首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Patients ventilated after cardiac surgery commonly have impaired oxygenation, mainly due to lung collapse. We have previously found that PaO2 and end-expiratory lung volume (EELV) were increased by a lung recruitment maneuver (LRM) followed by positive end-expiratory pressure (PEEP). The aim of this study was to evaluate whether only PEEP or only a LRM could give similar effects. METHODS: Thirty circulatory stable patients (aged 55-79 years) mechanically ventilated after cardiac surgery were randomized to receive LRM (four 10-s insufflations to an airway pressure of 45 cmH2O) and zero end-expiratory pressure (LRM-group), PEEP 12 cmH2O (PEEP-group) or LRM in combination with PEEP 12 cmH2O (LRM + PEEP-group). The set end-expiratory pressure was kept for 75 min. Before, during and after the intervention, EELV (SF6 washout technique) and blood gases were measured. RESULTS: Initial EELV and PaO2 were similar in all groups. In the LRM-group, PaO2 and EELV increased transiently (P < 0.0001), but returned at 5 min to the initial values. In the PEEP-group, PaO2 did not change but EELV increased to 155 +/- 27% of the initial value (P < 0.0001). In the LRM+PEEP-group, PaO2 and EELV increased to 212 +/- 66% and 178 +/- 31% of the initial values (P < 0.0001), respectively, and were maintained during PEEP application. CONCLUSION: In patients ventilated after cardiac surgery: (1) PEEP increased lung volume but not PaO2, (2) a lung recruitment maneuver without subsequent PEEP had no sustained effect, and (3) both a lung recruitment maneuver and PEEP were needed to increase and maintain the increased lung volume and PaO2.  相似文献   

2.
PURPOSE: The goal of this study was to analyze the effect of positive end-expiratory pressure (PEEP), with and without a lung recruitment maneuver, on dead space. METHODS: 16 anesthetized patients were sequentially studied in three steps: 1) without PEEP (ZEEP), 2) with 5 cm H(2)O of PEEP and 3) with 5 cm H(2)O of PEEP after an alveolar recruitment strategy (ARS). Ventilation was maintained constant. The single breath test of CO(2) (SBT-CO(2)), arterial oxygenation, end-expiratory lung volume (EELV) and respiratory compliance were recorded every 30 min. RESULTS: Physiological dead space to tidal volume decreased after ARS (0.45 +/- 0.01) compared with ZEEP (0.50 +/- 0.07, P < 0.05) and PEEP (0.51 +/- 0.06, P < 0.05). The elimination of CO(2) per breath increased during PEEP (25 +/- 3.3 mL.min(-1)) and ARS (27 +/- 3.2 mL.min(-1)) compared to ZEEP (23 +/- 2.6 mL.min(-1), P < 0.05), although ARS showed larger values than PEEP (P < 0.05). Pa-etCO(2) difference was lower after recruitment (0.9 +/- 0.5 kPa, P < 0.05) compared to ZEEP (1.1 +/- 0.5 kPa) and PEEP (1.2 +/- 0.5 kPa). Slope II increased after ARS (63 +/- 11%/L, P < 0.05) compared with ZEEP (46 +/- 7.7%/L) and PEEP (56 +/- 10%/L). Slope III decreased significantly after recruitment (0.13 +/- 0.07 1/L) compared with ZEEP (0.21 +/- 0.11 1/L) and PEEP (0.18 +/- 0.10 1/L). The angle between slope II and III decreased only after ARS. After lung recruitment, PaO(2), EELV, and compliance increased significantly compared with ZEEP and PEEP. CONCLUSION: Lung recruitment improved the efficiency of ventilation in anesthetized patients.  相似文献   

