首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, a novel magnetic biochar-MnFe2O4 nanocomposite (BC/FM) was prepared using low-cost corn straw and MnFe2O4 by sol–gel/pyrolyzing route using egg white, which has abundant functional groups (–NH2 and –COOH). Following that, its composition, morphology and structure was characterized by various techniques including SEM-EDX, BET, XRD, and VSM. Batch experiment of the adsorption for Pb(ii) and Cd(ii) including influence of pH, kinetics, isotherm and thermodynamics was also studied. The results demonstrated that biochar could effectively support MnFe2O4, which displayed high dispersion on the surface of the biochar and possessed abundant functional groups and high surface area contributing to superior performance on Pb(ii) and Cd(ii) removal. Therein, MnFe2O4 with high magnetism is convenient for separating the magnetic BC/FM from an aqueous medium. Adsorption experiment results indicate that Pb(ii) and Cd(ii) removal by BC/FM was closely related to pH with the best value of pH 5.0, and the process reached equilibrium in 2 h. The adsorption process is well-described by the pseudo-second-order kinetic model and Sips (Freundlich–Langmuir) model. Thermodynamic studies suggest that the adsorption process is spontaneous and exothermic. The maximum experimental adsorption capacity of BC/FM is 154.94 and 127.83 mg g−1 for Pb(ii) and Cd(ii), respectively, in single-solute system, which is higher than that of some of the other adsorbents of biochar or biochar-based composites. In bi-solute system, the preferential adsorption order of BC/FM for the two metals is Pb(ii) prior to Cd(ii). Finally, FTIR and XPS analysis verified that the main mechanism of Pb(ii) and Cd(ii) removal by BC/FM is by forming Pb/Cd–O or complexation of carboxyl and hydroxyl and ion exchange. Therefore, the prepared magnetic BC/FM composite, as an excellent adsorbent, exhibited potential applications for the removal of Pb(ii) and Cd(ii) from wastewater.

In this study, a novel magnetic biochar-MnFe2O4 nanocomposite (BC/FM) was prepared using low-cost corn straw and MnFe2O4 by sol–gel/pyrolyzing route using egg white, which has abundant functional groups (–NH2 and –COOH).  相似文献   

2.
In this study, a jacobsite–biochar nanocomposite (MnFe2O4–BC) was fabricated and used to simultaneously remove Sb(iii) and Cd(ii) from water via adsorption. The MnFe2O4–BC nanocomposite was prepared via a co-precipitation method and analyzed using various techniques. The results confirm the successful decoration of the biochar surface with MnFe2O4 nanoparticles. The maximum Sb(iii) removal efficiency was found to be higher from bi-solute solutions containing Cd(ii) than from single-solute systems, suggesting that the presence of Cd(ii) enhances the removal of Sb(iii). The Langmuir isotherm model describes well Sb(iii) and Cd(ii) removal via adsorption onto the MnFe2O4–BC nanocomposite. The maximum adsorption capacities are 237.53 and 181.49 mg g−1 for Sb(iii) and Cd(ii), respectively, in a bi-solute system. Thus, the prepared MnFe2O4–BC nanocomposite is demonstrated to be a potential adsorbent for simultaneously removing Sb(iii) and Cd(ii) ions from aqueous solutions.

In this study, a jacobsite–biochar nanocomposite (MnFe2O4–BC) was fabricated and used to simultaneously remove Sb(iii) and Cd(ii) from water via adsorption.  相似文献   

