首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CT images represent essentially noiseless maps of photon attenuation at a range of 40-140 keV. Current dual-modality PET/CT scanners transform them into attenuation coefficients at 511 keV and use these for PET attenuation correction. The proportional scaling algorithms hereby used account for the different properties of soft tissue and bone but are not prepared to handle material with other attenuation characteristics, such as oral CT contrast agents. As a consequence, CT-based attenuation correction in the presence of an oral contrast agent results in erroneous PET standardized uptake values (SUVs). The present study assessed these errors with phantom measurements and patient data. METHODS: Two oral CT contrast agents were imaged at 3 different concentrations in dual-modality CT and PET transmission studies to investigate their attenuation properties. The SUV error due to the presence of contrast agent in CT-based attenuation correction was estimated in 10 patients with gastrointestinal tumors as follows. The PET data were attenuation corrected on the basis of the original contrast-enhanced CT images, resulting in PET images with distorted SUVs. A second reconstruction used modified CT images wherein the CT numbers representing contrast agent had been replaced by CT values producing approximately the right PET attenuation coefficients. These CT values had been derived from the data of 10 patients imaged without a CT contrast agent. The SUV error, defined as the difference between both sets of SUV images, was evaluated in regions with oral CT contrast agent, in tumor, and in reference tissue. RESULTS: The oral CT contrast agents studied increased the attenuation for 511-keV photons minimally, even at the highest concentrations found in the patients. For a CT value of 500 Hounsfield units, the proportional scaling algorithm therefore overestimated the PET attenuation coefficient by 26.2%. The resulting SUV error in the patient studies was highest in regions containing CT contrast agent (4.4% +/- 2.8%; maximum, 11.3%), whereas 1.2% +/- 1.1% (maximum, 4.1%) was found in tumors, and 0.6% +/- 0.7% was found in the reference. CONCLUSION: The use of oral contrast agents in CT has only a small effect on the SUV, and this small effect does not appear to be medically significant.  相似文献   

2.
Recent studies have shown increased artifacts in CT attenuation-corrected (CTAC) PET images acquired with oral contrast agents because of misclassification of contrast as bone. We have developed an algorithm, segmented contrast correction (SCC), to properly transform CT numbers in the contrast regions from CT energies (40-140 keV) to PET energy at 511 keV. METHODS: A bilinear transformation, equivalent to that supplied by the PET/CT scanner manufacturer, for the conversion of linear attenuation coefficients of normal tissues from CT to PET energies was optimized for BaSO(4) contrast agent. This transformation was validated by comparison with the linear attenuation coefficients measured for BaSO(4) at concentrations ranging from 0% to 80% at 511 keV for PET transmission images acquired with (68)Ge rod sources. In the CT images, the contrast regions were contoured to exclude bony structures and then segmented on the basis of a minimum threshold CT number (300 Hounsfield units). The CT number in each pixel identified with contrast was transformed into the corresponding effective bone CT number to produce the correct attenuation coefficient when the data were translated by the manufacturer software into PET energy during the process of CT attenuation correction. CT images were then used for attenuation correction of PET emission data. The algorithm was validated with a phantom in which a lesion was simulated within a volume of BaSO(4) contrast and in the presence of a human vertebral bony structure. Regions of interest in the lesion, bone, and contrast on emission PET images reconstructed with and without the SCC algorithm were analyzed. The results were compared with those for images obtained with (68)Ge-based transmission attenuation-corrected PET. RESULTS: The SCC algorithm was able to correct for contrast artifacts in CTAC PET images. In the phantom studies, the use of SCC resulted in an approximate 32% reduction in the apparent activity concentration in the lesion compared with data obtained from PET images without SCC and a <7.6% reduction compared with data obtained from (68)Ge-based attenuation-corrected PET images. In one clinical study, maximum standardized uptake value (SUV(max)) measurements for the lesion, bladder, and bowel were, respectively, 14.52, 13.63, and 13.34 g/mL in CTAC PET images, 59.45, 26.71, and 37.22 g/mL in (68)Ge-based attenuation-corrected PET images, and 11.05, 6.66, and 6.33 g/mL in CTAC PET images with SCC. CONCLUSION: Correction of oral contrast artifacts in PET images obtained by combined PET/CT yielded more accurate quantitation of the lesion and other, normal structures. The algorithm was tested in a clinical case, in which SUV(max) measurements showed discrepancies of 2%, 1.3%, and 5% between (68)Ge-based attenuation-corrected PET images and CTAC PET images with SCC for the lesion, bladder, and bowel, respectively. These values correspond to 6.5%, 62%, and 66% differences between CTAC-based measurements and (68)Ge-based ones.  相似文献   

