首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
β-Ni(OH)2 nanoplatelets are prepared by a hydrothermal procedure and characterized by scanning and transmission electron microscopy, X-ray diffraction analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. The material is demonstrated to be an efficient electrocatalyst for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media. β-Ni(OH)2 shows an overpotential of 498 mV to reach 10 mA cm−2 towards oxygen evolution, with a Tafel slope of 149 mV dec−1 (decreasing to 99 mV dec−1 at 75 °C), along with superior stability as evidenced by chronoamperometric measurements. Similarly, a low overpotential of −333 mV to reach 10 mA cm−2 (decreasing to only −65 mV at 75 °C) toward hydrogen evolution with a Tafel slope of −230 mV dec−1 is observed. Finally, β-Ni(OH)2 exhibits a noteworthy performance for the ORR, as evidenced by a low Tafel slope of −78 mV dec−1 and a number of exchanged electrons of 4.01 (indicating direct 4e-oxygen reduction), whereas there are only a few previous reports on modest ORR activity of pure Ni(OH)2.

β-Ni(OH)2 nanoplatelets produced via a hydrothermal method exhibit good performance as trifunctional electrocatalysts for the ORR, OER, and HER in alkaline media along with excellent stability under cathodic/anodic polarisation conditions.  相似文献   

2.
Electrochemical water splitting technology is considered to be the most reliable method for converting renewable energy such as wind and solar energy into hydrogen. Here, a nanostructured RuO2/Co3O4–RuCo-EO electrode is designed via magnetron sputtering combined with electrochemical oxidation for the oxygen evolution reaction (OER) in an alkaline medium. The optimized RuO2/Co3O4–RuCo-EO electrode with a Ru loading of 0.064 mg cm−2 exhibits excellent electrocatalytic performance with a low overpotential of 220 mV at the current density of 10 mA cm−2 and a low Tafel slope of 59.9 mV dec−1 for the OER. Compared with RuO2 prepared by thermal decomposition, its overpotential is reduced by 82 mV. Meanwhile, compared with RuO2 prepared by magnetron sputtering, the overpotential is also reduced by 74 mV. Furthermore, compared with the RuO2/Ru with core–shell structure (η = 244 mV), the overpotential is still decreased by 24 mV. Therefore, the RuO2/Co3O4–RuCo-EO electrode has excellent OER activity. There are two reasons for the improvement of the OER activity. On the one hand, the core–shell structure is conducive to electron transport, and on the other hand, the addition of Co adjusts the electronic structure of Ru.

The optimized RuO2/Co3O4–RuCo-EO electrode with Ru loading of 0.064 mg cm−2 exhibits the excellent oxygen evolution activity with an overpotential of 220 mV at the current density of 10 mA cm−2 and a Tafel slope of 59.9 mV dec−1.  相似文献   

3.
Electrochemical decomposition of water to produce oxygen (O2) and hydrogen (H2) through an anodic oxygen evolution reaction (OER) and a cathodic hydrogen evolution reaction (HER) is a promising green method for sustainable energy supply. Here, we demonstrate that cauliflower-like S-doped iron microsphere films are materials that can efficiently decompose water as an electrocatalyst for the oxygen evolution reaction. FeSx films are prepared by a simple one-step electrodeposition method and directly grow on copper foam from a deep eutectic solvent, ethaline (mixture of choline chloride and ethylene glycol), as a durable and highly efficient catalyst for the OER in 1.0 M KOH. The prepared FeSx/CF, as an oxygen-evolving anode, shows remarkable catalytic performance toward the OER with a moderate Tafel slope of 105 mV dec−1, and require an overpotential of only 340 mV to drive a geometrical catalytic current density of 10 mA cm−2. In addition, this catalyst also demonstrates strong long-term electrochemical durability. This study provides a simple synthesis route for practical applications of limited transition metal nano catalysts.

