首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assumption of a novel high palatable food (a candied cherry) occurs concomitantly with an increase in the concentration of extra-cellular dopamine and its main metabolite 3,4-dihydroxy-phenylacetic acid (DOPAC) by about 45% in the dialysate obtained by intracerebral microdialysis from the shell of the nucleus accumbens of male rats. Such increase was reversed by SR 141716A (Rimonabant), a selective cannabinoid CB1 receptor antagonist (0.3 mg/kg i.p. and 1 mg/kg i.p.), which also reduces the assumption of the high palatable food, when given 15 min before exposure to the candied cherry. SR 141716A effects on extracellular dopamine and DOPAC were prevented by WIN 55,212-2 (0.3 mg/kg i.p.) or HU 210 (0.1 mg/kg i.p.) given 15 min before SR 141716A. The present results show for the first time that SR 141716A reduces the increase in extra-cellular dopamine induced by a novel high palatable food in the nucleus accumbens. This confirms that cannabinoid CB1 receptors play a key role in food intake and/or appetite and suggests that the mesolimbic dopaminergic system is involved at least in part, in the effects of cannabinoid receptor agonists and antagonists on food intake and/or appetite.  相似文献   

2.
Extinction of conditioned fear response is thought to be a biological process underlying exposure therapy for anxiety disorders. We have previously reported that an AMPA receptor potentiator, 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluorophenoxyacetamide (PEPA), facilitates extinction of fear memory formed through contextual fear conditioning in mice that had never been exposed to experimental stress. On the other hand, recent findings suggest that the fear extinction is impaired in stressed rats or mice. The purpose of the present study was to examine whether PEPA facilitates impaired extinction of fear in stressed mice. For this purpose, mice were applied stress (a 2 h restraint, a 20 min forced swim, and ether inhalation), and contextual fear conditioning was carried out 7 days later. After 1–3 days of conditioning, mice were re-exposed to the context for 6 min, and behavioral freezing response was measured. The time mice spent frozen decreased following every extinction session, and the decrease was remarkably slower in the stressed mice than in control non-stressed mice. PEPA (3, 10, 30 mg/kg body weight) or vehicle was intraperitoneally administered into stressed mice once before the first extinction session. The significant decrease of the freezing response in the extinction sessions was only seen in the 30 mg/kg PEPA-administered stressed mice, compared with vehicle-administered stressed mice. A similar extent of decrease in the freezing response in the extinction sessions was observed in the PEPA-administered (30 mg/kg) and d-cycloserine-administered (30 mg/kg) mice. These results suggest that PEPA facilitates extinction of contextual fear in stressed mice.  相似文献   

3.
Delta(9)-tetrahydrocannabinol, the main psychoactive ingredient in marijuana, activates specific cannabinoid (CB) receptors to exert complex actions on modulatory neurotransmitters involved in attention and cognition. Previous research has demonstrated that systemic administration of the synthetic cannabinoid agonist, WIN 55,212-2, increases norepinephrine efflux in the frontal cortex. The distribution of CB1 receptors on noradrenergic fibers in the frontal cortex suggests this may be one potential site for the regulation of norepinephrine release. In the present study, we first examined the ability of a CB1 antagonist, applied locally in the frontal cortex of adult male Sprague-Dawley rats, to block the actions of systemic WIN 55,212-2. Pretreatment with SR 141716A (300 microM) significantly attenuated the excitatory effects of WIN 55,212-2 (15 mg/kg, i.p.). Next, the impact of direct perfusion of WIN 55,212-2 into the frontal cortex on extracellular norepinephrine efflux was measured. Direct application of WIN 55,212-2 (100 microM) into the frontal cortex elicited a significant increase in extracellular norepinephrine efflux suggesting that activation of cortical cannabinoid receptors contributes to alterations in norepinephrine levels in this brain region. Finally, local administration of SR 141716A followed by local administration of WIN 55,212-2 revealed a paradoxical inhibition of norepinephrine efflux.  相似文献   

