首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Accumulating evidence points to a causal role for advanced glycation end products (AGEs) in the development of diabetic vascular complications, including retinopathy. Possible pathogenic mechanisms linking AGEs to diabetic retinopathy include protein kinase C (PKC) activation, oxidative stress, and vascular endothelial growth factor (VEGF) expression. In the present study, we investigated the effect of AGEs on VEGF expression in bovine retinal endothelial cells (BRECs) and determined the role of PKC and oxidative stress in this effect. Incubation of BRECs with AGEs led to enhanced VEGF mRNA and protein expression. This treatment also induced PKC translocation in these cells. The AGE-induced increases in VEGF expression and PKC activation were inhibited by the pan-specific PKC inhibitor, calphostin C, and by the antioxidant drug and compounds, gliclazide, N-acetylcysteine, and vitamin E. In contrast, glyburide which does not exhibit antioxidant properties, did not affect the AGE-induced VEGF expression. Exposure of BRECs to AGEs resulted in a significant increase of nuclear protein binding to the NF-kappa B consensus sequence of the VEGF promoter region. Induction of DNA binding activity for NF-kappa B by AGEs was prevented by gliclazide. Treatment of BRECs with AGEs also increased the proliferation of these cells. This effect was abrogated by incubating the cells with an anti-VEGF antibody and was inhibited in the presence of gliclazide. Overall, these data demonstrate that AGEs increase VEGF expression in retinal endothelial cells through generation of oxidative stress and downstream activation of the PKC pathway. Targeting VEGF expression with specific pharmacological agents, such as antioxidants and PKC inhibitors, may prove efficacious for the treatment of diabetic retinopathy.  相似文献   

2.
Aim:  We have previously demonstrated that advanced glycation end products (AGEs) stimulate bovine retinal endothelial cell (BREC) proliferation through induction of vascular endothelial growth factor (VEGF) production by these cells. We have also shown that gliclazide, a sulfonylurea which decreases oxidative stress, inhibits this effect. The aim of the present study was to characterize the signalling pathways involved in AGE-induced BREC proliferation and VEGF production and mediating the inhibitory effect of gliclazide on these biological events.
Methods:  BRECs were treated or not treated with AGEs in the presence or absence of gliclazide, antioxidants, protein kinase C (PKC), mitogen-activated protein kinase (MAPK) or nuclear factor-κB (NF-κB) inhibitors. BREC proliferation was assessed by measuring [3H]-thymidine incorporation into DNA. Activation of PKC, MAPK and NF-κB signal transduction pathways and determination of VEGF expression were assessed by Western blot analysis using specific antibodies. MAPK activity was also determined by an in vitro kinase assay.
Results:  Treatment of BRECs with AGEs significantly increased cell proliferation and VEGF expression. AGEs induced PKC-β translocation, extracellular signal-regulated protein kinase 1/2 and NF-κB activation in these cells. Pharmacological inhibition of these signalling pathways abolished AGE effects on cell proliferation and VEGF expression. Exposure of BRECs to gliclazide or antioxidants such as vitamin E or N -acetyl- l -cysteine resulted in a significant decrease in AGE-induced activation of PKC-, MAPK- and NF-κB-signalling pathways.
Conclusions:  Our results demonstrate the involvement of PKC, MAPK and NF-κB in AGE-induced BREC proliferation and VEGF expression. Gliclazide inhibits BREC proliferation by interfering with these intracellular signal transduction pathways.  相似文献   

