and characterization of AFe2O4 (A: Ni, Co, Mg)–silica nanocomposites and their application for the removal of dibenzothiophene (DBT) by an adsorption process: kinetics, isotherms and experimental design’ by Fahimeh Vafaee et al., RSC Adv., 2021, 11, 22661–22676, https://doi.org/10.1039/D1RA02780H.

The authors regret an error in Fig. 4 where a section of the XRD for 4(a) and (b) is identical.Open in a separate windowFig. 4(a) The XRD pattern of sample 3 after adsorption of DBT. (b) The XRD pattern of sample 3 before adsorption of DBT.The authors have repeated the experiment and provided new data for Fig. 4. An independent expert has viewed the new data and has concluded that it is consistent with the discussions and conclusions presented. The correct Fig. 4 is shown below:The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

19.
Correction for ‘High iodine adsorption performances under off-gas conditions by bismuth-modified ZnAl-LDH layered double hydroxide’ by Trinh Dinh Dinh et al., RSC Adv., 2020, 10, 14360–14367, DOI: 10.1039/D0RA00501K.

The authors regret that the reference for Fig. 1 was omitted. The reference has been added below.Open in a separate windowFig. 1Schematic of the device for the iodine adsorption experiments in static air.1The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

20.
Correction for ‘Variation in surface properties, metabolic capping, and antibacterial activity of biosynthesized silver nanoparticles: comparison of bio-fabrication potential in phytohormone-regulated cell cultures and naturally grown plants’ by Tariq Khan et al., RSC Adv., 2020, 10, 38831–38840, DOI: 10.1039/D0RA08419K.

The authors regret that an incorrect version of Fig. 7 was included in the original article. The correct version of Fig. 7 is presented below.Open in a separate windowFig. 7Venn diagram for the comparative analysis of compounds detected through LC-MS/MS.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号