4.
In this study, we have assessed the activation of the cannabinoid CB2 receptor (CB2-R) in a model of mouse myocardial ischemia/reperfusion (I/R). The results show that treatment of animals with WIN55212-2, a CB1/CB2-R agonist, given 30 min before induction of I/R, significantly reduced the extent of infarct size (IS) in the area at risk, as measured 2.5 h later, with almost a 51% inhibition observed at the dose tested of 3.5 mg/kg intraperitoneally (i.p.). The protective effect of WIN55212-2 was almost abolished by the selective CB2-R antagonist AM630 (1 mg/kg i.p.) and not affected by the selective CB1-R antagonist AM251 (3 mg/kg i.p.). The CB2-R antagonist administered alone produced a slight but significant (P<0.05) increase in IS compared with vehicle alone. The protection afforded by WIN55212-2 was paralleled by lower values of myeloperoxidase activity and interleukin-1beta and of the CXC chemokine ligand 8 into the injured tissue. In conclusion, we demonstrate for the first time that exogenous and endogenous CB2-R activation reduces the leukocyte-dependent myocardial damage associated with an I/R procedure.  相似文献   

5.
Three experiments were conducted to examine the importance of adenosine A1 receptors for the acquisition and expression of hippocampal-dependent and hippocampal-independent forms of conditioned fear. In Experiment 1, the selective adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA), or saline was administered intraperitoneally to male rats 30 min prior to Pavlovian fear conditioning, which consisted of 7 tone-shock pairings. Adenosine A1 receptor activation dose-dependently and selectively disrupted the acquisition of contextual fear conditioning while sparing tone-shock associations. Experiments 2 and 3 demonstrated that CPA's selective disruption of contextual learning could not be attributed to context being weaker than tone conditioning or to state-dependent learning. Adenosine A1 receptor activation also impaired the expression of both context- and tone-elicited fear. These results suggest that endogenous adenosine modulates the acquisition and expression of emotional (fear) memories by acting on A1 receptors in brain regions underlying fear conditioning.  相似文献   

6.
We have shown that 5-HT mechanisms of the median raphe nucleus (MRN) are involved in contextual fear-conditioning processes as electrolytic or neurotoxic lesions with N-methyl-D-aspartate (NMDA) or injections of 8-hydroxy-2-(di-n-propilamino)-tetralin (8-OH-DPAT) into this structure inhibit freezing behavior in a contextual fear paradigm. In this work, we extend these studies by analyzing the behavioral responses in a classical fear-conditioning paradigm (light or tone/foot-shock association) in rats with either neurochemical lesion with NMDA or injected with 8-OH-DPAT into the MRN. The animals received NMDA or 8-OH-DPAT or saline microinjections into the MRN and were submitted to conditioning trials in an experimental chamber, where they received 10 foot-shocks (0.6 mA, 1 s, variable interval between 10 and 50 s) paired with tone or light (CS). On the next day, they were tested in a different experimental chamber, with or without CS presentation, where the duration of freezing and the number of rearing episodes were recorded. Light or tone alone caused a significant amount of freezing. NMDA lesions or 8-OH-DPAT injections into the MRN clearly inhibited freezing behavior in rats conditioned to light/foot-shock association, but not in the conditioning sessions with tones. Besides the proposed role in contextual fear conditioning, these results clearly show that MRN is involved in the fear conditioning with light as conditioned stimuli. Distinct neural substrates seem to subserve conditioning fear with acoustic stimuli.  相似文献   

7.
The effects of cannabinoid agonists on noxious heat-evoked firing of 62 spinal wide dynamic range (WDR) neurons were examined in urethan-anesthetized rats (1 cell/animal). Noxious thermal stimulation was applied with a Peltier device to the receptive fields in the ipsilateral hindpaw of isolated WDR neurons. To assess the site of action, cannabinoids were administered systemically in intact and spinally transected rats and intraventricularly. Both the aminoalkylindole cannabinoid WIN55,212-2 (125 microg/kg iv) and the bicyclic cannabinoid CP55,940 (125 microg/kg iv) suppressed noxious heat-evoked activity. Responses evoked by mild pressure in nonnociceptive neurons were not altered by CP55,940 (125 microg/kg iv), consistent with previous observations with another cannabinoid agonist, WIN55,212-2. The cannabinoid induced-suppression of noxious heat-evoked activity was blocked by pretreatment with SR141716A (1 mg/kg iv), a competitive antagonist for central cannabinoid CB1 receptors. By contrast, intravenous administration of either vehicle or the receptor-inactive enantiomer WIN55,212-3 (125 microg/kg) failed to alter noxious heat-evoked activity. The suppression of noxious heat-evoked activity induced by WIN55,212-2 in the lumbar dorsal horn of intact animals was markedly attenuated in spinal rats. Moreover, intraventricular administration of WIN55,212-2 suppressed noxious heat-evoked activity in spinal WDR neurons. By contrast, both vehicle and enantiomer were inactive. These findings suggest that cannabinoids selectively modulate the activity of nociceptive neurons in the spinal dorsal horn by actions at CB1 receptors. This modulation represents a suppression of pain neurotransmission because the inhibitory effects are selective for pain-sensitive neurons and are observed with different modalities of noxious stimulation. The data also provide converging lines of evidence for a role for descending antinociceptive mechanisms in cannabinoid modulation of spinal nociceptive processing.  相似文献   