3.
Although oxidant generation by NADPH oxidase is known to play an important role in signaling in endothelial cells, the basis of activation of NADPH oxidase is incompletely understood. The atypical isoform of protein kinase C, PKCzeta, has been implicated in the mechanism of tumor necrosis factor-alpha (TNF-alpha)-induced oxidant generation in endothelial cells; thus, in the present study, we have addressed the role of PKCzeta in regulating NADPH oxidase function. We showed by immunoblotting and confocal microscopy the presence of the major cytosolic NADPH oxidase subunits, p47(phox) and membrane-bound gp91(phox) in human pulmonary artery endothelial (HPAE) cells. TNF-alpha failed to activate oxidant generation in lung vascular endothelial cells derived from p47(phox-/-) and gp91(phox-/-) mice, indicating the requirement of NADPH oxidase in mediating the oxidant generation in endothelial cells. Stimulation of HPAE cells with TNF-alpha resulted in the phosphorylation of p47(phox) and its association with gp91(phox). Inhibition of PKCzeta by multiple pharmacological and genetic approaches prevented the TNF-alpha-induced phosphorylation of p47(phox), and its translocation to the membrane. PKCzeta was shown to colocalize with p47(phox), and inhibition of PKCzeta activation prevented the interaction of p47(phox) with gp91(phox) induced by TNF-alpha. Furthermore, inhibition of association of p47(phox) with gp91(phox) prevented the oxidant generation in endothelial cells. These data demonstrate a novel function of PKCzeta in signaling oxidant generation in endothelial cells by the activation of NADPH oxidase, which may be important in mediating endothelial activation responses.  相似文献   

4.
We investigate the cell signal transduction pathway protein kinase C (PKC) and the role of NADPH subunits in the process of TNF-α-induced endothelial apoptosis. Human umbilical vein endothelial cells (HUVEC) were treated with one of these: 1 mM PKC β(2) inhibitor CGP53353, 10 mM PKC δ inhibitor rottlerin, combination CGP53353 with rottlerin, 3 ×10(-4)M NADPH oxidase inhibitor apocynin, 5 × 10(-6)M NADPH oxidase peptide inhibitor gp91ds-tat. The apoptosis process was assessed by Hoechst 33342 stain, flow cytometry and Western blot analysis, while intracellular reactive oxygen species (ROS) production was detected by 2,7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The NADPH oxidase subunit gene and protein expression were assessed by quantitative real-time PCR and Western blot analysis, respectively. TNF-α significantly induced HUVEC apoptosis and ROS production, accompanying with dramatic upregulation of NADPH oxidase subunits: NOX2/gp91(phox), NOX4, p47(phox) and p67(phox), whereas these enhancements were abolished by the treatment with PKC inhibitors. High TNF-α level exposure induces HUVEC apoptosis, as well as a ROS generation increase via the PKC β(2)-dependent activation of NADPH oxidase. Although the PKC δ pathway may enhance TNF-α-induced HUVEC apoptosis, it does not involve the ROS pathway. Upregulation of expression of NADPH subunits is important in this process, which leads to a new target in antioxidative therapy for vascular disease prevention.  相似文献   

5.
The association between cigarette smoking and atherogenesis is well established. Inflammatory cells may participate in atherogenesis via activation of the NADPH oxidase and the subsequent production of reactive oxygen species (ROS), which exacerbates endothelial injury. However, little is known about the ability of cigarette smoke (CS) to modulate NADPH oxidase protein function. In this study, we investigated the ability of a CS extract derived from a high tar cigarette to alter human neutrophil ROS production and the translocation of two NADPH oxidase proteins, p47phox and p67phox. Phorbol ester-induced intracellular and extracellular production of ROS was reduced following CS treatment as measured by enhanced luminol or isoluminol chemiluminescence, respectively, (luminol AUC was reduced by 59%, p < or =0.0001; isoluminol by 49%, p < or =0.001). The phorbol ester-induced phosphorylation and translocation of p47phox from the cytosol to the membrane was not changed by CS treatment but the translocation of p67phox was reduced. Cigarette smoke treatment alone did not provoke neutrophil ROS production. These findings demonstrate that CS treatment reduced agonist-induced human neutrophil ROS production independent of p47phox phosphorylation and translocation from the cytosol to the membrane. However, this inhibition could be attributed to a reduction in translocation of another cytosolic NADPH oxidase protein, p67phox. Although neutrophil-generated ROS have been implicated in the pathogenesis of atherosclerosis, this does not appear to be the mechanism by which CS induces vascular injury.  相似文献   