3.
With the introduction of combined positron emission tomography/computed tomography (PET/CT) systems, several questions have to be answered.In this work we addressed two of these questions: (a) to what value can the CT tube current be reduced while still yielding adequate maps for the attenuation correction of PET emission scans and (b) how do quantified uptake values in tumours derived from CT and germanium-68 attenuation correction compare. In 26 tumour patients, multidetector CT scans were acquired with 10, 40, 80 and 120 mA (CT10, CT40, CT80 and CT120) and used for the attenuation correction of a single FDG PET emission scan, yielding four PET scans designated PET(CT10)-PET(CT120). In 60 tumorous lesions, FDG uptake and lesion size were quantified on PET(CT10)-PET(CT120). In another group of 18 patients, one CT scan acquired with 80 mA and a standard transmission scan acquired using 68Ge sources were employed for the attenuation correction of the FDG emission scan (PET(CT80), PET(68Ge)). Uptake values and lesion size in 26 lesions were compared on PET(CT80) and PET(68Ge). In the first group of patients, analysis of variance revealed no significant effect of CT current on tumour FDG uptake or lesion size. In the second group, tumour FDG uptake was slightly higher using CT compared with 68Ge attenuation correction, especially in lesions with high FDG uptake. Lesion size was similar on PET(CT80) and PET(68Ge). In conclusion, low CT currents yield adequate maps for the attenuation correction of PET emission scans. Although the discrepancy between CT- and 68Ge-derived uptake values is probably not relevant in most cases, it should be kept in mind if standardised uptake values derived from CT and 68Ge attenuation correction are compared.  相似文献   

4.
OBJECTIVE: Image fusion has been recognized as a useful technique in diagnostic imaging. We have been evaluating the manual image fusion of PET and contrast-enhanced (CE) CT obtained separately. The CT images can be used for attenuation correction as well as for image fusion; however, the quantitative accuracy of CT-corrected PET images has yet to be assessed. The purpose of this study was to compare the radioactivity concentration between conventional (68)Ge-corrected and CECT-corrected PET images. METHODS: Twenty patients underwent a whole-body PET scan, followed by a CT scan with intravenous contrast material, after careful positioning using an individually molded vacuum cushion. Two different attenuation-corrected emission data sets were produced, i.e., (68)Ge-corrected images and CECT-corrected images. Image registration was performed by maximizing mutual information-based cost function, between the CT and the combination of emission and transmission PET volumes. The CT pixel values in Hounsfield units were transformed into linear attenuation coefficients in cm(-1), using a conversion formula for a lookup-table from phantom experiments. Measured activity concentrations from identical regions of interest in representative normal organs and in 25 pathologic foci of uptake were compared. In addition, the quality of the reconstructed images was assessed using the normal mean square error (NMSE). RESULTS: Measured average radioactivity concentrations were 1.38-9.56% higher for CECT-corrected images than for (68)Ge-corrected images. Overall, the NMSE value of CECT-corrected images compared with (68)Ge-corrected images was 0.02+/-0.01. CONCLUSIONS: The difference in quantitative values between (68)Ge-corrected and CECT-corrected PET images was comparable to that of an integrated PET/CT system. Diagnostic CT images with intravenous contrast performed separately before or after a PET scan could be used clinically not only for fusion but also for attenuation correction.  相似文献   