8.
The psychoactive component of marijuana, delta9-tetrahydrocannabinol (THC) suppresses different functions of immunocytes, including the antimicrobicidal activity of macrophages. The triggering of cannabinoid receptors of CB1 and CB2 subtypes present on leukocytes may account for these effects. We investigated the influence of specific CB1 or CB2 receptor antagonists (SR141716A and SR144528, respectively) and nonselective CB1/CB2 cannabinoid receptor agonists (CP55,940 or WIN 55212-2) on macrophage infection by Brucella suis, an intracellular gram-negative bacteria. None of the compounds tested affected bacterial phagocytosis. By contrast, the intracellular multiplication of Brucella was dose-dependently inhibited in cells treated with 10-500 nM SR141716A and 1 microM SR141716A-induced cells exerted a potent microbicidal effect against the bacteria. SR144528, CP55,940, or WIN 55212-2 did not affect (or slightly potentiated) the growth of phagocytized bacteria. However, CP55,940 or WIN 55212-2 reversed the SR141716A-mediated effect, which strongly suggested an involvement of macrophage CB1 receptors in the phenomenon. SR141716A was able to pre-activate macrophages and to trigger an activation signal that inhibited Brucella development. The participation of endogenous cannabinoid ligand(s) in Brucella infection was discussed. Finally, our data show that SR141716A up-regulates the antimicrobial properties of macrophages in vitro and might be a pharmaceutical compound useful for counteracting the development of intramacrophagic gram-negative bacteria.  相似文献   

9.
The effects of neurotoxic or electrolytic ventral subicular (vSUB) lesions on the acquisition and expression of Pavlovian fear conditioning in rats were examined. Conditioning consisted of the delivery of tone-footshock trials in a novel observation chamber, and freezing served as the measure of conditional fear. Pretraining vSUB lesions produced a severe tone freezing deficit and a modest context freezing deficit, whereas posttraining lesions produced severe deficits in freezing to both a tone and a context conditional stimulus (CS). Similar impairments were produced by neurotoxic and electrolytic lesions. Increases in motor activity associated with the lesions could not account for freezing deficits. These results reveal that neurons in the vSUB have an important role in both the acquisition and expression of Pavlovian fear conditioning to contextual and acoustic CSs.  相似文献   

10.
The present study examined the effects of bilateral intra-amygdaloid infusions of the D2 receptor antagonist, eticlopride, on the acquisition and expression of Pavlovian fear conditioning as measured by freezing to acoustic and background contextual stimuli in the rat. Infusions of eticlopride before acquisition or before both acquisition and retention testing significantly attenuated conditioned freezing to tone presentations during the retention test 24 hr later. No effects, however, were observed on freezing that emerged during acquisition. Furthermore, these effects were not attributable to state-dependent learning effects or alterations in baseline activity or shock reactivity. In conclusion, these results suggest that amygdaloid dopamine transmission at D2 receptors contributes to the formation and/or consolidation of fear memories.  相似文献   