3.
In this study, a crosslinked yeast/β-cyclodextrin polymer (Y–β-CDP), for use as an effective adsorbent for removal Pb(ii) and Cd(ii) ions from aqueous solution, has been innovatively prepared by grafting β-cyclodextrin (β-CD) onto the surface of baker''s yeast (BY) and thiomalic acid as a crosslinker. Several characterization techniques, such as SEM equipped with an EDS analyzer, FTIR, XRD, and XPS were employed characterize the Y–β-CDP. The impact of various operating parameters, such as pH, adsorbent dosage, initial concentration of metal ions, contact time and solution temperature, as well as adsorption kinetics, isotherms and thermodynamics were systematically investigated. The adsorption of Pb(ii) and Cd(ii) on Y–β-CDP reached equilibrium in 25 min, and the kinetic process conforms to the pseudo-second order model. The Langmuir model was used to describe the adsorption isotherm data better than the Freundlich model. The predicted maximum adsorption capacity at 25 °C for Pb(ii) and Cd(ii) was 150.08 and 102.80 mg g−1, respectively, when the initial concentration of metal ions was 120 mg L−1. The thermodynamic analysis revealed that the adsorption procedure of Pb(ii) and Cd(ii) onto Y–β-CDP was spontaneous and endothermic. Furthermore, regeneration experiments demonstrated that Y–β-CDP had excellent recyclability. Together, all results suggested that Y–β-CDP could potentially be a promising adsorbent in the purification of water contaminated with heavy metal ions.

A cross-linked yeast/β-cyclodextrin polymer (Y–β-CDP) was synthesized to remove Pb(ii) and Cd(ii) from aqueous solution.  相似文献   

4.
Dual-function and multi-function sensors can use the same material or detection system to achieve the purpose of detection of two or more substances. Due to their high sensitivity and specificity, dual-function and multi-function sensors have potential applications in many fields. In this article, we designed a dual-function sensor to detect Sn(ii) and ascorbic acid (AA) based on the inner filter effect (IFE) between NaYF4:Yb,Er@NaYF4@PAA (UCNPs@PAA) and Fe(ii)–1,10-phenanthroline complex. Fe(ii)–1,10-phenanthroline complex has strong absorption in most of the ultraviolet-visible light range (350 nm–600 nm), and this absorption band overlaps with the green emission peak of UCNPs@PAA at 540 nm; Fe(ii)–1,10-phenanthroline complex can significantly quench the green light emission of UCNPs@PAA. When Sn(ii) or AA is added to the UCNPs@PAA/Fe(iii)/1,10-phenanthroline, they can reduce Fe(iii) to Fe(ii). Fe(ii) can react with 1,10-phenanthroline to form an orange complex, thereby quenching the green light emission of UCNPs@PAA. And the quenching efficiency is related to the concentration of Sn(ii) and AA; there is a linear relationship between quenching efficiency and the concentration of Sn(ii) and AA, within a certain concentration range the detection limits of this dual-function sensor for Sn(ii) and AA are 1.08 μM and 0.97 μM, respectively. In addition, the dual-function sensor can also detect Sn(ii) and AA in tap and spring water.

Based on the inner filter effect (IFE), we use UCNPs to develop a dual-function sensors, which can realize sensitive and selective detection for the Sn(ii) and ascorbic acid (AA).  相似文献   

5.
A one pot approach has been explored to synthesize crosslinked beads from chitosan (CS) and carboxymethyl cellulose (CM) using arginine (ag) as a crosslinker. The synthesized beads were characterized by FTIR, SEM, EDX, XRD, TGA and XPS analysis. The results showed that CS and CM were crosslinked successfully and the obtained material (beads) was analyzed for adsorption of Cd(ii) and Pb(ii) by using batch adsorption experiments; parameters such as temperature, contact time, pH and initial ion concentration were studied. Different kinetic and thermodynamic models were used to check the best fit of the adsorption data. The results revealed that the kinetics data of the adsorption of Pb(ii) and Cd(ii) ions shows the best fit with the pseudo second order model whereas the thermodynamics data shows the best fit with the Langmuir isotherm with maximum adsorption capacities of 182.5 mg g−1 and 168.5 mg g−1 for Pb(ii) ions Cd(ii) ions, respectively. For the recovery and the regeneration after the one use of the beads, several adsorption–desorption cycles were carried out to check the reusability and recovery of both the metal ion and the adsorbent without the loss of maximum adsorption efficiency.