5.
A synergy of positron emission tomography (PET)/computed tomography (CT) scanners is the use of the CT data for x-ray-based attenuation correction of the PET emission data. Current methods of measuring transmission use positron sources, gamma-ray sources, or x-ray sources. Each of the types of transmission scans involves different trade-offs of noise versus bias, with positron transmission scans having the highest noise but lowest bias, whereas x-ray scans have negligible noise but the potential for increased quantitative errors. The use of x-ray-based attenuation correction, however, has other advantages, including a lack of bias introduced from post-injection transmission scanning, which is an important practical consideration for clinical scanners, as well as reduced scan times. The sensitivity of x-ray-based attenuation correction to artifacts and quantitative errors depends on the method of translating the CT image from the effective x-ray energy of approximately 70 keV to attenuation coefficients at the PET energy of 511 keV. These translation methods are usually based on segmentation and/or scaling techniques. Errors in the PET emission image arise from positional mismatches caused by patient motion or respiration differences between the PET and CT scans; incorrect calculation of attenuation coefficients for CT contrast agents or metallic implants; or keeping the patient's arms in the field of view, which leads to truncation and/or beam-hardening (or x-ray scatter) artifacts. Proper interpretation of PET emission images corrected for attenuation by using the CT image relies on an understanding of the potential artifacts. In cases where an artifact or bias is suspected, careful inspection of all three available images (CT and PET emission with and without attenuation correction) is recommended.  相似文献   

6.
OBJECTIVES: CT data can be used for both anatomical image and attenuation correction (CTAC) of PET data in PET-CT scanners. The CTAC method is useful for attenuation correction, because the CT scan time is much shorter than the external radionuclide (e.g., (68)Ge) transmission scan time. However, the energy of the X-rays from CT is not monoenergetic and is much lower than that of the external radionuclide source. In this study, we evaluated the differences between emission PET images reconstructed with CT-based and (68)Ge-based attenuation correction. METHODS: CT scans and (68)Ge-Transmission scans were acquired and used for attenuation correction (CTAC, MAC, and SAC). The PET emission scan time was 4 min. CT scans were acquired at 10, 20, 40, 80, and 160 mA. (68)Ge-Transmission scans were acquired at 1, 3, 5, 10, 20, 40, 60, and 300 min. The attenuation-corrected emission image using MAC on a 300 min transmission scan was defined as the reference image. Seven cylinders (30 mm diameter) were filled with (18)F-FDG placed in a heart-liver phantom with simulated pulmonary mass lesions. The PET value [counts/cc] was measured in circular regions of interest (ROI) over the cylindrical mass lesion. Averages [counts/cc], coefficients of variation [C.V.(%)], and ratios of difference [%Diff] from the reference value were calculated for all conditions. RESULTS: In the CT-Transmission, analysis of variance revealed no significant effect of CT current on the average and the C.V. In the (68)Ge-Transmission, the average and the C.V. changed in dependence on the acquisition time. All %Diff using CT-Transmission were small. It was shown that CT-Transmission is more appropriate than (68)Ge-Transmission.  相似文献   

7.
Purpose If the CT scan of a combined PET/CT study is performed as a full diagnostic quality CT scan including intravenous (IV) contrast agent, the quality of the joint PET/CT procedure is improved and a separate diagnostic CT scan can be avoided. CT with IV contrast can be used for PET attenuation correction, but this may result in a bias in the attenuation factors. The clinical significance of this bias has not been established. Our aim was to perform a prospective clinical study where each patient had CT performed with and without IV contrast agent to establish whether PET/CT with IV contrast can be used for PET attenuation without reducing the clinical value of the PET scan.Methods A uniform phantom study was used to document that the PET acquisition itself is not significantly influenced by the presence of IV contrast medium. Then, 19 patients referred to PET/CT with IV contrast underwent CT scans without, and then with contrast agent, followed by an 18F-fluorodeoxyglucose whole-body PET scan. The CT examinations were performed with identical parameters on a GE Discovery LS scanner. The PET data were reconstructed with attenuation correction based on the two CT data sets. A global comparison of standard uptake value (SUV) was performed, and SUVs in tumour, in non-tumour tissue and in the subclavian vein were calculated. Clinical evaluation of the number and location of lesions on all PET/CT scans was performed twice, blinded and in a different random order, by two independent nuclear medicine specialists.Results In all patients, the measured global SUV of PET images based on CT with IV contrast agent was higher than the global activity using non-contrast correction. The overall increase in the mean SUV (for two different conversion tables tested) was 4.5±2.3% and 1.6±0.5%, respectively. In 11/19 patients, focal uptake was identified corresponding to malignant tumours. Eight out of 11 tumours showed an increased SUVmax (2.9±3.1%) on the PET images reconstructed using IV contrast. The clinical evaluation performed by the two specialists comparing contrast and non-contrast CT attenuated PET images showed weighted kappa values of 0.92 (doctor A) and 0.82 (doctor B). No contrast-introduced artefacts were found.Conclusion This study demonstrates that CT scans with IV contrast agent can be used for attenuation correction of the PET data in combined modality PET/CT scanning, without changing the clinical diagnostic interpretation.  相似文献   

8.