11.
Cannabinoids are known to inhibit neurotransmitter release in the CNS through CB1 receptors. The present study compares the effects of synthetic cannabinoids on acetylcholine (ACh) release in human and mice neocortex. We further investigated a possible endocannabinoid tone on CB1 receptors in human neocortex caused by endogenous agonists like anandamide or 2-arachidonylglycerol. Brain slices, incubated with [3H]-choline, were superfused and stimulated electrically under autoinhibition-free conditions to evoke tritium overflow assumed to represent ACh release. The first series of experiments was performed with 26 pulses, 60 mA, at 0.1 Hz. In mice neocortical slices, the cannabinoid receptor agonist WIN55212-2 decreased ACh release (pIC50=6.68, I(max)=67%). In the human neocortex the concentration-response curve of WIN55212-2 was bell-shaped and flat (I(max observed) approximately 30%). The estimated maximum possible inhibition, however, was much larger: I(max derived)=79%. Lec, the negative logarithm (lg) of the biophase concentration of endocannabinoids in 'WIN55212-2 units,' was -6.52, the pKd of WIN55212-2 was 7.47. The CB1 receptor antagonist/inverse agonist SR141716 enhanced ACh release in the human neocortex (by 38%) and prevented the inhibitory effect of WIN55212-2. The concentration-response curve of WIN55212-2 was changed in its shape including a shift to the right due to the presence of SR141716. A pA2 of this antagonist between 11.60 and 11.18 was obtained. SR141716 alone had no effect in mice neocortical slices. A partial agonist without inverse agonistic activity, O-1184, enhanced ACh release in the human neocortex. The endocannabinoid uptake-inhibitor AM404 decreased ACh release in human, but not in mice, neocortical slices. Change of the stimulation parameters (eight trains of pseudo-one-pulse bursts (4 pulses, 76 mA, 100 Hz), spaced by 45 s intervals) led to a stronger inhibitory effect of WIN55212-2, and abolished the disinhibitory effect of SR141716 and O-1184. The results show that activation of CB1 cannabinoid receptors leads to inhibition of ACh release in the human and mouse neocortex. The endocannabinoid tone is high in the human, but not in the mouse neocortex and is dependent on neuronal activity. SR141716 acts as a competitive CB1 receptor antagonist.  相似文献   

12.
The role of the dorsal hippocampus in contextual fear conditioning was investigated with a contextual blocking paradigm. In Experiment 1, rats were given pairings of a light conditioned stimulus (CS) and footshock after preexposure either to footshock or to the context alone. The group preexposed to footshock showed poorer fear conditioning to the light CS, as measured by the fear-potentiated startle reflex. In Experiment 2, a group preexposed to footshock in the same context showed poorer fear conditioning to the light CS than did a group preexposed to footshock in a different context, indicating contextual blocking of fear-potentiated startle. In Experiment 3, lesions of the dorsal hippocampus had no effect on contextual blocking, even though contextual freezing was disrupted. The sparing of contextual blocking indicated that contextual memory was intact following hippocampal lesions, despite the disruption of contextual freezing.  相似文献   

13.
Fear conditioning is one of the most studied paradigms to assess the neural basis of emotional memory. The circuitry involves NMDA receptor activation in the amygdala and, in the case of contextual conditioning, in the hippocampus. Entorhinal cortex is one of the major input/output structures to the hippocampus and also projects to the amygdala, both through glutamatergic transmission. Other learning tasks involving hippocampus and amygdala, such as inhibitory avoidance, require entorhinal cortex during acquisition and consolidation. However, the involvement of NMDA receptors mediated transmission in entorhinal cortex in fear conditioning acquisition and consolidation is not clear. To investigate that issue, rats were trained in fear conditioning to both contextual and tone conditioned stimulus. Immediately before, immediately, 30 or 90 min after training they received NMDA antagonist AP5 or saline injections bilaterally in the entorhinal cortex (AP-6.8 mm, L +/-5.0 mm DV-6.8 mm). Contextual fear conditioning was measured 24 h after training, and tone fear conditioning 48 h after training. AP5 injections selectively impaired contextual fear conditioning only when injected pre-training. Post-training injections had no effect. These findings suggest that entorhinal cortex NMDA receptors are necessary for acquisition, but not for consolidation, of contextual fear conditioning. On the other hand, both acquisition and consolidation of tone fear conditioning seem to be independent of NMDA receptors in the entorhinal cortex.  相似文献   