3.
BACKGROUND AND OBJECTIVE: The aim of this study was to test the efficacy of positive end-expiratory pressure (PEEP) to the dependent lung during one-lung ventilation, taking into consideration underlying lung function in order to select responders to PEEP. METHODS: Forty-six patients undergoing open-chest thoracic surgical procedures were studied in an operating room of a university hospital. Patients were randomized to receive zero end-expiratory pressure (ZEEP) or 10 cmH2O of PEEP to the dependent lung during one-lung ventilation in lateral decubitus. The patients were stratified according to preoperative forced expiratory volume in 1 s (FEV1) as an indicator of lung function (below or above 72%). Oxygenation was measured in the supine position, in the lateral decubitus with an open chest, and after 20 min of ZEEP or PEEP. The respiratory system pressure-volume curve of the dependent hemithorax was measured in supine and open-chest lateral decubitus positions with a super-syringe. RESULTS: Application of 10 cmH2O of PEEP resulted in a significant increase in PaO2 (P < 0.05). This did not occur in ZEEP group, considered as a time matched control. PEEP improved oxygenation only in patients with high FEV1 (from 11.6+/-4.8 to 15.3+/-7.1 kPa, P < 0.05). There was no significant change in the low FEV1 group. Dependent hemithorax compliance decreased in lateral decubitus, more in patients with high FEV1 (P < 0.05). PEEP improved compliance to a greater extent in patients with high FEV1 (from 33.6+/-3.6 to 48.4+/-3.9 mLcmH2O(-1), P < 0.05). CONCLUSIONS: During one-lung ventilation in lateral decubitus, PEEP applied to the dependent lung significantly improves oxygenation and respiratory mechanics in patients with rather normal lungs as assessed by high FEV1.  相似文献   

4.
BACKGROUND: To evaluate the effect of a recruitment maneuver (RM) with constant positive inspiratory pressure and high positive end-expiratory pressure (PEEP) on oxygenation and static compliance (Cs) in patients with severe acute respiratory distress syndrome (ARDS). METHODS: Eight patients with ARDS ventilated with lung-protective strategy and an arterial partial pressure of oxygen to inspired oxygen fraction ratio (PaO2/FIO2) < or =100 mmHg regardless of PEEP were prospectively studied. The RM was performed in pressure-controlled ventilation at FIO2 of 1.0 until PaO2 reached 250 mmHg or a maximal plateau pressure/PEEP of 60/45 cmH2O was achieved. The RM was performed with stepwise increases of 5 cmH2O of PEEP every 2 min and thereafter with stepwise decreases of 2 cmH2O of PEEP every 2 min until a drop in PaO2 >10% below the recruitment PEEP level. Data was collected before (preRM), during and after 30 min (posRM). RESULTS: The PaO2/FIO2 increased from 83 +/- 22 mmHg preRM to 118 +/- 32 mmHg posRM (P = 0.001). The Cs increased from 28 +/- 10 ml cmH2O(-1) preRM to 35 +/- 12 ml cmH2O(-1) posRM (P = 0.025). The PEEP was 12 +/- 3 cmH2O preRM and was set at 15 +/- 4 cmH2O posRM (P = 0.025). The PEEP of recruitment was 36 +/- 9 cmH2O and the collapsing PEEP was 13 +/- 4 cmH2O. The PaO2 of recruitment was 225 +/- 105 mmHg, with five patients reaching a PaO2 > or = 250 mmHg. The FIO2 decreased from 0.76 +/- 0.16 preRM to 0.63 +/- 0.15 posRM (P = 0.001). No major complications were detected. CONCLUSION: Recruitment maneuver was safe and useful to improve oxygenation and Cs in patients with severe ARDS ventilated with lung-protective strategy.  相似文献   

5.
BACKGROUND: Pressure-volume relationships (PV curves) are the only available method for bedside monitoring of respiratory mechanics. Alveolar recruitment modifies the results obtained from the PV curves. We hypothesized that method-related differences may influence PV-curve guided ventilatory management. METHODS: Twelve acute lung injury (ALI) patients [PaO2/FiO2 13.0 +/- 1.5 kPa (97.6 +/- 11.3 mmHg), bilateral pulmonary infiltrates] were studied. Two PV curves [one at variable, and another at constant level of positive end-expiratory pressure (PEEP)] were obtained from each patient using constant inspiratory flow and end-inspiratory and -expiratory occlusions. Upper and lower inflection points (UIP, LIP) were estimated. Recruitment due to PEEP and during inflation was assessed by respiratory inductive plethysmography (RIP). RESULTS: (1) Pressure-volume curves at constant PEEP tended to provide higher LIP values compared with curves at variable PEEP (mean difference +/- SEM 5.1 +/- 1.9 cmH2O); and (2) recruitment occurred throughout the PV curve with no relationship with LIP or UIP. CONCLUSION: Pressure-volume curves obtained using variable PEEP translate a different physiological reality and seem to be clinically more relevant than curves constructed at constant PEEP. If curves constructed at constant PEEP are used to set the ventilator, unnecessarily high PEEP levels may be used. Respiratory inductive plethysmography technology may be used for monitoring of recruitment at the bedside.  相似文献   