6.
Abstract:  Melatonin shows significant protective effects in Alzheimer's disease (AD) models in vitro and in vivo; these effects are related to its function as an antioxidant. The source of reactive oxygen species (ROS) generation in the AD brain is primarily the amyloid-β (Aβ)- activated microglial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. However, the effects of melatonin on the activation of NADPH oxidase remain unclear. In the present study, the cultures of microglia were incubated in the presence of fibrillar Aβ1–42, which induces the assembly and the activation of NADPH oxidase, and triggers the production of superoxide anion-derived ROS. Pretreatment of microglia with melatonin dose-dependently prevents the activation of NADPH oxidase and decreases the production of ROS. Melatonin inhibits the phosphorylation of the p47 phox subunit of NADPH oxidase via a PI3K/Akt-dependent signalling pathway, blocks the translocation of p47 phox and p67 phox subunit to the membrane, down-regulates the binding of p47 phox to gp91 phox , and impairs the assembly of NADPH oxidase. Our data offer new insights into the mechanism of inhibiting ROS generation by melatonin in Aβ-activated microglia. Inhibition of ROS production indirectly might be the underlying mechanism for the neuroprotection by melatonin in the AD brain.  相似文献   

7.
Redox signaling in angiogenesis: role of NADPH oxidase   总被引:12,自引:0,他引:12  
Angiogenesis, a process of new blood vessel formation, is a key process involved in normal development and wound repair as well as in the various pathophysiologies such as ischemic heart and limb diseases and atherosclerosis. Reactive oxygen species (ROS) such as superoxide and H(2)O(2) function as signaling molecules in many aspects of growth factor-mediated responses including angiogenesis. Vascular endothelial growth factor (VEGF) is a key angiogenic growth factor and stimulates proliferation, migration, and tube formation of endothelial cells (ECs) primarily through the VEGF receptor type2 (VEGR2, KDR/Flk1). VEGF binding initiates autophosphorylation of VEGFR2, which results in activation of downstream signaling enzymes including ERK1/2, Akt, and eNOS in ECs, thereby stimulating angiogenesis. The major source of ROS in EC is a NADPH oxidase which consists of Nox1, Nox2 (gp91phox), Nox4, p22phox, p47phox, p67phox and the small G protein Rac1. The endothelial NADPH oxidase is activated by angiogenic factors including VEGF and angiopoietin-1. ROS derived from this enzyme stimulate diverse redox signaling pathways leading to angiogenesis-related gene induction as well as EC migration and proliferation, which may contribute to postnatal angiogenesis in vivo. The aim of this review is to provide an overview of the recent progress on the emerging area of the role of ROS derived from NADPH oxidase and redox signaling in angiogenesis. Understanding these mechanisms may provide insight into the NADPH oxidase and redox signaling components as potential therapeutic targets for treatment of angiogenesis-dependent cardiovascular diseases and for promoting angiogenesis in ischemic limb and heart diseases.  相似文献   

8.
OBJECTIVE: Mitogen-activated protein kinases (MAPK) in microvascular endothelial cells (EC) may participate in organ pathophysiology following hypoxia/reoxygenation (H/R). The authors aimed to determine the role of MAPK in H/R-induced reactive oxygen species (ROS) generation in mouse microvascular EC. METHODS: Cultured EC derived from skeletal muscle of male wild-type (WT), gp91phox-/- or p47phox-/- mice were subjected to hypoxia (0.1% O2, 1 h) followed by abrupt reoxygenation, H/RA (hypoxic medium quickly replaced by normoxic medium), or slow reoxygenation, H/RS (O2 diffused to cells through hypoxic medium). Cells were analyzed for ERK, JNK, and p38 MAPK phosphorylation, NADPH oxidase activation, and ROS generation. RESULTS: In WT cells, H/RA but not H/RS rapidly phosphorylated ERK1/2 and JNK1 and subsequently increased ROS production. H/RA did not affect p38. MAPK phosphorylation persisted despite inhibition of NADPH oxidase, mitochondrial respiration, protein tyrosine kinase, or PKC. ROS increase during H/RA was prevented by deletion of gp91phox or p47phox, or MAPK inhibition. CONCLUSIONS: Abrupt reoxygenation after hypoxia activates ERK1/2 and JNK1 in mouse microvascular endothelial cells via a tyrosine kinase-, PKC-, and NADPH oxidase-insensitive mechanism, leading to increased NADPH oxidase-dependent ROS production. The results suggest that MAPK activation in the microvascular endothelium is O2-sensitive, contributing critically to tissue pathophysiology after H/R.  相似文献   