14.
Behavioral effects of cannabinoid agents in animals   总被引:11,自引:0,他引:11  
Two subtypes of cannabinoid receptors have been identified to date, the CB1 receptor, essentially located in the CNS, but also in peripheral tissues, and the CB2 receptor, found only at the periphery. The identification of delta9-tetrahydrocannabinol (delta9-THC) as the major active component of marijuana (Cannabis sativa), the recent emergence of potent synthetic ligands and the identification of anandamide and sn-2 arachidonylglycerol as putative endogenous ligands for cannabinoid receptors in the brain, have contributed to advancing cannabinoid pharmacology and approaching the neurobiological mechanisms involved in physiological and behavioral effects of cannabinoids. Most of the agonists exhibit nonselective affinity for CB1/CB2 receptors, and delta9-THC and anandamide probably act as partial agonists. Some recently synthesized molecules are highly selective for CB2 receptors, whereas selective agonists for the CB1 receptors are not yet available. A small number of antagonists exist that display a high selectivity for either CB1 or CB2 receptors. Cannabinomimetics produce complex pharmacological and behavioral effects that probably involve numerous neuronal substrates. Interactions with dopamine, acetylcholine, opiate, and GABAergic systems have been demonstrated in several brain structures. In animals, cannabinoid agonists such as delta9-THC, WIN 55,212-2, and CP 55,940 produce a characteristic combination of four symptoms, hypothermia, analgesia, hypoactivity, and catalepsy. They are reversed by the selective CB1 receptor antagonist, SR 141716, providing good evidence for the involvement of CB1-related mechanisms. Anandamide exhibits several differences, compared with other agonists. In particular, hypothermia, analgesia, and catalepsy induced by this endogenous ligand are not reversed by SR 141716. Cannabinoid-related processes seem also involved in cognition, memory, anxiety, control of appetite, emesis, inflammatory, and immune responses. Agonists may induce biphasic effects, for example, hyperactivity at low doses and severe motor deficits at larger doses. Intriguingly, although cannabis is widely used as recreational drug in humans, only a few studies revealed an appetitive potential of cannabimimetics in animals, and evidence for aversive effects of delta9-THC, WIN 55,212-2, and CP 55,940 is more readily obtained in a variety of tests. The selective blockade of CB1 receptors by SR 141716 impaired the perception of the appetitive value of positive reinforcers (food, cocaine, morphine) and reduced the motivation for sucrose, beer and alcohol consumption, indicating that positive incentive and/or motivational processes could be under a permissive control of CB1-related mechanisms. There is little evidence that cannabinoid systems are activated under basal conditions. However, by using SR 141716 as a tool, a tonic involvement of a CB1-mediated cannabinoid link has been demonstrated, notably in animals suffering from chronic pain, faced with anxiogenic stimuli or highly motivational reinforcers. Some effects of SR 141716 also suggest that CB1-related mechanisms exert a tonic control on cognitive processes. Extensive basic research is still needed to elucidate the roles of cannabinoid systems, both in the brain and at the periphery, in normal physiology and in diseases. Additional compounds, such as selective CB1 receptor agonists, ligands that do not cross the blood brain barrier, drugs interfering with synthesis, degradation or uptake of endogenous ligand(s) of CB receptors, are especially needed to understand when and how cannabinoid systems are activated. In turn, new therapeutic strategies would likely to emerge.  相似文献   

15.
The antinociceptive action of cannabinoids in acute and inflammatory pain states have been well-documented. There is also accumulating evidence suggesting that cannabinoids are effective analgesics in chronic pain conditions. WIN 55,212-2, a mixed CB1 and CB2 cannabinoid receptor agonist, has been shown to be effective against hyperalgesia and allodynia in painful peripheral mononeuropathy. Recently, in addition to their spinal and supraspinal antinociceptive action, cannabinoids have also reported to exert local analgesic effects. The aim of this study is to observe the effect of a high affinity cannabinoid, WIN 55,212-2, on tactile allodynia and thermal hyperalgesia in diabetic rats. Diabetes was produced with the injection of a single dose of streptozocin (50 mg/kg, i.p.) and this procedure resulted in neuropathic pain behaviors in the hindlimbs. Mechanical allodynia was detected by application of von Frey filaments to the plantar surface of the foot, and thermal hyperalgesia was studied using the Hargreaves' method; however, thermal hyperalgesia did not develop in diabetic rats. With its higher doses, both systemic (3 and 10 mg/kg, i.p.) and peripheral (30 microg, i.p.l.) injections of WIN 55,212-2 reduced mechanical allodynia. These results suggest that WIN 55,212-2 has an antiallodynic effect in streptozocin-induced diabetic rats and may be a promising approach in the treatment of diabetic neuropathy.  相似文献   