6.
BACKGROUND AND OBJECTIVE: This prospective, randomized, controlled study evaluated the effects on oxygenation by applying a selective and patient-specific value of positive end-expiratory pressure (PEEP) to the dependent lung during one-lung ventilation. METHODS: Fifty patients undergoing thoracic surgery under combined epidural/general anaesthesia were randomly allocated to receive zero PEEP (Group ZEEP, n = 22), or the preventive application of PEEP, optimized on the best thoracopulmonary compliance (Group PEEP, n = 28). Patients' lungs were mechanically ventilated with the same setting during two- and one-lung ventilation (FiO2 = 0.5; VT = 9mL kg(-1), inspiratory :expiratory time = 1 : 1, inspiratory pause = 10%). RESULTS: Lung-chest wall compliance decreased in both groups during one-lung ventilation, but patients of Group PEEP had 10% higher values than patients with no end-expiratory pressure (ZEEP) applied--Group ZEEP (P < 0.05). During closed chest one-lung ventilation, the PaO2 : FiO2 ratio was lower in Group PEEP (232 +/- 88) than in Group ZEEP (339 +/- 97) (P < 0.05); but no further differences were reported throughout the study. No differences were reported between the two groups in the need for 100% oxygen ventilation (10 patients of Group ZEEP (45%) and 14 patients of Group PEEP (50%) (P = 0.78)) or re-inflation of the operated lung during surgery (two patients of Group ZEEP (9%) and three patients of Group PEEP (10%) (P = 0.78)). Postanaesthesia care unit discharge required 48 min (25th-75th percentiles: 32-58 min) in Group PEEP and 45 min (30-57 min) in Group ZEEP (P = 0.60). CONCLUSIONS: The selective application of PEEP to the dependent, non-operated lung increases the lung-chest wall compliance during one-lung ventilation, but does not improve patient oxygenation.  相似文献   

7.
The influence of positive end-expiratory pressure (PEEP) on extravascular lung water measured with the double-indicator dilution technique (EVLWi) has been studied during formation of hydrostatic pulmonary oedema in a canine model. The oedema was created by elevating the mean pulmonary artery pressure (PAP) to 30 mmHg (4.0 kPa) by inflation of a left atrial balloon, and a simultaneous intravenous saline infusion of 15 ml.kg-1.h-1. All dogs were ventilated with zero end-expiratory pressure (ZEEP) until the initial EVLWi had increased by 50%. In one group (n = 5) a PEEP of 10 cmH2O (1.0 kPa) was applied and the dogs were studied for a further 4 h and in the other group (n = 5) ZEEP was maintained throughout the study. During the first 2 h after ZEEP/PEEP application EVLWi increased from 13.7 +/- 2.1 to 20.2 +/- 1.2 ml.kg-1 with ZEEP ventilation and from 13.6 +/- 1.2 to 18.6 +/- 1.9 ml.kg-1 with PEEP ventilation. EVLWi remained unchanged during the last 2 h in both groups. The gas exchange improved with PEEP, arterial oxygen tension increased from 30.4 +/- 8.9 kPa to 38.6 +/- 2.5 kPa (P less than 0.01), and the shunt fraction decreased from 6.0 +/- 3.8% to 1.2 +/- 0.8% (P less than 0.001). There were significant differences (P less than 0.01) in both PaO2 and shunt fraction between the ZEEP and PEEP groups throughout the study. In conclusion, positive end-expiratory pressure improves gas exchange but does not protect against increasing extravascular lung water during the creation of hydrostatic pulmonary oedema.  相似文献   