9.
Price MO  McPhail LC  Lambeth JD  Han CH  Knaus UG  Dinauer MC 《Blood》2002,99(8):2653-2661
The phagocyte nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH) oxidase was functionally reconstituted in monkey kidney COS-7 cells by transfection of essential subunits, gp91(phox), p22(phox), p47(phox), and p67(phox). COS-7 cells express the essential small guanosine 5'-triphosphatase, Rac1. Transgenic COS-phox cells were capable of arachidonic acid-induced NADPH oxidase activity up to 80% of that of human neutrophils, and of phorbol myristate acetate (PMA)-induced activity up to 20% of that of neutrophils. Expression of all 4 phox components was required for enzyme activity, and enzyme activation was associated with membrane translocation of p47(phox), p67(phox), and Rac1. Expression of p47(phox) Ser303Ala/Ser304Ala or Ser379Ala phosphorylation-deficient mutants resulted in significantly impaired NAPDH oxidase activity, compared with expression of wild-type p47(phox) or the p47(phox) Ser303Glu/Ser304Glu phosphorylation mimic, suggesting that p47(phox) phosphorylation contributes to enzyme activity in the COS system, as is the case in neutrophils. Hence, COS-phox cells should be useful as a new whole-cell model that is both capable of high-level superoxide production and readily amenable to genetic manipulation for investigation of NADPH oxidase function. PMA-elicited superoxide production in COS-phox cells was regulated by activation of protein kinase C (PKC) and Rac. Although COS-7 cells differ from human neutrophils in PKC isoform expression, transient expression of major neutrophil isoforms in COS-phox cells did not increase PMA-induced superoxide production, suggesting that endogenous isoforms were not rate limiting. Val204 in p67(phox), previously shown to be required for NADPH oxidase activity under cell-free conditions, was found to be essential for superoxide production by intact COS-phox cells, on the basis of transfection studies using a p67(phox) (Val204Ala) mutant.  相似文献   

10.
Reactive oxygen species (ROS) play an important role in regulating vascular tone and intracellular signaling; the enzymes producing ROS in the vascular wall are, however, poorly characterized. We investigated whether a functionally active NADPH oxidase similar to the leukocyte enzyme, ie, containing the subunits p22phox and gp91phox, is expressed in endothelial cells (ECs) and smooth muscle cells (SMCs). Phorbol 12-myristate 13-acetate (PMA), a stimulus for leukocyte NADPH oxidase, increased ROS generation in cultured ECs and endothelium-intact rat aortic segments, but not in SMCs or endothelium-denuded arteries. NADPH enhanced chemiluminescence in all preparations. p22phox mRNA and protein was detected in ECs and SMCs, whereas the expression of gp91phox was confined to ECs. Endothelial gp91phox was identical to the leukocyte form as determined by sequence analysis. In contrast, mitogenic oxidase-1 (mox1) was expressed in SMCs, but not in ECs. To determine the functional relevance of gp91phox expression, experiments were performed in aortic segments from wild-type, gp91phox(-/-), and endothelial NO synthase (eNOS)(-/-) mice. PMA-induced ROS generation was comparable in aortae from wild-type and eNOS(-/-) mice, but was attenuated in segments from gp91phox(-/-) mice. Endothelium-dependent relaxation was greater in aortae from gp91phox(-/-) than from wild-type mice. The ROS scavenger tiron increased endothelium-dependent relaxation in segments from wild-type, but not from gp91phox(-/-) mice. These data demonstrate that ECs, in contrast to SMCs, express a gp91phox-containing leukocyte-type NADPH oxidase. This enzyme is a major source for arterial ROS generation and affects the bioavailability of endothelium-derived NO.  相似文献   