Electrochemical decomposition of water to produce oxygen (O2) and hydrogen (H2) through an anodic oxygen evolution reaction (OER) and a cathodic hydrogen evolution reaction (HER) is a promising green method for sustainable energy supply.  相似文献   

4.
Cobalt-based metal–organic framework-derived carbon (MOFDC) has been studied as a new carbon-based support for a Pd catalyst for electrochemical water-splitting; i.e., the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline medium. The study shows a high increase in the HER activity, in terms of low onset overpotential (onset η = 35 mV vs. RHE), high exchange current density (jo,s ≈ 0.22 mA cm−2), high mass activity (jo,m ≈ 59 mA mg−1), high kinetic current (jK ≈ 5–8 mA cm−2) and heterogeneous rate constant (k0 ≈ 4 × 10−4 cm s−1), which are attributed to the high porosity of MOFDC and contribution from residual Co, while the large Tafel slope (bc = 261 mV dec−1) is ascribed to the high degree of hydrogen adsorption onto polycrystalline Pd as a supplementary reaction step to the suggested Volmer–Heyrovsky mechanism. These values for the catalyst are comparable to or better than many recent reports that adopted nano-carbon materials and/or use bi- or ternary Pd-based electrocatalysts for the HER. The improved HER activity of Pd/MOFDC is associated with the positive impact of MOFDC and residual Co on the Pd catalyst (i.e., low activation energy, EA ≈ 12 kJ mol−1) which allows for easy desorption of the Hads to generate hydrogen. Moreover, Pd/MOFDC displays better OER activity than its analogue, with lower onset η (1.29 V vs. RHE) and ba (≈78 mV dec−1), and higher current response (ca. 18 mA cm−2). Indeed, this study provides a new strategy of designing and synthesizing MOFDC with physico-chemical features for Pd-based electrocatalysts that will allow for efficient electrochemical water-splitting processes.

Palladium nanoparticles supported on MOF-derived carbon serve as an efficient bifunctional electrocatalyst for alkaline water-splitting reactions.  相似文献   

5.
There is a pressing requirement for developing high-efficiency non-noble metal electrocatalysts in oxygen evolution reactions (OER), where transition metal sulfides are considered to be promising electrocatalysts for the OER in alkaline medium. Herein, we report the outstanding OER performance of Co9S8@CoS2 heterojunctions synthesized by hydrogen etched CoS2, where the optimized heterojunction shows a low η50 of 396 mV and a small Tafel slope of 181.61 mV dec−1. The excellent electrocatalytic performance of this heterostructure is attributed to the interface electronic effect. Importantly, the post-stage characterization results indicate that the Co9S8@CoS2 heterostructure exhibits a dynamic reconfiguration during the OER with the formation of CoOOH in situ, and thus exhibits a superior electrocatalytic performance.

Herein, we report the outstanding OER performance of Co9S8@CoS2 heterojunctions synthesized by hydrogen etched CoS2, where the optimized heterojunction shows a low η50 of 396 mV and a small Tafel slope of 181.61 mV dec−1.  相似文献   

6.
The conversion and storage of clean renewable energy can be achieved using water splitting. However, water splitting exhibits sluggish kinetics because of the high overpotentials of the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) and should therefore be promoted by OER and/or HER electrocatalysts. As the kinetic barrier of the former reaction exceeds that of the latter, high-performance OER catalysts are highly sought after. Herein, K-doped NiCo2O4 (HK-NCO) was hydrothermally prepared from a Prussian blue analog with a metal–organic framework structure and assessed as an OER catalyst. Extensive K doping increased the number of active oxygen vacancies and changed their intrinsic properties (e.g., binding energy), thus increasing conductivity. As a result, HK-NCO exhibited a Tafel slope of 49.9 mV dec−1 and a low overpotential of 292 mV at 10 mA cm−2, outperforming a commercial OER catalyst (Ir) and thus holding great promise as a component of high-performance electrode materials for metal-oxide batteries and supercapacitors.