Remediation of Pb(ii) and Cd(ii) containing wastewater by arginine crosslinked chitosan/carboxymethyl cellulose beads.  相似文献   

6.
In this study, a simple but effective electrochemical method was developed to minimize the interference from real soil samples and increase the sensitivity of Pb(ii) and Cd(ii) detection by square-wave anodic stripping voltammetry (SWASV) using a novel electrochemical measurement system, which can be used for the on-site determination of trace Cd(ii) and Pb(ii) in real soil samples. The method involved performing SWASV following double deposition and stripping steps at two in situ plated bismuth-film electrodes with drastically different surface properties. Pb(ii) and Cd(ii) were first deposited on an in situ plated bismuth-film graphite carbon paste electrode (Bi/GCPE). When the first deposition was finished, the GCPE was moved to a micro-electrolytic cell to perform the first stripping step. The following measurements were performed with the other deposition and stripping steps using a highly sensitive in situ plated bismuth-film multiwalled carbon nanotube–Nafion composite modified glassy carbon electrode (Bi/MWCNT–Nafion/GCE) as the working electrode. Pb(ii), Cd(ii) and Bi(iii) stripped from the GCPE in the micro-electrolytic cell were partially deposited on the MWCNT–Nafion/GCE, and the stripping current signals were obtained from their oxidation during the second stripping step. Considering the small volume of the micro-electrolytic cell, the concentrations of Cd(ii) and Pb(ii) were drastically higher than those in the bulk solution, and therefore, the detection limits were reduced. Under the optimized conditions, the concentrations in the linear range spanned from 1.0 to 45.0 μg L−1 for both Pb(ii) and Cd(ii), with a detection limit of 0.03 μg L−1 for Pb(ii) and 0.02 μg L−1 for Cd(ii) (S/N = 3). Finally, analyses of real samples were performed to detect trace levels of Pb(ii) and Cd(ii) in soil with satisfactory results.

A double-stripping voltammetry method was designed and developed to improve the sensitivity and anti-interference ability for detection of heavy metals.  相似文献   

7.
An efficient adsorbent to remove Pb(ii) from water was prepared by treating polydimethylsiloxane (PDMS) sponge with polyvinyl alcohol and then coating the sponge with graphene oxide (GO). The GO–PDMS sponge was highly hydrophilic, easily handled during and after use, and easily recycled. The kinetics and isotherms of Pb(ii) sorption onto the GO–PDMS sponge were investigated by performing batch sorption tests. The kinetics of Pb(ii) sorption onto the GO–PDMS sponge indicated that sorption equilibrium occurred rapidly (within 60 min) and that the sorption data could be described using a pseudo-second-order model. Maximum Pb(ii) sorption onto the GO–PDMS sponge occurred at pH > 5. Increasing GO loading on the PDMS sponge increased the amount of Pb(ii) that could be sorbed. The isotherm for Pb(ii) sorption onto the GO–PDMS sponge was non-linear and was well described by the Langmuir isotherm model, indicating that Pb(ii) sorption onto the GO–PDMS sponge was homogeneous and occurred through sorption of a monolayer of Pb(ii). The GO–PDMS sponge, used as a filter, removed Pb(ii) efficiently from water. The Pb(ii) removal efficiencies were more than 50% and the maximum was 85%.

A novel sorbent material for Pb(ii) sorption was created by coating graphene oxide (GO) on a pretreated PDMS sponge.  相似文献   

8.
In this study, the application of Fe3O4@SiO2@polypyrrole-polyaniline magnetic nanocomposite was studied for Ni(ii), Cd(ii), and Pb(ii) ions preconcentration extraction. In this regard, the silica layer prevents the Fe3O4 nanoparticles (NPs) from aggregating over a broad pH range value and simultaneously improves chemical stability and hydrophilicity. By using a Box–Behnken design, the effect of various parameters affecting the preconcentration was studied. FAAS was employed to quantify the eluted analytes. The detection limits are 0.09, 1.1, and 0.3 ng mL−1 for Ni(ii), Cd(ii) and Pb(ii), ions, respectively. The relative standard deviations (RSDs%) were calculated for determining the method''s precision, lower than 7.5%. The capacities of sorption are 75, 84, and 98 mg g−1, respectively. With the usage of a certified reference material, the developed method was validated. After that, the validated method was employed to rapidly extract trace target ions from food samples and gave satisfactory results.