11.
Neutrophils play a key role in host defense by releasing reactive oxygen species (ROS). However, excessive ROS production by neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can damage bystander tissues, thereby contributing to inflammatory diseases. Tumor necrosis factor-α (TNF-α), a major mediator of inflammation, does not activate NADPH oxidase but induces a state of hyperresponsiveness to subsequent stimuli, an action known as priming. The molecular mechanisms by which TNF-α primes the NADPH oxidase are unknown. Here we show that Pin1, a unique cis-trans prolyl isomerase, is a previously unrecognized regulator of TNF-α-induced NADPH oxidase hyperactivation. We first showed that Pin1 is expressed in neutrophil cytosol and that its activity is markedly enhanced by TNF-α. Inhibition of Pin1 activity with juglone or with a specific peptide inhibitor abrogated TNF-α-induced priming of neutrophil ROS production induced by N-formyl-methionyl-leucyl-phenylalanine peptide (fMLF). TNF-α enhanced fMLF-induced Pin1 and p47phox translocation to the membranes and juglone inhibited this process. Pin1 binds to p47phox via phosphorylated Ser345, thereby inducing conformational changes that facilitate p47phox phosphorylation on other sites by protein kinase C. These findings indicate that Pin1 is critical for TNF-α-induced priming of NADPH oxidase and for excessive ROS production. Pin1 inhibition could potentially represent a novel anti-inflammatory strategy.  相似文献   

12.

Background

This study was to test the hypothesis that enhanced oxidative stress is induced in monocytes with over-activated NADPH oxidase during the development of type 2 diabetes mellitus.

Methods

Levels of glucose and lipids were analyzed in 73 diabetic patients and 36 controls. Superoxide dismutase (SOD), malondialdehyde (MDA), reactive oxygen species (ROS) and protein carbonylation were tested. Expression of NADPH oxidase was examined and p47phox translocation was assessed.

Results

With the abnormality of glucose and lipid metabolism, diabetic patients showed a higher oxidative stress state indicated by decreased SOD activity but elevated MDA and protein carbonylation level. Monocytes in diabetes also showed elevated ROS generation and protein carbonylation level. Furthermore, NADPH oxidase was highly activated in monocytes represented by p22phox up-regulation and p47phox translocation. Significant positive bivariate correlation was found between glucose and MDA level as well as p22phox expression. In vitro experiments also indicated that glucose could stimulate ROS generation in a NADPH oxidase dependent manner. Moreover, we carried out same measurement in 40 diabetic patients with anti-diabetic intervention and obtained the reinforced results.

Conclusions

Hyperglycemia is the main factor which induces oxidative stress mainly by activation of NADPH oxidase in monocytes of diabetic patients.  相似文献   

13.
目的探讨软脂酸(PA)诱导的血管内皮细胞凋亡中还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶的作用。方法人脐静脉内皮细胞(HUVEC)贴壁培养后分为对照组;PA(200、400、800μmol/L)浓度组(分别为PA200组、PA400组、PA800组);NADPH氧化酶抑制剂apocynin(50、100、200 mol/L)干预组(分别为apo50+PA400组、apo100+PA400组、apo200+PA400组)。采用流式细胞仪检测细胞凋亡率;提取细胞蛋白,采用Westernblot技术检测NADPH氧化酶亚基p47phox蛋白表达的水平。倒置共聚焦荧光显微镜检测活性氧的产生。结果 PA呈浓度依赖性诱导HUVEC凋亡;与对照组比较,PA400、PA800组HUVEC凋亡率明显升高,P47phox蛋白表达明显增强(P<0.05),PA400组活性氧产生明显升高(P<0.05);与PA400组比较,apo100+PA400组、apo200+PA400组HUVEC凋亡率明显降低,p47phox蛋白表达明显减弱,活性氧产生明显降低(P<0.05)。结论 PA呈浓度依赖性诱导HUVEC凋亡,apocynin能部分抑制PA的上述作用,其机制与下调NADPH氧化酶亚基p47phox蛋白表达及活性氧产生有关。  相似文献   