OER characteristics of K-doped NiCo2O4 catalyst and K doping control through simple hydrothermal synthesis.  相似文献   

7.
Designing electrode structures with high activity is very significant for energy conversion systems. However, single electrode materials often exhibit poor electronic transportation. To address this issue, we prepared P-Fe2O3 nanowire arrays through a convenient hydrothermal and phosphation method. The as-obtained electrode materials exhibited excellent electrocatalytic performance, which could be attributed to the P element decoration improving the reaction active sites. The as-obtained P-Fe2O3-0.45 nanowire arrays exhibited excellent OER activity with a low overpotential of 270 mV at 10 mA cm−2 (72.1 mV dec−1), excellent HER performance with a low overpotential of 126.4 mV at −10 mA cm−2, a small Tafel slope of 72.5 mV dec−1 and long durability. At the same time, the P-Fe2O3-0.45 nanowire arrays possessed a low cell voltage of 1.56 V at 10 mA cm−2.

Designing electrode structures with high activity is very significant for energy conversion systems.  相似文献   

8.
Oxygen evolution reaction (OER) has arisen as an outstanding technology for energy generation, conversion, and storage. Herein, we investigated the synthesis of nickel-based hybrid metal oxides (NixM1−xOy) and their catalytic performance towards OER. NixM1−xOy catalysts were synthesized by solution combustion synthesis (SCS) using the metal nitrates as oxidizer and glycine as fuel. Scanning electron microscope (SEM) micrographs display a porous morphology for the hybrid binary NixM1−xOy, the common feature of combusted materials. X-ray diffraction (XRD) of NixM1−xOy depicted well-defined diffraction peaks, which confirms the crystalline nature of synthesized catalysts. The particle size of as-synthesized materials ranges between 20 and 30 nm with a mesoporous nature as revealed by N2-physisorption. The electrocatalytic performance of the as-prepared materials was evaluated towards OER in alkaline medium. Among them, NixCo1−xOy showed the best catalytic performance. For instance, it exhibited the lowest overpotential at a current density of 10 mA cm−2 (404 mV), onset potential (1.605 V), and Tafel slope (52.7 mV dec−1). The enhanced electrocatalytic performance of NixCo1−xOy was attributed to the synergism between cobalt and nickel and the alteration of the electronic structure of nickel. Also, NixCo1−xOy afforded the highest Ni3+/Ni2+ when compared to other electrocatalysts. This leads to higher oxidation states of Ni species, which promote and improve the electrocatalytic activity.

Ni-based mixed transition metal oxides (MTMO) (NixM1−xOy) were synthesized using the solution combustion synthesis (SCS), and investigated as electrocatalysts towards oxygen evolution reaction (OER) in alkaline medium.  相似文献   

9.
In this work, several commonly used conductive substrates as electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under alkaline conditions were studied, including nickel foam (Ni foam), copper foam (Cu foam), nickel mesh (Ni mesh) and stainless steel mesh (SS mesh). Ni foam and SS mesh are demonstrated as high-performance and stable electrocatalysts for HER and OER, respectively. For HER, Ni foam exhibited an overpotential of 0.217 V at a current density of 10 mA cm−2 with a Tafel slope of 130 mV dec−1, which were larger than that of the commercial Pt/C catalyst, but smaller than that of the other conductive substrates. Meanwhile, the SS mesh showed the best electrocatalytic performance for OER with an overpotential of 0.277 V at a current density of 10 mA cm−2 and a Tafel slope of 51 mV dec−1. Its electrocatalytic performance not only exceeded those of the other conductive substrates but also the commercial RuO2 catalyst. Moreover, both Ni foam and SS mesh exhibited high stability during HER and OER, respectively. Furthermore, in the two-electrode system with Ni foam used as the cathode and SS mesh used as the anode, they enable a current density of 10 mA cm−2 at a small cell voltage of 1.74 V. This value is comparable to or exceeding the values of previously reported electrocatalysts for overall water splitting. In addition, NiO on the surface of Ni foam may be the real active species for HER, NiO and FeOx on the surface of SS mesh may be the active species for OER. The abundant and commercial availability, long-term stability and low-cost property of nickel foam and stainless steel mesh enable their large-scale practical application in water splitting.