8.
BACKGROUND: Lung protective ventilation using low end-inspiratory pressures and tidal volumes (VT) has been shown to impair alveolar recruitment and to promote derecruitment in acute lung injury. The aim of the present study was to compare the effects of two different end-inspiratory pressure levels on alveolar recruitment, alveolar derecruitment and potential overdistention at incremental levels of positive end-expiratory pressure. METHODS: Sixteen adult sheep were randomized to be ventilated with a peak inspiratory pressure of either 35 cm H2O (P35, low VT) or 45 cm H2O (P45, high VT) after saline washout-induced lung injury. Positive end-expiratory pressure (PEEP) was increased in a stepwise manner from zero (ZEEP) to 7, 14 and 21 cm of H2O in hourly intervals. Tidal volume, initially set to 12 ml kg(-1), was reduced according to the pressure limits. Computed tomographic scans during end-expiratory and end-inspiratory hold were performed along with hemodynamic and respiratory measurements at each level of PEEP. RESULTS: Tidal volumes for the two groups (P35/P45) were: 7.7 +/- 0.9/11.2 +/- 1.3 ml kg(-1) (ZEEP), 7.9 +/- 2.1/11.3 +/- 1.3 ml kg(-1) (PEEP 7 cm H2O), 8.3 +/- 2.5/11.6 +/- 1.4 ml kg(-1) (PEEP 14 cm H2O) and 6.5 +/- 1.7/11.0 +/- 1.6 ml kg(-1) (PEEP 21 cm H2O); P < 0.001 for differences between the two groups. Absolute nonaerated lung volumes during end-expiration and end-inspiration showed no difference between the two groups for given levels of PEEP, while tidal-induced changes in nonaerated lung volume (termed cyclic alveolar instability, CAI) were larger in the P45 group at low levels of PEEP. The decrease in nonaerated lung volume was significant for PEEP 14 and 21 cm H2O in both groups compared with ZEEP (P < 0.005). Over-inflated lung volumes, although small, were significantly higher in the P45 group. Significant respiratory acidosis was noted in the P35 group despite increases in the respiratory rate. CONCLUSION: Limiting peak inspiratory pressure and VT does not impair alveolar recruitment or promote derecruitment when using sufficient levels of PEEP.  相似文献   

9.
BACKGROUND: Positive end-expiratory pressure (PEEP) is commonly applied to the ventilated lung to try to improve oxygenation during one-lung ventilation but is an unreliable therapy and occasionally causes arterial oxygen partial pressure (PaO(2)) to decrease further. The current study examined whether the effects of PEEP on oxygenation depend on the static compliance curve of the lung to which it is applied. METHODS: Forty-two adults undergoing thoracic surgery were studied during stable, open-chest, one-lung ventilation. Arterial blood gases were measured during two-lung ventilation and one-lung ventilation before, during, and after the application of 5 cm H(2)O PEEP to the ventilated lung. The plateau end-expiratory pressure and static compliance curve of the ventilated lung were measured with and without applied PEEP, and the lower inflection point was determined from the compliance curve. RESULTS: Mean (+/- SD) PaO(2) values, with a fraction of inspired oxygen of 1.0, were not different during one-lung ventilation before (192 +/- 91 mmHg), during (190 +/- 90), or after ( 205 +/- 79) the addition of 5 cm H(2)O PEEP. The mean plateau end-expiratory pressure increased from 4.2 to 6.8 cm H(2)O with the application of 5 cm H(2)O PEEP and decreased to 4.5 cm H(2)O when 5 cm H(2)O PEEP was removed. Six patients showed a clinically useful (> 20%) increase in PaO(2) with 5 cm H(2)O PEEP, and nine patients had a greater than 20% decrease in PaO(2). The change in PaO(2) with the application of 5 cm H(2)O PEEP correlated in an inverse fashion with the change in the gradient between the end-expiratory pressure and the pressure at the lower inflection point (r = 0.76). The subgroup of patients with a PaO(2) during two-lung ventilation that was less than the mean (365 mmHg) and an end-expiratory pressure during one-lung ventilation without applied PEEP less than the mean were more likely to have an increase in PaO(2) when 5 cm H(2)O PEEP was applied. CONCLUSIONS: The effects of the application of external 5 cm H(2)O PEEP on oxygenation during one-lung ventilation correspond to individual changes in the relation between the plateau end-expiratory pressure and the inflection point of the static compliance curve. When the application of PEEP causes the end-expiratory pressure to increase from a low level toward the inflection point, oxygenation is likely to improve. Conversely, if the addition of PEEP causes an increased inflation of the ventilated lung that raises the equilibrium end-expiratory pressure beyond the inflection point, oxygenation is likely to deteriorate.  相似文献   

10.
This study aimed to evaluate the relationship between PaO2/FiO2 ratio and extravascular lung water in septic shock-induced acute respiratory distress syndrome in a prospective observational clinical trial. Twenty-three patients suffering from sepsis induced acute respiratory distress syndrome were recruited. All patients were ventilated in pressure control/support mode. Haemodynamic parameters were determined by arterial thermodilution (PiCCO) eight hourly for 72 hours. At the same time blood gas analyses were done and respiratory parameters were also recorded. Data are presented as mean +/-SD. For statistical analysis Pearson's correlation test, and analysis of variance (ANOVA) was used respectively. Significant negative correlation was found between extravascular lung water and PaO2/FiO2 (r = -0.355, P < 0.001), and significant positive correlation was shown between extravascular lung water and PEEP (r=0.557, P<0.001). A post-hoc analysis was performed when "low" PEEP: < 10 cmH2O and "high" PEEP: (10 cmH2O PEEP was applied, and neither the oxygenation, nor the driving pressure or the PaCO2 differed significantly, but the extravascular lung water showed significant difference when "high" or "low" PEEP was applied (13+/-5 vs 9+/-2 ml/kg respectively, P=0.001). This study found significant negative correlation between extravascular lung water and PaO2/FiO2. The mechanism by which extravascular lung water affects oxygenation is unknown but the significant positive correlation between PEEP and extravascular lung water shown in this trial suggests that the latter may have a role in the development of alveolar atelectasis.  相似文献   