14.
Increased myocardial NADPH oxidase activity in human heart failure   总被引:16,自引:0,他引:16  
OBJECTIVES: This study was designed to investigate whether nicotinamide adenine dinucleotide 3-phosphate (reduced form) (NADPH) oxidase is expressed in the human heart and whether it contributes to reactive oxygen species (ROS) production in heart failure. BACKGROUND: A phagocyte-type NADPH oxidase complex is a major source of ROS in the vasculature and is implicated in the pathophysiology of hypertension and atherosclerosis. An increase in myocardial oxidative stress due to excessive production of ROS may be involved in the pathophysiology of congestive heart failure. Recent studies have suggested an important role for myocardial NADPH oxidase in experimental models of cardiac disease. However, it is unknown whether NADPH oxidase is expressed in the human myocardium or if it has any role in human heart failure. METHODS: Myocardium of explanted nonfailing (n = 9) and end-stage failing (n = 13) hearts was studied for the expression of NADPH oxidase subunits and oxidase activity. RESULTS: The NADPH oxidase subunits p22(phox), gp91(phox), p67(phox), and p47(phox) were all expressed at messenger ribonucleic acid and protein level in cardiomyocytes of both nonfailing and failing hearts. NADPH oxidase activity was significantly increased in end-stage failing versus nonfailing myocardium (5.86 +/- 0.41 vs. 3.72 +/- 0.39 arbitrary units; p < 0.01). The overall level of oxidase subunit expression was unaltered in failing compared with nonfailing hearts. However, there was increased translocation of the regulatory subunit, p47(phox), to myocyte membranes in failing myocardium. CONCLUSIONS: This is the first report of the presence of NADPH oxidase in human myocardium. The increase in NADPH oxidase activity in the failing heart may be important in the pathophysiology of cardiac dysfunction by contributing to increased oxidative stress.  相似文献   

15.
Li JM  Gall NP  Grieve DJ  Chen M  Shah AM 《Hypertension》2002,40(4):477-484
Increased reactive oxygen species (ROS) production is implicated in the pathophysiology of left ventricular (LV) hypertrophy and heart failure. However, the enzymatic sources of myocardial ROS production are unclear. We examined the expression and activity of phagocyte-type NADPH oxidase in LV myocardium in an experimental guinea pig model of progressive pressure-overload LV hypertrophy. Concomitant with the development of LV hypertrophy, NADPH-dependent O2- production in LV homogenates, measured by lucigenin (5 micro mol/L) chemiluminescence or cytochrome c reduction assays, significantly and progressively increased (by approximately 40% at the stage of LV decompensation; P<0.05). O2- production was fully inhibited by diphenyleneiodonium (100 micromol/L). Immunoblotting revealed a progressive increase in expression of the NADPH oxidase subunits p22(phox), gp91(phox), p67(phox), and p47(phox) in the LV hypertrophy group, whereas immunolabeling studies indicated the presence of oxidase subunits in cardiomyocytes and endothelial cells. In parallel with the increase in O2- production, there was a significant increase in activation of extracellular signal-regulated kinase 1/2, extracellular signal-regulated kinase 5, c-Jun NH2-terminal kinase 1/2, and p38 mitogen-activated protein kinase. These data indicate that an NADPH oxidase expressed in cardiomyocytes is a major source of ROS generation in pressure overload LV hypertrophy and may contribute to pathophysiological changes such as the activation of redox-sensitive kinases and progression to heart failure.  相似文献   