Objective

The CT portion of PET/CT provides attenuation correction of the PET emission scan. This study was performed to evaluate how much the CT tube current can be lowered while still providing attenuation maps on PET images.

Methods

Two body phantoms (outside diameters of 300 and 500?mm) were used to investigate, and PET/CT acquisitions were performed with an Aquiduo PCA-7000B (Toshiba Medical Systems, Otawara, Japan). The CT scan was performed with the following parameters (120?kVp; 0.5-s rotation; 10, 20, 40, 80, 160, 200, 320, 460?mA). After the CT scan, PET images for 18F-FDG (5.3?kBq/mL) were obtained for 4?min/bed position. The linear attenuation coefficients for 18F-FDG in 300- and 500-mm phantoms, pixel values and SD of CT images, radioactivity concentration values and hot- and cold-sphere contrast on PET images in the 500-mm phantom were evaluated.

Results

In the 300-mm phantom, all eight tube currents gave average linear attenuation coefficients of approximately 0.095?cm?1. In contrast, the average linear attenuation coefficients of the 500-mm phantom at 10, 20, and 40?mA were significantly decreased (0.081, 0.087, and 0.092?cm?1, respectively; p??1 of the other tube currents. Further, CT pixel values decreased 10 and 20?mA. Thus, the background radioactivity concentration values at 10 and 20?mA were substantially underestimated to be 57 and 80%, respectively (p?Conclusions Although the linear attenuation coefficients in the 300-mm phantom remained the same with varying CT tube currents, the 500-mm phantom yielded significant differences in the range 10?C40?mA. Therefore, the CT tube currents for attenuation correction should be adjusted over 40?mA in obese patients.  相似文献   

9.
In routine PET, a 10- to 20-min transmission scan with a rotating (68)Ge source is commonly obtained for attenuation correction (AC). AC is time-consuming using this procedure and could considerably be shortened by instead using a rapid CT scan. Our aim was to evaluate the feasibility of CT AC in quantitative myocardial perfusion PET using a hybrid PET/CT scanner. METHODS: (13)N-labeled NH(3) and PET were used to measure myocardial blood flow (MBF) (mL/min/g) at rest and during standard adenosine stress. In group 1 (n = 7), CT scans (0.5 s) of the heart area with different tube currents (10, 40, 80, and 120 mA) were compared with a standard (68)Ge transmission (20 min) and with no AC. In group 2 (n = 3), the repeatability of 8 consecutive CT scans at a tube current of 10 mA was assessed. In group 3 (n = 4), emission was preceded and followed by 3 CT scans (10 mA) and 1 (68)Ge scan for each patient. For reconstruction, filtered backprojection (FBP) was compared with iterative reconstruction (IT). RESULTS: For group 1, no significant difference in mean MBF for resting and hyperemic scans was found when emission reconstructed with (68)Ge AC was compared with emission reconstructed with CT AC at any of the different tube currents. Only emission without any correction differed significantly from (68)Ge AC. For group 2, repeated measurements revealed a coefficient of variance ranging from 2% to 5% and from 2% to 6% at rest and at stress, respectively. For group 3, similar reproducibility coefficients (RC) for MBF were obtained when (68)Ge AC(FBP) was compared with (68)Ge AC(IT) (RC = 0.218) and when CT AC(FBP) was compared with CT AC(IT) (RC = 0.227). Even better reproducibility (lower RC) was found when (68)Ge AC(FBP) was compared with CT AC(FBP) (RC = 0.130) and when (68)Ge AC(IT) was compared with CT AC(IT) (RC = 0.146). CONCLUSION: Our study shows that for the assessment of qualitative and quantitative MBF with a hybrid PET/CT scanner, the use of CT AC (with a tube current of 10 mA) instead of (68)Ge AC provides accurate results.  相似文献   