11.
BACKGROUND: General anaesthesia impairs the gas exchange in the lungs, and moderate desaturation (SaO2 86-90%) occurred in 50% of anaesthetised patients in a blinded pulse oximetry study. A high FiO2 might reduce the risk of hypoxaemia, but can also promote atelectasis. We hypothesised that a moderate positive end-expiratory pressure (PEEP) level of 10 cmH2O can prevent atelectasis during ventilation with an FiO2 = 1.0. METHODS: Atelectasis was evaluated by computed tomography (CT) in 13 ASA I-II patients undergoing elective surgery. CT scans were obtained before and 15 min after induction of anaesthesia. Then, recruitment of collapsed lung tissue was performed as a "vital capacity manoeuvre" (VCM, inspiration with Paw = 40 cmH2O for 15 s), and a CT scan was obtained at the end of the VCM. Thereafter, PEEP = 0 cmH2O was applied in group 1, and PEEP = 10 cmH2O in group 2. Additional CT scans were obtained after the VCM. Oxygenation was measured before and after the VCM. RESULTS: Atelectasis (> 1 cm2) was present in 12 of the 13 patients after induction of anaesthesia. At 5 and 10 min after the VCM, atelectasis was significantly smaller in group 2 than group 1 (P < 0.005). A significant inverse correlation was found between PaO2 and atelectasis. CONCLUSIONS: PEEP = 10 cmH2O reduced atelectasis formation after a VCM, when FiO2 = 1.0 was used. Thus, a VCM followed by PEEP = 10 cmH2O should be considered when patients are ventilated with a high FiO2 and gas exchange is impaired.  相似文献   

12.
BACKGROUND: Respiratory failure after cardiopulmonary bypass (CPB) remains one of the major complications after cardiac surgery. This study was designed to evaluate effects of respiratory care after CPB on pulmonary function. METHODS: Eighteen patients scheduled for cardiac surgery were investigated. Preoperative respiratory functions (%VC, FEV1.0%, V25/Ht, FRC-CC, deltaN2) were measured in all the patients. Both induction and maintenance of anesthesia were performed using propofol, midazolam, fentanyl, and vecuronium bromide. All the patients were ventilated using volume controlled ventilation by setting FIO2 at 0.5, the respiratory frequency at 15 x min(-1), the tidal volume at 6-10 ml x kg(-1) adjusted to maintain PaCO2 between 30 to 40 mmHg, and the peak airway pressures below 40 cmH2O, PEEP of 0 cmH2O. From 1 hour after the operation, the patients were randomly divided into 2 groups: group A, ventilated artificially with PEEP of 5 cmH2O and group B, ventilated with PEEP adjusted to the patient's lower inflection point (LIP) obtained by the pressure-volume curve. PaO2, Qs/Qt and FRC were measured after induction of anesthesia, just after surgery, 1 hour after surgery and 1 hour after artificial ventilation with PEEP. The values of the LIP were obtained from the P-V curves with the constant-flow methods before and after surgery. RESULTS: PaO2 and FRC decreased and Qs/Qt increased significantly after the surgery in all the patients. One hour after artificial ventilation with PEEP, PaO2 increased and Qs/Qt decreased significantly compared with the values after operation. However, there was no significant difference in the magnitude of these changes among the different groups. The changes in PaO2 and Qs/Qt were not correlated with the changes in FRC and preoperative respiratory functions. The LIP tended to increase after surgery in 2 groups. CONCLUSIONS: Although pulmonary function deteriorated after CPB. PEEP could improve oxygenation in all the patients. There were no significant differences in the degree of these improvements between patients receiving PEEP of 5 cmH2O and patients with PEEP adjusted to their LIP. There was no significant relationship between preoperative pulmonary function and changes in oxygenation after CPB.  相似文献   