16.
Diabetes mellitus is associated with increased ROS generation, oxidative injury and obesity. To elucidate the relationship between nutrition and ROS generation, we have investigated the effect of glucose challenge on ROS generation by leucocytes, p47phox protein, a key protein in the enzyme NADPH oxidase and alpha-tocopherol levels. Blood samples were drawn from 14 normal subjects prior to, at 1, 2 and 3 h following ingestion of 75 g glucose. ROS generation by polymorphonuclear leucocytes (PMNL) and mononuclear cells (MNC) increased to a peak of 244 +/- 42% and 233 +/- 34% of the basal respectively at 2h. The levels of p47phox in MNC homogenates increased significantly at 2 h and 3 h after glucose intake. alpha-Tocopherol levels decreased significantly at 1 h, 2 h and 3 h. We conclude that glucose intake stimulates ROS generation and p417phox of NADPH oxidase; increases oxidative load and causes a fall in alpha-tocopherol concentration.  相似文献   

17.
Chronic administration of the most abundant dietary flavonoid quercetin exerts antihypertensive effects and improves endothelial function. We have investigated the effects of quercetin and its methylated metabolite isorhamnetin (1-10microM) on endothelial dysfunction and superoxide (O(2*)(-)) production induced by endothelin-1 (ET-1, 10nM). ET-1 increased the contractile response induced by phenylephrine and reduced the relaxant responses to acetylcholine in phenylephrine contracted intact aorta, and these effects were prevented by co-incubation with quercetin, isorhamnetin or chelerythrine (protein kinase C (PKC) inhibitor). This endothelial dysfunction was also improved by superoxide dismutase (SOD), apocynin (NADPH oxidase inhibitor) and sepiapterin (tetrahydrobiopterin synthesis substrate). Furthermore, ET-1 increased intracellular O(2*)(-) production in all layers of the vessel, protein expression of NADPH oxidase subunit p47(phox) without affecting p22(phox) expression and lucigenin-enhanced chemiluminescence signal stimulated by calcium ionophore A23187. All these changes were prevented by both quercetin and isorhamnetin. Moreover, apocynin, endothelium denudation and N(G)-nitro-l-arginine methylester (l-NAME, nitric oxide synthase inhibitor) suppressed the ET-1-induced increase in A23187-stimulated O(2*)(-) generation. Moreover, quercetin but not isorhamnetin, inhibited the increased PKC activity induced by ET-1. Taken together these results indicate that ET-1-induced NADPH oxidase up-regulation and eNOS uncoupling via PKC leading to endothelial dysfunction and these effects were prevented by quercetin and isorhamnetin.  相似文献   

18.

Objective

Metformin and glucagon like peptide-1 (GLP-1) prevent diabetic cardiovascular complications and atherosclerosis. However, the direct effects on hyperglycemia-induced oxidative stress in endothelial cells are not fully understood. Thus, we aimed to evaluate the effects of metformin and a GLP-1 analog, liraglutide on high glucose-induced oxidative stress.

Methods

Production of reactive oxygen species (ROS), activation of protein kinase C (PKC) and NAD(P)H oxidase, and changes in signaling molecules in response to high glucose exposure were evaluated in human aortic endothelial cells with and without treatment of metformin and liraglutide, alone or in combination. PKC-NAD(P)H oxidase pathway was assessed by translocation of GFP-fused PKCβ2 isoform and GFP-fused p47phox, a regulatory subunit of NAD(P)H oxidase, in addition to endogenous PKC phosphorylation and NAD(P)H oxidase activity.