10.
Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. METHODS: Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR(+) (Siemens/CTI) , were used. For the transmission scanning, the SET-3000 G/X and ECAT HR(+) were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR(+) was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm(2) to 314 cm(2) to 628 cm(2) (apposition of the two 20 cm diameter phantoms) and 943 cm(2) (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. Results: In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation coefficients was stable with all phantoms. CONCLUSION: We evaluated the accuracy of attenuation coefficients of Cs-137 single-transmission scans. The results for Cs-137 suggest that scattered photons depend on object size. Although Cs-137 single-transmission scans contained scattered photons, attenuation coefficient error could be reduced using by the segmentation method.  相似文献   

11.

Objective

Uptake value in quantitative PET imaging is biased due to the presence of CT contrast agents when using CT-based attenuation correction. Our aim was to examine spectral CT imaging to suppress inaccuracy of 511 keV attenuation map in the presence of multiple nanoparticulate contrast agents.

Methods

Using a simulation study we examined an image-based K-edge ratio method, in which two images acquired from energy windows located above and below the K-edge energy are divided by one another, to identify the exact location of all contrast agents. Multiple computerized phantom studies were conducted using a variety of NP contrast agents with different concentrations. The performance of the proposed methodology was compared to conventional single-kVp and dual-kVp methods using wide range of contrast agents with varying concentrations.

Results

The results demonstrate that both single-kVp and dual-kVp energy mapping approaches produce inaccurate attenuation maps at 511 keV in the presence of multiple simultaneous contrast agents. In contrast, the proposed method is capable of handling multiple simultaneous contrast agents, thus allowing suppression of 511 keV attenuation map inaccuracy.

Conclusion

Attenuation map produced by spectral CT clearly outperforms conventional single-kVp and dual-kVp approaches in the generation of accurate attenuation maps in the presence of multiple contrast agents.  相似文献   

12.
For quantitative PET information, correction of tissue photon attenuation is mandatory. Generally in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating radionuclide source, or from the CT scan in a combined PET/CT scanner. In the case of PET/MRI scanners currently under development, insufficient space for the rotating source exists; the attenuation map can be calculated from the MR image instead. This task is challenging because MR intensities correlate with proton densities and tissue-relaxation properties, rather than with attenuation-related mass density. METHODS: We used a combination of local pattern recognition and atlas registration, which captures global variation of anatomy, to predict pseudo-CT images from a given MR image. These pseudo-CT images were then used for attenuation correction, as the process would be performed in a PET/CT scanner. RESULTS: For human brain scans, we show on a database of 17 MR/CT image pairs that our method reliably enables estimation of a pseudo-CT image from the MR image alone. On additional datasets of MRI/PET/CT triplets of human brain scans, we compare MRI-based attenuation correction with CT-based correction. Our approach enables PET quantification with a mean error of 3.2% for predefined regions of interest, which we found to be clinically not significant. However, our method is not specific to brain imaging, and we show promising initial results on 1 whole-body animal dataset. CONCLUSION: This method allows reliable MRI-based attenuation correction for human brain scans. Further work is necessary to validate the method for whole-body imaging.  相似文献   

13.
Heart disease is a leading cause of death in North America. With the increased availability of PET/CT scanners, CT is now commonly used as a transmission source for attenuation correction. Because of the differences in scan duration between PET and CT, respiration-induced motion can create inconsistencies between the PET and CT data and lead to incorrect attenuation correction and, thus, artifacts in the final reconstructed PET images. This study compared respiration-averaged CT and 4-dimensional (4D) CT for attenuation correction of cardiac PET in an in vivo canine model as a means of removing these inconsistencies. METHODS: Five dogs underwent respiration-gated cardiac (18)F-FDG PET and 4D CT. The PET data were reconstructed with 3 methods of attenuation correction that differed only in the CT data used: The first method was single-phase CT at either end-expiration, end-inspiration, or the middle of a breathing cycle; the second was respiration-averaged CT, which is CT temporally averaged over the entire respiratory cycle; and the third was phase-matched CT, in which each PET phase is corrected with the matched phase from 4D CT. After reconstruction, the gated PET images were summed to produce an ungated image. Polar plots of the PET heart images were generated, and percentage differences were calculated with respect to the phase-matched correction for each dog. The difference maps were then averaged over the 5 dogs. RESULTS: For single-phase CT correction at end-expiration, end-inspiration, and mid cycle, the maximum percentage differences were 11% +/- 4%, 7% +/- 3%, and 5% +/- 2%, respectively. Conversely, the maximum difference for attenuation correction with respiration-averaged CT data was only 1.6% +/- 0.7%. CONCLUSION: Respiration-averaged CT correction produced a maximum percentage difference 7 times smaller than that obtained with end-expiration single-phase correction. This finding indicates that using respiration-averaged CT may accurately correct for attenuation on respiration-ungated cardiac PET.  相似文献   