Efficient electrocatalytic overall water splitting is achieved with commercially-available and low-cost nickel foam and stainless steel mesh as cathode and anode electrodes.  相似文献   

10.
Bovine serum albumin (BSA) was complexed with a hydrophobic ionic liquid polymer (PIL) via electrostatic interaction to fabricate a carbon precursor. Then, a novel nitrogen (N) and sulfur (S) codoped micro-/mesoporous carbon (NSPC) was obtained via direct carbonization of the interpolyelectrolyte BSA@PIL complex. The newly developed NSPC materials exhibited excellent HER/OER electrocatalytic activity and stability, as well as outstanding capacitance performance. Remarkably, NSPC pyrolyzed at 1000 degrees (NSPC-1000) presented an overpotential as low as 172 mV vs. RHE (without iR correction) to achieve a current density of 10 mA cm−2 and a Tafel slope of 44.3 mV dec−1 in 0.5 M H2SO4 for HER, as well as a low overpotential of 460 mV vs. RHE in 0.1 M KOH for OER. Furthermore, NSPC-1000 offers a specific capacitance as high as 495 F g−1 at a current density of 0.1 A g−1. Such excellent performance of NSPC in electrocatalytic water splitting and supercapacitors originates from the synergistic effects of its N/S-codoping and micro-/mesoporous hierarchical architecture. Our facile protocol through combining biomacromolecules and synthetic polymers offers a new strategy in the development of effective, readily scalable and metal-free heteroatom-doped carbon materials for energy-related applications.

Nitrogen and sulfur codoped porous carbon (NSPC) is fabricated via pyrolyzing BSA and poly(ionic liquid) complex. NSPC is demonstrated to be excellent metal-free electrocatalyst for water splitting and electrode material for supercapacitor.  相似文献   

11.
Alkaline hydrogen evolution reaction (HER) requires highly efficient and stable catalytic materials, the engineering of which needs overall consideration of the water dissociation process as well as the intermediate hydrogen adsorption process. Herein, a RuxSe@MoS2 hybrid catalyst was synthesized by the decoration of MoS2 with RuxSe nanoparticles through a two-step hydrothermal reaction. Due to the bifunctionality mechanism in which Ru promotes the water dissociation and the nearby Se atoms, unsaturated Mo and/or S atoms act as active sites for the intermediate hydrogen adsorption, the hybrid catalyst exhibits an exceptional HER performance in basic media with a rather low overpotential of 45 mV at a current density of 10 mA cm−2 and a small Tafel slope of 42.9 mV dec−1. The synergetic effect between RuxSe and MoS2 not only enables more catalytically active sites, but also increases the inherent conductivity of the hybrid catalyst, leading to more favorable HER kinetics under both alkaline and acidic conditions. As a result, RuxSe@MoS2 also demonstrates an enhanced catalytic activity toward HER in 0.5 M H2SO4 in comparison with pure RuxSe and MoS2, which requires an overpotential of 120 mV to deliver a 10 mA cm−2 current density and gives a Tafel slope of 72.2 mV dec−1. In addition, the hybrid electrocatalyst also exhibits superior electrochemical stability during the long-term HER process in both acidic media and alkaline media.

The bifunctionality mechanism of RuxSe@MoS2 greatly enhances the alkaline HER performance, in which Ru promotes water dissociation and the nearby Se atoms, unsaturated Mo and/or S atoms act as active sites for the intermediate hydrogen adsorption.  相似文献   