16.
Nociceptin, or orphanin FQ (N/OFQ), the endogenous ligand of NOP receptors, is known to regulate learning and memory processes. To verify the role of N/OFQ in the acquisition of contextual (CFC) and tone fear conditioning (TFC), Wistar male rats received intracerebroventricular injections of N/OFQ (0.1-5.0 nmol) before training, and were tested 24 and 48 hr later to access the freezing response to context and tone, respectively. The intermediate doses (1.0 and 2.5 nmol) impaired the CFC test, sparing TFC. The highest dose (5.0 nmol) reduced freezing during both tests, a result that may be due to nonspecific effects. The posttraining injection of N/OFQ (1 or 5 nmol) did not interfere with CFC and TFC, suggesting a specific effect of the peptide in acquisition processes. Moreover, the impairment observed with N/OFQ (1 nmol) in CFC cannot be attributed to a state-dependent learning because it was not reversed by its pretest administration. The data support the negative role of N/OFQ in the acquisition of aversively motivated tasks, which encompass a spatial component and depend on the hippocampus.  相似文献   

17.
The effects of the synthetic cannabinoid WIN 55,212-2 on heat-evoked firing of spinal wide dynamic range (WDR) neurons were examined in a rodent model of neuropathic pain. Fifty-eight WDR neurons (1 cell/animal) were recorded from the ipsilateral spinal dorsal horns of rats with chronic constriction injury (CCI) and sham-operated controls. Relative to sham-operated controls, neurons recorded in CCI rats showed elevations in spontaneous firing, noxious heat-evoked responses, and afterdischarge firing as well as increases in receptive field size. WIN 55,212-2 (0.0625, 0.125, and 0.25 mg/kg, intravenous) dose-dependently suppressed heat-evoked activity and decreased the receptive field areas of dorsal horn WDR neurons in both nerve injured and control rats with a greater inhibition in CCI rats. At the dose of 0.125 mg/kg iv, WIN 55,212-2 reversed the hyperalgesia produced by nerve injury. The effect of intravenous administration of WIN 55,212-2 appears to be centrally mediated because administration of the drug directly to the ligated nerve did not suppress the heat-evoked neuronal activity in CCI rats. Pretreatment with the cannabinoid CB(1) receptor antagonists SR141716A or AM251, but not the CB(2) antagonist SR144528, blocked the effects. These results provide a neural basis for reports of potent suppression by cannabinoids of the abnormal sensory responses that result from nerve injury.  相似文献   

18.
The role of endocannabinoid signaling in the response of the brain to injury is tantalizing but not clear. In this study, transient middle cerebral artery occlusion (MCAo) was used to produce ischemia/reperfusion injury. Brain content of N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol were determined during MCAo. Whole brain AEA content was significantly increased after 30, 60 and 120 min MCAo compared with sham-operated brain. The increase in AEA was localized to the ischemic hemisphere after 30 min MCAo, but at 60 and 120 min, was also increased in the contralateral hemisphere. 2-Arachidonoylglycerol content was unaffected by MCAo. In a second set of studies, injury was assessed 24 h after 2 h MCAo. Rats administered a single dose (3 mg/kg) of the cannabinoid receptor type 1 (CB1) receptor antagonist SR141716 prior to MCAo exhibited a 50% reduction in infarct volume and a 40% improvement in neurological function compared with vehicle control. A second CB1 receptor antagonist, LY320135 (6 mg/kg), also significantly improved neurological function. The CB1 receptor agonist, WIN 55212-2 (0.1-1 mg/kg) did not affect either infarct volume or neurological score.  相似文献   

19.
The present study examined if nicotine enhances contextual fear conditioning when the training context is either a background stimulus or a foreground stimulus. In the background conditioning experiment, mice were trained using two auditory conditioned stimulus (CS; 30 s, 85 dB white noise)-footshock unconditioned stimulus (US; 2 s, 0.57 mA) pairings and tested 24 h later. In the foreground conditioning experiment, mice were trained with two presentations of a footshock US (2 s, 0.57 mA) and tested 24 h later. Mice received 0.09 mg/kg nicotine before training and testing. For both the foreground and background conditioning experiments, nicotine enhanced contextual conditioning. No enhancement of the auditory CS-US association was seen. These results demonstrate that nicotine enhances contextual fear conditioning regardless of whether the context is a background stimulus or a foreground stimulus during conditioning.  相似文献   

20.
Administration of the cannabinoid CB1 receptor antagonist SR141716 (3-10 mg/kg i.p.) abolished neuropeptide Y-induced overeating and significantly reduced ethanol and sucrose intake in CB1 wild-type (+/+) mice. In CB1 receptor knockout (-/-) mice, neuropeptide Y totally lost its capacity to increase food consumption. Similarly, sucrose and ethanol intakes were significantly lower in CB1-/- vs. CB1+/+ mice. In CB1 deficient mice, SR141716 had no effect in these models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号