14.
This study has investigated the relationship between linear attenuation coefficients (mu) and Hounsfield units (HUs) for six materials covering the range of values found clinically. Narrow-beam mu values were measured by performing radionuclide transmission scans using (99m)Tc, (123)I, (131)I, (201)Tl and (111)In. The mu values were compared to published data. The relationships between mu and HU were determined. These relationships can be used to convert computed tomography (CT) images to mu-maps for single photon emission computed tomography (SPECT) attenuation correction.  相似文献   

15.
Elimination of errors due to poor attenuation correction is an essential part of any quantitative single photon emission tomography (SPET) technique. Attenuation coefficients (mu Tc) for use in attenuation correction of SPET data were determined using technetium 99m and cobalt 57 flood sources and using topographical information obtained from computed tomography (CT) scans and magnetic resonance (MR) images. In patients with carcinoma of the bronchus, the mean attenuation coefficient for 99mTc was 0.096 cm-1 when determined across a transverse section of the thorax at the level of the tumour by means of a 57Co flood source (13 patients) and 0.093 and 0.074 cm-1 as determined from CT scans for points in the centre of the tumour and contralateral normal lung, respectively (21 patients). In 18 patients with breast tumours, the mean attenuation coefficient for 99mTc was 0.110 and 0.076 cm-1 when determined from MRI cross-sections for points in the centre of the tumour and normal contralateral lung, respectively. This indicates significant overcorrection for attenuation when the conventional value of 0.12 cm-1 is used. A value in the range 0.08-0.09 cm-1 would be more appropriate for SPET studies of the thorax. An alternative approach to quantitative region of interest (ROI) analysis is to perform attenuation correction appropriate to the centre of each ROI (using topographical information derived from CT or MRI) on non-attenuation-corrected reconstructions.  相似文献   

16.
BACKGROUND AND AIM: In a combined positron emission tomography (PET) and computed tomography (CT) system, the CT images can be used for attenuation correction as well as for image fusion. However, quantitative and qualitative differences have been reported between CT based attenuation corrected PET and conventional transmission scan corrected PET images. The purpose of this study was to investigate potential differences in PET/CT caused by attenuation differences in bowel due to motion. METHODS: Twelve patients had PET/CT scans performed using 68Ge transmission and CT attenuation correction methods. Three emission imaging datasets were generated including CT corrected PET, Ge corrected PET, and the difference images (CT corrected PET minus Ge corrected PET). PET difference images were used to identify regions of mismatch and to quantify possible discordance between images by using standardized uptake values (SUVs). Using the Ge corrected PET as the standard, differences in emission images were classified as an overestimation (pattern A) or an underestimation (pattern B) in these difference images. RESULTS: One hundred and twenty-three mismatched areas were identified. Among them, overestimated areas in CT corrected image were detected in 36 regions (pattern A), while underestimated areas were evaluated in the remaining 87 regions (pattern B). The mean value of the difference in pattern A (mean +/- standard deviation = 0.84 +/- 0.44) was slightly higher than that in pattern B (0.60 +/- 0.23), and statistically significant. Six of 36 regions in pattern A had an SUV of greater than 2.5 in CT corrected PET but less than 2.5 in Ge corrected PET; two of 87 regions with pattern B demonstrated an SUV greater than 2.5 in Ge corrected PET and less than 2.5 in CT corrected PET. CONCLUSION: Physiological bowel motion may result in attenuation differences and subsequent differences in SUVs. Overestimation of fluorodeoxyglucose uptake should not be misinterpreted as disease.  相似文献   