13.
Abnormalities in gas exchange during general anaesthesia are caused partly by atelectasis. Inspiratory pressures of approximately 40 cm H2O are required to fully re-expand healthy but collapsed alveoli. However, without PEEP these re-expanded alveoli tend to collapse again. We hypothesized that an initial increase in pressure would open collapsed alveoli; if this inspiratory recruitment is combined with sufficient end-expiratory pressure, alveoli will remain open during general anaesthesia. We tested the effect of an 'alveolar recruitment strategy' on arterial oxygenation and lung mechanics in a prospective, controlled study of 30 ASA II or III patients aged more than 60 yr allocated to one of three groups. Group ZEEP received no PEEP. The second group received an initial control period without PEEP, and then PEEP 5 cm H2O was applied. The third group received an increase in PEEP and tidal volumes until a PEEP of 15 cm H2O and a tidal volume of 18 ml kg-1 or a peak inspiratory pressure of 40 cm H2O was reached. PEEP 5 cm H2O was then maintained. There was a significant increase in median PaO2 values obtained at baseline (20.4 kPa) and those obtained after the recruitment manoeuvre (24.4 kPa) at 40 min. This latter value was also significantly higher than PaO2 measured in the PEEP (16.2 kPa) and ZEEP (18.7 kPa) groups. Application of PEEP also had a significant effect on oxygenation; no such intra-group difference was observed in the ZEEP group. No complications occurred. We conclude that during general anaesthesia, the alveolar recruitment strategy was an efficient way to improve arterial oxygenation.   相似文献   

14.
Background: Anesthesia per se and pneumoperitoneum during laparoscopic surgery lead to atelectasis and impairment of oxygenation. We hypothesized that a ventilation with positive end‐expiratory pressure (PEEP) during general anesthesia and laparoscopic surgery leads to a more homogeneous ventilation distribution as determined by electrical impedance tomography (EIT). Furthermore, we supposed that PEEP ventilation in lung‐healthy patients would improve the parameters of oxygenation and respiratory compliance. Methods: Thirty‐two patients scheduled to undergo laparoscopic cholecystectomy were randomly assigned to be ventilated with ZEEP (0 cmH2O) or with PEEP (10 cmH2O) and a subsequent recruitment maneuver. Differences in regional ventilation were analyzed by the EIT‐based center‐of‐ventilation index (COV), which quantifies the distribution of ventilation and indicates ventilation shifts. Results: Higher amount of ventilation was examined in the dorsal parts of the lungs in the PEEP group. Throughout the application of PEEP, a lower shift of ventilation was found, whereas after the induction of anesthesia, a remarkable ventral shift of ventilation in ZEEP‐ventilated patients (COV: ZEEP, 40.6 ± 2.4%; PEEP, 46.5 ± 3.5%; P<0.001) was observed. Compared with the PEEP group, ZEEP caused a ventral misalignment of ventilation during pneumoperitoneum (COV: ZEEP, 41.6 ± 2.4%; PEEP, 44 ± 2.7%; P=0.013). Throughout the study, there were significant differences in the parameters of oxygenation and respiratory compliance with improved values in PEEP‐ventilated patients. Conclusion: The effect of anesthesia, pneumoperitoneum, and different PEEP levels can be evaluated by EIT‐based COV monitoring. An initial recruitment maneuver and a PEEP of 10 cmH2O preserved homogeneous regional ventilation during laparoscopic surgery in most, but not all, patients and improved oxygenation and respiratory compliance.  相似文献   

15.
目的 比较双相正压通气(BIPAP)与持续正压通气(CPAP)对急性呼吸窘迫综合征(ARDS)患者肺复张的效果.方法 选择ARDS患者44例,ASA Ⅲ或Ⅳ级,性别不限,年龄35~63岁,体重52~74 kg,肺复张前基础通气模式为同步间歇指令通气联合压力支持通气,随机分为2组(n=22):CPAP组和BIPAP组.CPAP组10 s内逐渐上升呼气末正压(PEEP)至30 cm H2O,持续30 s,然后在5~10 8内恢复肺复张前通气模式.BIPAP组高水平和低水平压力分别为40、20 cm H2O,持续90 s,然后在5~10 s内恢复肺复张前通气模式.记录肺复张通气前即刻(T1),肺复张通气结束后即刻(T2)、2 min(T3)、5 min(T4)、15 min(T5)、30 min(T6)时HR、MAP、CVP、SpO2和肺动态顺应性(Cdyn).分别于T1、T5、肺复张通气结束后1 h(T7)、2 h(T8)、4 h(T9)时采集桡动脉血样,测定pH值、PaO2和PaCO2,计算PaO2/FiO2比值.结果 与CPAP组比较,BIPAP组SpO2、Cdyn、PaO2和PaO2/FiO2升高,CVP降低(P<0.05),HR和MAP比较差异无统计学意义(P>0.05).与T1时比较,CPAP组T3时MAP升高,T2时CVP升高,Cdyn降低,T3~6时SpO2和Cdyn升高,T7,8时PaO2升高,T5,7,8时PaO2/FiO2升高,BIPAP组T2~6时SpO2升高,T3~6时Cdyn升高,T5,7,8时PaO2和PaO2/FiO2升高(P<0.05).结论 与CPAP比较,BIPAP对ARDS患者行肺复张通气时血液动力学影响小,可进一步提高氧合和肺顺应性,是一种安全有效的肺复张方法 .  相似文献   