In this study, the application of Fe3O4@SiO2@polypyrrole-polyaniline magnetic nanocomposite was studied for Ni(ii), Cd(ii), and Pb(ii) ions preconcentration extraction.  相似文献   

9.
In this study, a spherical Fe/C composite (AIBC) was successfully prepared via carbonization of Fe3+-crosslinked sodium alginate. The removal capacity and mechanism of AIBC were evaluated for the adsorption of Pb(ii) from aqueous solution and compared with that of commercial nanoscale zero-valent iron (nZVI). The effects of the initial concentration, pH of Pb(ii) solution, the contact time, coexisting anions, and aging under air were investigated. The results showed that the pH had a strong impact on the adsorption of Pb(ii) by AIBC. The adsorption data for AIBC followed the Langmuir model, while the maximum adsorption capacity at pH 5 was 1881.73 mg g−1. The AIBC had a higher adsorption capability than nZVI, especially under the condition of relatively high Pb(ii) concentrations. The oxidation–reduction reaction between Fe and Pb(ii) was the main mechanism for the adsorption of Pb(ii) onto nZVI. AIBC converted the largest amount of Pb(ii) into PbO·XH2O/Pb(OH)2 mainly by generating Fe2+.

In this study, a spherical Fe/C composite (AIBC) was successfully prepared via carbonization of Fe3+-crosslinked sodium alginate.  相似文献   

10.
11.
12.
Even the lowest concentration level of lead (Pb) in the human body is dangerous to health due to its bioaccumulation and high toxicity. Therefore, it is very important to develop selective and fast adsorption methods for the removal of Pb(ii) from various samples. In this paper, a new Pb(ii) ion-imprinted polymer (Pb(ii)-IIP) was prepared with surface imprinting technology by using lead nitrate as a template, for the solid-phase extraction of trace Pb(ii) ions in environmental water samples. The imprinted polymer was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and N2 adsorption–desorption isotherms. The separation/pre-concentration conditions for Pb(ii) were investigated, including the effects of pH, shaking time, sample flow rate, elution conditions and interfering ions. Compared with non-imprinted particles, the ion-imprinted polymer had a higher selectivity and adsorption capacity for Pb(ii). The pseudo-second-order kinetics model and Langmuir isotherm model fitted well with the adsorption data. The relative selectivity factor values (αr) of Pb(ii)/Zn(ii), Pb(ii)/Ni(ii), Pb(ii)/Co(ii) and Pb(ii)/Cu(ii) were 168.20, 192.71, 126.13 and 229.39, respectively, which were all much greater than 1. The prepared Pb(ii)-imprinted polymer was shown to be promising for the separation/pre-concentration of trace Pb(ii) from natural water samples. The adsorption and desorption mechanisms were also proposed.

Even the lowest concentration level of lead (Pb) in the human body is dangerous to health due to its bioaccumulation and high toxicity.  相似文献   

13.
In this work, a magnetic ion imprinted polymer (MIIP) with specific recognition capability toward cadmium was prepared by a sol–gel method using waste beer yeast, which is a macromolecule biomass, as a functional monomer. The obtained Cd(ii)-MIIP was characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and adsorption experiments. Then, a MIIP adsorbent based magnetic solid phase extraction (MSPE)-graphite furnace atomic absorption (GFAA) method was established to analyze the cadmium content in food and environmental samples. The maximum cadmium adsorption capacities by the MIIP and magnetic non-imprinted polymer (MNIP) were 62.74 and 32.38 mg g−1, respectively. The absorption by the MIIP was fitted using a pseudo-second-order kinetic model. The Cd(ii)-MIIP demonstrated superior absorption capability for selective removal cadmium. The recovery rate of the MIIP was 90.7% after four adsorption–desorption cycles. The calculated Cd(ii) detection limit (S/N = 3) was 0.18 μg L−1 with the relative standard deviation (RSD) equal to ∼3.5% for 10 μg L−1 of Cd(ii) standard solution. Our proposed method was successfully used in detecting Cd(ii) in aqueous samples. The results obtained in this work suggest that the Cd(ii)-MIIPs might be promising adsorbents to remove harmful cadmium ions from aqueous samples.