12.
A modified co-precipitation method has been used for the synthesis of a PdO–2Mn2O3 nanocomposite as an efficient electrode material for the electro-catalytic oxygen evolution (OER) and hydrogen evolution reaction (HER). Palladium acetate and manganese acetate in molar ratio 1 : 4 were dissolved in water, and 10 ml of an aqueous solution of phyto-compounds was slowly added until completion of precipitation. The filtered and dried precipitates were then calcined at 450 °C to obtain a blackish brown colored mixture of PdO–2Mn2O3 nanocomposite. These particles were analyzed by ultra violet visible spectrophotometry (UV-vis), infrared spectroscopy (FTIR), powder X-ray diffractometry (XRD), scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) for crystallinity, optical properties, and compositional and morphological makeup. Using Tauc''s plot, the direct band gap (3.18 eV) was calculated from the absorption spectra. The average crystallite sizes, as calculated from the XRD, were found to be 15 and 14.55 nm for PdO and Mn2O3, respectively. A slurry of the phyto-fabricated PdO–2Mn2O3 powder was deposited on Ni-foam and tested for electro-catalytic water splitting studies in 1 M KOH solution. The electrode showed excellent OER and HER performance with low over-potential (0.35 V and 121 mV) and Tafel slopes of 115 mV dec−1 and 219 mV dec−1, respectively. The outcomes obtained from this study provide a direction for the fabrication of a cost-effective mixed metal oxide based electro-catalyst via an environmentally benign synthesis approach for the generation of clean energy.

A modified co-precipitation method has been used for the synthesis of PdO–2Mn2O3 nanocomposite as an efficient electrode material for the electro-catalytic oxygen evolution (OER) and hydrogen evolution reaction (HER).  相似文献   

13.
Anion exchange membrane (AEM) electrolysis eradicates platinum group metal electrocatalysts and diaphragms and is used in conventional proton exchange membrane (PEM) electrolysis and alkaline electrolysis. It can produce pressurised hydrogen by using low cost non-noble metal catalysts. However, the performances are still lower than that of the conventional PEM electrolysis technology. In this study, we addressed the performance issue by using a novel combination of Ni–Fe–Ox for oxygen evolution reaction (OER) and Ni–Fe–Co hydrogen evolution reaction (HER) electrodes with a PBI anion exchange membrane. The Ni–Fe–Ox and Ni–Fe–Co electrodes exhibit exceptionally high catalytic activity, requiring over potentials that are as low as 236 and 84 mV dec−1, respectively, for OER and HER to occur. These electrocatalysts exhibits excellent durability which can be used as oxygen evolution and hydrogen evolution catalysts for long term electrolysis. The high rate capability of 1000 mA cm−2 at 1.9 V and 60 °C demonstrates the potential of the combined membrane electrode assembly. The best performance, which is comparable to those of commercial PEM electrolysis systems, is thus an affordable alternative to this technology. In addition to that, the AEM electrolysis is promising on a multi-scale level for long-term hydrogen production.

Anion exchange membrane (AEM) electrolysis eradicates platinum group metal electrocatalysts and diaphragms and is used in conventional proton exchange membrane (PEM) electrolysis and alkaline electrolysis.  相似文献   

14.
The development of electrocatalysts for the Oxygen Evolution Reaction (OER) requires extensive and challenging research for the water splitting and fuel cell applications. Herein, we report a low-cost CoFe2O4/biomass carbon (CFO@BC/Zn) hybrid from Co-enriched Sulfate Reducing Bacteria (Co-SRB) as an electrocatalyst for OER. The electrocatalyst exhibits a low potential of 1.53 V at a current density 10 mA cm−2 and Tafel slope of 86 mV dec−1. This method does not require high-cost or long periods of preparation. The density-functional theory (DFT) calculations show a small barrier for oxygen conversion on Fe3+ of CFO (100) surface. The synthesis of CFO@BC/Zn may be a new approach for obtaining low-priced electrocatalysts for OER.