16.
BACKGROUND: Recruitment maneuvers performed in early adult respiratory distress syndrome remain a matter of dispute in patients ventilated with low tidal volumes and high levels of positive end-expiratory pressure (PEEP). In this prospective, randomized controlled study the authors evaluated the impact of recruitment maneuvers after a PEEP trial on oxygenation and venous admixture (Qs/Qt) in patients with early extrapulmonary adult respiratory distress syndrome. METHODS: After a PEEP trial 30 consecutive patients ventilated with low tidal volumes and high levels of PEEP were randomly assigned to either undergo a recruitment maneuver or not. Data were recorded at baseline, 3 min after the recruitment maneuver, and 30 min after baseline. Recruitment maneuvers were performed with a sustained inflation of 50 cm H2O maintained for 30 s. RESULTS: Compared with baseline the ratio of the arterial oxygen partial pressure to the fraction of inspired oxygen (Pao2/Fio2) and Qs/Qt improved significantly at 3 min after the recruitment maneuver (Pao2/Fio2, 139 +/- 46 mm Hg versus 246 +/- 111 mm Hg, P < 0.001; Qs/Qt, 30.8 +/- 5.8% versus 21.5 +/- 9.7%, P < 0.005), but baseline values were reached again within 30 min. No significant differences in Pao2/Fio2 and Qs/Qt were detected between the recruitment maneuver group and the control group at baseline and after 30 min (recruitment maneuver group [n = 15]: Pao2/Fio2, 139 +/- 46 mm Hg versus 138 +/- 39 mm Hg; Qs/Qt, 30.8 +/- 5.8% versus 29.2 +/- 7.4%; control group: [n = 15]: Pao2/Fio2, 145 +/- 33 mm Hg versus 155 +/- 52 mm Hg; Qs/Qt, 30.2 +/- 8.5% versus 28.1 +/- 5.4%). CONCLUSION: In patients with early extrapulmonary adult respiratory distress syndrome who underwent a PEEP trial, recruitment maneuvers failed to induce a sustained improvement of oxygenation and venous admixture.  相似文献   

17.
BACKGROUND: In acute respiratory distress syndrome, lung volume is lost immediately after positive end-expiratory pressure (PEEP) is removed and is not immediately regained when PEEP is restored to its original value. The aim of this study was to investigate whether the same phenomenon also occurs in cardiopulmonary healthy individuals during anaesthesia and muscle relaxation. METHODS: In 13 anaesthetised and muscle-relaxed patients, inspiratory elastic pressure-volume (Pel-V) curves were, after lung recruitment, obtained from zero end-expiratory airway pressure (ZEEP) and from a PEEP of 5 cmH2O. The curves were aligned on a common volume axis. Differences in lung volumes and compliance (Crs) were calculated at the different airway pressures. RESULTS: At comparable pressures the ZEEP curve showed significantly lower volumes up to an airway pressure of 25 cmH2O. Maximum Crs was similar on the curves obtained from ZEEP and PEEP. However, the lower segments of the curve recorded from PEEP showed lower Crs compared to the curve recorded from ZEEP. CONCLUSION: During anaesthesia and muscle paralysis, the Pel-V relations change immediately when 5 cmH2O of PEEP is removed. This phenomenon is probably mainly caused by closure of small airways and only in a minor part, if any, by formation of atelectasis. This study indicates that under these conditions lung volume might easily be normalised by a large breath producing an airway pressure of 20 cmH2O.  相似文献   