In this work, a magnetic ion imprinted polymer (MIIP) with specific recognition capability toward cadmium was prepared by a sol–gel method using waste beer yeast, which is a macromolecule biomass, as a functional monomer.  相似文献   

14.
Edible vegetable oils are easily contaminated by heavy metals, resulting in the oxidative degradation of oils and various health effects on humans. Therefore, it is very important to develop a rapid and efficient method to extract trace heavy metals from vegetable oils. In this work, a highly hydrophobic ion-imprinted polymer (IIP) was synthesized on a novel raspberry (RS)-like particle surface. The synthesized IIP@RS was characterized and used in solid-phase extraction (SPE) for the selective and fast adsorption of Cd(ii) from vegetable oils. The results showed that IIP was successfully coated onto RS particles with a high specific surface area (458.7 m2 g−1) and uniform porous structure. The contact angle (θ) value (141.8°) of IIP@RS was close to the critical value of super-hydrophobic materials, which is beneficial to their adsorption in hydrophobic vegetable oils. The IIP@RS also exhibited excellent adsorption ability and selectivity to Cd(ii) with a maximum adsorption capacity of 36.62 mg g−1, imprinting factor of 4.31 and equilibrium adsorption rate of 30 min. According to isothermal titration calorimetry results, the recognition behavior of IIP@RS for Cd(ii) was mainly contributed by Cd(ii)-induced cavities during gel formation and coordination between Cd(ii) and –SH groups in imprinted cavities. Furthermore, the adsorption process driven by entropy and enthalpy was spontaneous at all temperatures. In real vegetable oil samples, IIP@RS-SPE adsorbed approximately 96.5–115.8% of Cd(ii) with a detection limit of 0.62 μg L−1. Therefore, IIP@RS has wide application prospects in enriching and detecting Cd(ii) from vegetable oil.

Edible vegetable oils are easily contaminated by heavy metals, resulting in the oxidative degradation of oils and various health effects on humans.  相似文献   

15.
A highly porous adsorbent based on a metal–organic framework was successfully designed and applied as an innovative adsorbent in the solid phase for the heavy metal removal. MIL-125 was densely decorated by 2-imino-4-thiobiuret functional groups, which generated a green, rapid, and efficacious adsorbent for the uptake of Hg(ii) and Pb(ii) from aqueous solutions. ITB-MIL-125 showed a high adsorption affinity toward mercury(ii) ions of 946.0 mg g−1 due to covalent bond formation with accessible sulfur-based functionality. Different factors were studied, such as the initial concentration, pH, contact time, and competitive ions, under same circumstances at the room temperature. Moreover, the experimental adsorption data were in excellent agreement with the Langmuir adsorption isotherm and pseudo-second order kinetics. At a high concentration of 100 ppm mixture of six metals, ITB-MIL-125 exhibited a high adsorption capacity, reaching more than 82% of Hg(ii) compared to 62%, 30%, 2%, 1.9%, and 1.6% for Pb(ii), Cu(ii), Cd(ii), Ni(ii), and Zn(ii), respectively.