A low-cost CoFe2O4/biomass carbon (CFO@BC/Zn) hybrid from Co-enriched Sulfate Reducing Bacteria (Co-SRB) as an electrocatalyst for OER. The electrocatalyst exhibits a low potential of 1.53 V at a current density 10 mA cm−2 and Tafel slope of 86 mV dec−1.  相似文献   

15.
The formation of solid solutions represents a robust strategy for modulating the electronic properties and improving the electrochemical performance of spinel ferrites. However, solid solutions have been predominantly prepared via wet chemical routes, which involve the use of harmful and/or expensive chemicals. In the present study, a facile, inexpensive and environmentally benign solventless route is employed for the composition-controlled synthesis of nanoscopic Ni1−xCoxFe2O4 (0 ≤ x ≤ 1) solid solutions. The physicochemical characterization of the samples was performed by p-XRD, SEM, EDX, XPS, TEM, HRTEM and UV-Vis techniques. A systematic investigation was also carried out to elucidate the electrochemical performance of the prepared nanospinels towards energy generation and storage. Based on the results of CV, GCD, and stability tests, the Ni0.4Co0.6Fe2O4 electrode showed the highest performance for the supercapacitor electrode exhibiting a specific capacitance of 237 F g−1, superior energy density of 10.3 W h kg−1 and a high power density with a peak value of 4208 W kg−1, and 100% of its charge storage capacity was retained after 4000 cycles with 97% coulombic efficiency. For HER, the Ni0.6Co0.4Fe2O4 and CoFe2O4 electrodes showed low overpotentials of 168 and 169 mV, respectively, indicating better catalytic activity. For OER, the Ni0.8Co0.2Fe2O4 electrode exhibited a lower overpotential of 320 mV at a current density of 10 mA cm−2, with a Tafel slope of 79 mV dec−1, demonstrating a fast and efficient process. These results indicated that nanospinel ferrite solid solutions could be employed as promising electrode materials for supercapacitor and water splitting applications.

The formation of solid solutions represents a robust strategy for modulating the electronic properties and improving the electrochemical performance of spinel ferrites.  相似文献   

16.
For the first time, highly-dispersed ruthenium precursors via a hydrogen-bond-driven melamine–cyanuric acid supramolecular complex (denoted CAM) self-assembly-assisted synthesis of uniform ruthenium nanoparticles with superior HER performance under both acidic and alkaline conditions are reported. Electrochemical tests reveal that when the current density is −10 mA cm−2, the optimal Ru/CNO electrocatalyst could express low overpotentials of −18 mV and −46 mV, low Tafel slopes of 46 mV dec−1 and 100 mV dec−1, in 0.5 M H2SO4 and 1.0 M KOH, respectively. The remarkable HER performance could be attributed to uniform ruthenium with the aid of highly dispersed ruthenium precursors (Ru–CAM) and subsequent annealing results in uniform ruthenium nanoparticles.

Highly dispersed ruthenium precursors via a supramolecular self-assembly assisted synthesis of uniform ruthenium nanoparticles with excellent HER performance.  相似文献   

17.
Research on materials under extreme conditions such as high pressures provides new insights into the evolution and dynamics of the earth and space sciences, but recently, this research has focused on applications as functional materials. In this contribution, we examined high-pressure/high-temperature phases of β-FeO1−x(OH)1+xClx with x = 0.12 (β-FeOOH) and their catalytic activities of water oxidation, i.e., oxygen evolution reaction (OER). Under pressures above 6 GPa and temperatures of 100–700 °C, β-FeOOH transformed into ε-FeOOH, as in the case of α-FeOOH. However, the established pressure–temperature phase diagram of β-FeOOH differs from that of α-FeOOH, probably owing to its open framework structure and partial occupation of Cl ions. The OER activities of ε-FeOOH strongly depended on the FeOOH sources, synthesis conditions, and composite electrodes. Nevertheless, one of the ε-FeOOH samples exhibited a low OER overpotential compared with α-FeOOH and its parent β-FeOOH, which are widely used as OER catalysts. Hence, ε-FeOOH is a potential candidate as a next-generation earth-abundant OER catalyst.