18.
BACKGROUND AND OBJECTIVES: Salt-water aspiration results in pulmonary oedema and hypoxia. We tested the hypothesis that partial liquid ventilation has beneficial effects on gas exchange and rate of survival in acute and extended salt water-induced lung injury. METHODS: Anaesthetized, ventilated rats (tidal volume 6 mL kg(-1), PEEP 5 cmH2O) received a tracheal salt-water instillation (3%, 8 mL kg(-1) body weight) and were randomly assigned to three groups (n = 10 per group). While lungs of Group 1 were gas-ventilated, lungs of Group 2 received a single perfluorocarbon instillation (30 min after the injury, 5 mL kg(-1) perfluorocarbon) and lungs of Group 3 received an additional continuous perfluorocarbon application into the treachea (5 mL kg(-1) h(-1)) Arterial blood gases were measured with an intravascular blood gas sensor. RESULTS: Salt-water instillation resulted in a marked decrease in PaO2 values within 30 min (from 432 +/- 65 to 83 +/- 40 mmHg, FiO2 = 1.0, P < 0.01). Arterial oxygenation improved in all three groups irrespective of treatment. We observed no significant differences between groups in peak PaO2 and PaCO2 values. CONCLUSIONS: Our results suggest that partial liquid ventilation has no additional beneficial effects on gas exchange after life-threatening salt water-induced lung injury when compared to conventional gas ventilation with positive end-expiratory pressure.  相似文献   

19.
Background: Recruitment maneuvers performed in early adult respiratory distress syndrome remain a matter of dispute in patients ventilated with low tidal volumes and high levels of positive end-expiratory pressure (PEEP). In this prospective, randomized controlled study the authors evaluated the impact of recruitment maneuvers after a PEEP trial on oxygenation and venous admixture (Qs/Qt) in patients with early extrapulmonary adult respiratory distress syndrome.

Methods: After a PEEP trial 30 consecutive patients ventilated with low tidal volumes and high levels of PEEP were randomly assigned to either undergo a recruitment maneuver or not. Data were recorded at baseline, 3 min after the recruitment maneuver, and 30 min after baseline. Recruitment maneuvers were performed with a sustained inflation of 50 cm H2O maintained for 30 s.

Results: Compared with baseline the ratio of the arterial oxygen partial pressure to the fraction of inspired oxygen (Pao2/Fio2) and Qs/Qt improved significantly at 3 min after the recruitment maneuver (Pao2/Fio2, 139 +/- 46 mm Hg versus 246 +/- 111 mm Hg, P < 0.001; Qs/Qt, 30.8 +/- 5.8% versus 21.5 +/- 9.7%, P < 0.005), but baseline values were reached again within 30 min. No significant differences in Pao2/Fio2 and Qs/Qt were detected between the recruitment maneuver group and the control group at baseline and after 30 min (recruitment maneuver group [n = 15]: Pao2/Fio2, 139 +/- 46 mm Hg versus 138 +/- 39 mm Hg; Qs/Qt, 30.8 +/- 5.8% versus 29.2 +/- 7.4%; control group: [n = 15]: Pao2/Fio2, 145 +/- 33 mm Hg versus 155 +/- 52 mm Hg; Qs/Qt, 30.2 +/- 8.5% versus 28.1 +/- 5.4%).  相似文献   


20.
BACKGROUND AND OBJECTIVE: Late postoperative hypoxaemia after upper abdominal surgery is common even among cardiopulmonary healthy patients. Atelectasis may develop after intubation and persist into or reveal a disposition for atelectasis in the postoperative period. Positive end-expiratory pressure (PEEP) eliminates peroperative atelectasis but the effect on perioperative oxygenation is controversial. This study evaluated the effect of peroperative PEEP optimized pulmonary compliance on perioperative oxygenation and complications. METHODS: Forty patients assessed by electrocardiography, spirometry, functional residual capacity and diffusion capacity were randomly assigned to receive positive end-expiratory pressure (PEEP) or zero end-expiratory pressure (ZEEP) during surgery. PaO2, SPO2 and complications in the postoperative period were evaluated without knowledge of peroperative PEEP or ZEEP application. RESULTS: Peroperative arterial oxygenation improved for all patients receiving PEEP, mean 2.1 kPa (0.7-3.5 kPa). There was no difference in postoperative median PaO2 between the groups. The differences in the incidence of late prolonged postoperative hypoxaemia and complications were 25% (-5% to 55%) and -1% (-31% to 29%) between the ZEEP and the PEEP group, but were not statistically significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号