A highly porous adsorbent based on a metal–organic framework was successfully designed and applied as an innovative adsorbent in the solid phase for the heavy metal removal.  相似文献   

16.
In this paper, three-dimensional mesoporous calcium carbonate–silica frameworks have been created from the straw tufa (ST) originating from porous fossil bryophyte by a thermal activation technique. A batch of adsorption kinetic and thermodynamic experiments were used to investigate the adsorption capacity of Cd(ii) onto the samples. The ST after thermal activation has shown a significant ability for the uptake of heavy metals. It exhibited maximum adsorption capacities of 12.76 mg g−1, 14.09 mg g−1, 17.00 mg g−1, and 33.81 mg g−1 for Cd(ii) at the activation temperature of 300, 450, 600 and 750 °C, respectively. Through competitive adsorption for Cd(ii)and Pb(ii), the ST thermally activated at 750 °C exhibited maximum equilibrium adsorption capacities of 24.65 mg g−1, 25.91 mg g−1, and 30.94 mg g−1 for Cd(ii) uptake at 298.1 K, 308.1 K and 318.1 K, respectively, whereas it exhibited values of 91.59 mg g−1, 101.32 mg g−1, and 112.19 mg g−1 for Pb(ii) removal. The adsorption capacities of Cd(ii) and Pb(ii) both decrease with the addition of the other heavy metal cations, indicating that the adsorption is hindered by the competitive adsorption and the adsorption active sites on the mineral surface are readily exchangeable. The adsorption of Cd(ii) and Pb(ii) followed the pseudo-second order kinetics model well. In addition, the Langmuir model could accurately describe the adsorption isotherms. Based on the results of characterization with TEM, XRD and XPS, the adsorption mechanisms could be primarily explained as formation of Cd(OH)2 and CdCO3 as well as Cd(HCO3)2 precipitation on the surface of ST. These characteristics of ion-exchange and the adsorptive property for ST modified allow it to be widely used in artificial wetland landfill and environmental protection.

Three-dimensional mesoporous calcium carbonate–silica frameworks have been created and have shown excellent adsorption capacities for Cd(ii) and Pb(ii).  相似文献   

17.
The principles and mechanisms of adsorption of Ni(ii) ions by well characterized pristine and oxidized N-doped multi-walled carbon nanotubes (N-CNTs) are described and discussed. The samples were synthesized by CCVD method using n-butylamine as the carbon source and Ni(NO3)2 + MgO as the catalyst and purified by treatment with HCl. The surface functionalization was performed using oxidation with a mixture of concentrated H2SO4 and HNO3. The morphology, nature and charge of surface groups were characterized by HRTEM, XPS, FTIR and micro-electrophoresis methods. It has been shown that: adsorption of Ni(ii) reaches an equilibrium value within 20–30 min; the degree of extraction of nickel ions from the solution increases with its dilution; adsorption of Ni(ii) results in an insufficient decrease in the suspension pH for pristine N-CNTs (0.5–0.6 pH unit) and considerable lowering of the pH for the oxidized sample (up to 2.5 pH unit); the adsorption isotherms are described by the Langmuir equation; the plateau amounts of adsorption (35–40 mg g−1) are almost the same for both as-prepared and oxidized samples; at pH 8 and higher a sharp increase in adsorption is observed which is caused by nickel hydroxide precipitation. The spectroscopic, adsorption, electrophoretic and pH measurement data testify that below pH 8 the major mechanism of adsorption by as-prepared N-CNTs is the donor–acceptor interaction between the free electron pair of N atoms incorporated into the nanotube lattice and vacant d-orbital of the adsorbing Ni(ii) ions. For the oxidized N-CNTs ion-exchange processes with a release of H+ play a decisive role.

The principles and mechanisms of adsorption of Ni(ii) ions by well characterized pristine and oxidized N-doped multi-walled carbon nanotubes (N-CNTs) are described and discussed.  相似文献   