Research on materials under extreme conditions such as high pressures provides new insights into the evolution and dynamics of the earth and space sciences, but recently, this research has focused on applications as functional materials.  相似文献   

18.
The effect of the oxygen evolution reaction (OER) is important in water splitting. In this work, we develop sphere-like morphology spinel oxide CoFe2O4/NF by hydrothermal reaction and calcination, and the diameter of the spheres is about 111.1 nm. The CoFe2O4/NF catalyst exhibits excellent electrocatalytic performance with an overpotential of 273 mV at a current density of 10 mA cm−2 and a Tafel slope of 78 mV dec−1. The cycling stability of CoFe2O4/NF is remarkable, and it only increased by 5 mV at a current density of 100 mA cm−2 after 3000 cycles. Therefore, this simple method to prepare CoFe2O4/NF can enhance the OER properties of electrocatalysts, which makes CoFe2O4/NF a promising material to replace noble metal-based catalysts for the oxygen evolution reaction.

The effect of the oxygen evolution reaction (OER) is important in water splitting.  相似文献   

19.
We present a rapid, environmentally benign one-pot synthesis technique for the production of a NiCo2O4/CoO and graphite composite that demonstrates efficient electrocatalysis towards the Oxygen Evolution Reaction (OER), in 1.0 M KOH. The NiCo2O4/CoO/graphitic carbon composite that displayed optimal OER catalysis was synthesized by nitrate decomposition in the presence of citric acid (synthesized glycine and sucrose variants displayed inferior electro kinetics towards the OER). Screen-printed electrodes modified with ca. 530 μg cm−2 of the citric acid NiCo2O4/CoO/graphite variant displayed remarkable OER catalysis with an overpotential (η) of +323 mV (vs. RHE) (recorded at 10 mA cm−2), which is superior to that of IrO2 (340 mV) and RuO2 (350 mV). The composite also exhibited a large achievable current density of 77 mA cm−2 (at +1.5 V (vs. RHE)), a high O2 turnover frequency of 1.53 × 10−2 s−1 and good stability over the course of 500 repeat cycles. Clearly, the NiCo2O4/CoO composite has the potential to replace precious metal based catalysts as the anodic material within electrolysers, thereby providing a reduction in the associated costs of hydrogen production via water splitting.

A facile synthesis technique for the production of NiCo2O4/CoO and graphite composites that demonstrate efficient electrocatalysis towards the oxygen evolution reaction.  相似文献   

20.
Ternary metal sulfides are currently in the spotlight as promising electroactive materials for high-performance energy storage and/or conversion technologies. Extensive research on metal sulfides has indicated that, amongst other factors, the electrochemical properties of the materials are strongly influenced by the synthetic protocol employed. Herein, we report the electrochemical performance of uncapped NiCo2S4 and CuCo2S4 ternary systems prepared via solventless thermolysis of the respective metal ethyl xanthate precursors at 200 and 300 °C. The structural, morphological and compositional properties of the synthesized nanoparticles were examined by powder X-ray diffraction (p-XRD), transmission electron microscopy (TEM), high-resolution TEM, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) techniques. Electrochemical studies indicate that NiCo2S4 nanoparticles synthesized at 300 °C exhibit superior energy storage characteristics with a high specific capacitance of ca. 2650 F g−1 at 1 mV s−1, as compared to CuCo2S4 nanoparticles, which showcased a specific capacitance of ca. 1700 F g−1 at the same scan rate. At a current density of 0.5 A g−1, NiCo2S4 and CuCo2S4 nanoparticles displayed specific capacitances of 1201 and 475 F g−1, respectively. In contrast, CuCo2S4 nanoparticles presented a higher electrocatalytic activity with low overpotentials of 269 mV for oxygen evolution reaction (OER), and 224 mV for the hydrogen evolution reaction (HER), at 10 mA cm−2. The stability of the catalysts was examined for 2000 cycles in which a negligible change in both OER and HER activities was observed.

A scalable solventless approach is employed to prepare NiCo2S4 and CuCo2S4 with bare surface for enhanced supercapacitance and water splitting. The particles exhibit good energy storage and electrocatalytic activity as well as stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号