Results

High glucose-induced ROS overproduction was blunted by metformin or liraglutide treatment, with a further decrease by a combination of these drugs. Exposure to high glucose caused PKCβ2 translocation and a time-dependent phosphorylation of endogenous PKC but failed to induce its translocation and phosphorylation in the cells treated with metformin and liraglutide. Furthermore, both drugs inhibited p47phox translocation and NAD(P)H oxidase activation, and prevented the high glucose-induced changes in intracellulalr diacylglycerol (DAG) level and phosphorylation of AMP-activated protein kinase (AMPK). A combination of these drugs further enhanced all of these effects.

Conclusions

Metformin and liraglutide ameliorate high glucose-induced oxidative stress by inhibiting PKC-NAD(P)H oxidase pathway. A combination of these two drugs provides augmented protective effects, suggesting the clinical usefulness in prevention of diabetic vascular complications.  相似文献   

19.

Aim

This study investigated the effects of pigment epithelium-derived factor (PEDF) on advanced glycation end-product (AGE)-induced cytotoxicity in porcine retinal pericytes and the signalling mechanism involved.

Methods

Retinal pericytes were isolated from porcine eyes and characterized by immunocytochemistry. The effect of AGEs and PEDF on cell proliferation was determined by bromodeoxyuridine (BrdU) assay. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was analyzed by luminescence assay. Reactive oxygen species (ROS), nitric oxide (NO), superoxide dismutase (SOD) and glutathione peroxidase (GSH) were determined by biochemical assays. Induction of apoptosis was determined by caspase-3 colorimetric assay and DNA fragmentation analysis. Src activity was assessed by transient transfection analysis, and the status of Src phosphorylation at Y419 was analyzed by a competitive ELISA method.

Results

AGEs significantly increased intracellular ROS generation in pericytes via NADPH oxidase and induced cell death via caspase-3 enzyme activation, whereas PEDF increased cell proliferation in a dose-dependent manner. In addition, PEDF inhibited AGE-induced ROS generation by increasing levels of SOD and GSH, and also blocked the activation of caspase-3. Furthermore, PEDF induced cell survival via the Src pathway by Src phosphorylation at Y419, as evidenced by a pharmacological inhibitor and Src mutants.

Conclusion

These results suggest that PEDF abrogates AGE-induced oxidative stress and apoptosis in retinal pericytes via the Src pathway, thereby suggesting that PEDF is an effective therapeutic agent for the treatment of loss of pericytes in early diabetic retinopathy.  相似文献   

20.
AIMS: Cigarette smoking engenders inflammation and endothelial dysfunction, processes implicated in atherothrombotic disease. We hypothesized that an interaction between inflammatory cytokines in smokers' blood and circulating components of cigarette smoke is necessary to induce reactive oxygen species (ROS) and cyclooxygenase-2 (COX-2) in endothelium. We then explored the molecular mechanisms involved in these effects. METHODS AND RESULTS: Serum from nine healthy active smokers (AS) compared with serum from nine non-smokers (NS) showed higher levels of interleukin-1beta (IL-1β) and tumour necrosis factor-alpha (TNF-α) and a greater ability to induce ROS production, p47phox translocation to the plasma membrane, and COX-2 mRNA and protein expression in endothelial cells (ECs). Similar results were obtained in vivo and in vitro after treatment with aqueous extracts of cigarette smoke plus IL-1β and TNF-α(TS/IL-1β/TNF-α). In ECs increased ROS production and COX-2 mRNA induced by serum from AS correlated positively with their serum levels of IL-1β and TNF-α. Moreover, a positive correlation was observed between ROS generation and COX-2 mRNA. Simultaneous immuno-neutralization of IL-1β and TNF-α prevented endothelial dysfunction induced by serum from AS. Inhibitors of NADPH oxidase and/or p47phox siRNA diminished ROS production and COX-2 expression as well as phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and Akt mediated either by AS serum or by TS/IL-1β/TNF-α. Finally, direct inhibition of p38MAPK and Akt activity also abolished COX-2 expression mediated by both types of stimuli. Our results suggest a crucial role played by interactions between inflammatory cytokines and tobacco smoke in the induction of endothelial dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号