18.
Zeolitic imidazolate frameworks (ZIF-8), and their derivatives, have been drawing increasing attention due to their thermal and chemical stability. The remarkable stability of ZIF-8 in aqueous and high pH environments renders it an ideal candidate for the removal of heavy metals from wastewater. In this study, we present the preparation of novel aldehyde-based zeolitic imidazolate frameworks (Ald-ZIF) through the integration of mixed-linkers: 2-methylimidazole (MIM) and imidazole-4-carbaldehyde (AldIM). The prepared Ald-ZIFs were post-synthetically modified with bisthiosemicarbazide (Bisthio) and thiosemicarbazide (Thio) groups, incorporating thiosemicarbazone (TSC) functionalities to the core of the framework. This modification results in the formation of TSC-functionalized ZIF derivatives (TSC-ZIFs). Thiosemicarbazones are versatile metal chelators, hence, adsorption properties of TSC-ZIFs for the removal of mercury(ii) from water were explored. Removal of mercury(ii) from homoionic aqueous solutions, binary and tertiary systems in competition with lead(ii) and cadmium(ii) under ambient conditions and neutral pH are reported in this study. MIM3.5:Thio1:Zn improved the removal efficiency of mercury(ii) from water, up to 97% in two hours, with an adsorption capacity of 1667 mg g−1. Desorption of mercury(ii) from MIM3.5:Thio1:Zn was achieved under acidic conditions, regenerating MIM3.5:Thio1:Zn for five cycles of mercury(ii) removal. TSC-ZIF derivatives, designed and developed here, represent a new class of dynamically functionalized adsorption material displaying the advantages of simplicity, efficiency, and reusability.

Zeolitic imidazolate frameworks Ald-ZIF were obtained by mixing two imidazole-based linkers with zinc(ii). Post-synthetically modified Ald-ZIFs with thiosemicarbazide group improved mercury(ii) removal efficiency from water at a capacity of 1667 mg g−1.  相似文献   

19.
Fe3O4/MOF (metal organic framework)/l-cysteine was synthesized and applied for the removal of Cd(ii) from wastewater. The adsorption kinetics and isotherms were investigated, and the results indicated that the adsorption obeyed the pseudo-second-order kinetic model and Langmuir isotherm. The maximum adsorption capacity was calculated to be 248.24 mg g−1. Fe3O4/MOF/l-cysteine was further applied to determine trace amounts of Cd(ii) in real water samples using ICP-AES (inductively coupled plasma-atomic emission spectroscopy) based on magnetic solid-phase extraction (MSPE). The determination limit was 10.6 ng mL−1. Additionally, Fe3O4/MOF/l-cysteine can also be used as a fluorescent sensor for “turn-off” detection of Cd(ii), and the detection limit was 0.94 ng mL−1.

Fe3O4/MOF (metal organic framework)/l-cysteine was synthesized and applied for the removal of Cd(ii) from wastewater.  相似文献   

20.
In this study, raw attapulgite and two aluminium hydroxide-modified attapulgites prepared using different aluminium salts were calcined at 600 °C to successfully prepare three novel adsorbents (C-ATP, C-ATP-SO42− and C-ATP-Cl). The three adsorbents were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis and X-ray photoelectron spectroscopy (XPS). Batch experiments revealed that the Cd(ii) adsorption capacity of the three adsorbents increased with increasing pH, increasing the initial concentration of Cd(ii) in solution, and with longer adsorption times. The order of adsorption capacity was always C-ATP > C-ATP-Cl > C-ATP-SO42−. C-ATP and C-ATP-Cl were better described by the Langmuir model, while C-ATP-SO42− was better described by the Freundlich model. The three adsorbents reached adsorption equilibrium within 2 h, and all followed pseudo-second order kinetics. The adsorption of Cd(ii) onto the three adsorbents was physisorption, as suggested by the calculated thermodynamic parameters. Although the adsorption of Cd(ii) on C-ATP and C-ATP-Cl was exothermic, the adsorption on C-ATP-SO42− was endothermic. Ion exchange and cadmium precipitation were the primary mechanisms of cadmium adsorption on the three adsorbents analysed by XPS. The presence of SO42− in C-ATP-SO42− may result in weaker binding of Cd(ii) by the adsorbent than C-ATP-Cl.

Schematic illustration about the synthetic route of the C-ATP, C-ATP-SO42− and C-ATP-Cl for the adsorption of Cd(ii).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号