17.
In dual-modality PET/CT systems, the CT scan provides the attenuation map for PET attenuation correction. The current clinical practice of obtaining a single helical CT scan provides only a snapshot of the respiratory cycle, whereas PET occurs over multiple respiratory cycles. Misalignment of the attenuation map and emission image because of respiratory motion causes errors in the attenuation correction factors and artifacts in the attenuation-corrected PET image. To rectify this problem, we evaluated the use of cine CT, which acquires multiple low-dose CT images during a respiratory cycle. We evaluated the average and the intensity-maximum image of cine CT for cardiac PET attenuation correction. METHODS: Cine CT data and cardiac PET data were acquired from a cardiac phantom and from multiple patient studies. The conventional helical CT, cine CT, and PET data of an axially translating phantom were evaluated with and without respiratory motion. For the patient studies, we acquired 2 cine CT studies for each PET acquisition in a rest-stress (13)N-ammonia protocol. Three readers visually evaluated the alignment of 74 attenuation image sets versus the corresponding emission image and determined whether the alignment provided acceptable or unacceptable attenuation-corrected PET images. RESULTS: In the phantom study, the attenuation correction from helical CT caused a major artifactual defect in the lateral wall on the PET image. The attenuation correction from the average and from the intensity-maximum cine CT images reduced the defect by 20% and 60%, respectively. In the patient studies, 77% of the cases using the average of the cine CT images had acceptable alignment and 88% of the cases using the intensity maximum of the cine CT images had acceptable alignment. CONCLUSION: Cine CT offers an alternative to helical CT for compensating for respiratory motion in the attenuation correction of cardiac PET studies. Phantom studies suggest that the average and the intensity maximum of the cine CT images can reduce potential respiration-induced misalignment errors in attenuation correction. Patient studies reveal that cine CT provides acceptable alignment in most cases and suggest that the intensity-maximum cine image offers a more robust alternative to the average cine image.  相似文献   

18.
In combined PET/CT studies, x-ray attenuation information from the CT scan is generally used for PET attenuation correction. Iodine-containing contrast agents may induce artifacts in the CT-generated attenuation map and lead to an erroneous radioactivity distribution on the corrected PET images. This study evaluated 2 methods of thresholding the CT data to correct these contrast agent-related artifacts. METHODS: PET emission and attenuation data (acquired with and without a contrast agent) were simulated using a cardiac torso software phantom and were obtained from patients. Seven patients with known coronary artery disease underwent 2 electrocardiography-gated CT scans of the heart, the first without a contrast agent and the second with intravenous injection of an iodine-containing contrast agent. A 20-min PET scan (single bed position) covering the same axial range as the CT scans was then obtained 1 h after intravenous injection of (18)F-FDG. For both the simulated data and the patient data, the unenhanced and contrast-enhanced attenuation datasets were used for attenuation correction of the PET data. Additionally, 2 threshold methods (one requiring user interaction) aimed at compensating for the effect of the contrast agent were applied to the contrast-enhanced attenuation data before PET attenuation correction. All PET images were compared by quantitative analysis. RESULTS: Regional radioactivity values in the heart were overestimated when the contrast-enhanced data were used for attenuation correction. For patients, the mean decrease in the left ventricular wall was 23%. Use of either of the proposed compensation methods reduced the quantification error to less than 5%. The required time for postprocessing was minimal for the user-independent method. CONCLUSION: The use of contrast-enhanced CT images for attenuation correction in cardiac PET/CT significantly impairs PET quantification of tracer uptake. The proposed CT correction methods markedly reduced these artifacts; additionally, the user-independent method was time-efficient.  相似文献   

19.
The introduction of combined PET/CT systems has a number of advantages, including the utilisation of CT images for PET attenuation correction (AC). The potential advantage compared with existing methodology is less noisy transmission maps within shorter times of acquisition. The objective of our investigation was to assess the accuracy of CT attenuation correction (CTAC) and to study resulting bias and signal to noise ratio (SNR) in image-derived semi-quantitative uptake indices. A combined PET/CT system (GE Discovery LS) was used. Different size phantoms containing variable density components were used to assess the inherent accuracy of a bilinear transformation in the conversion of CT images to 511 keV attenuation maps. This was followed by a phantom study simulating tumour imaging conditions, with a tumour to background ratio of 5:1. An additional variable was the inclusion of contrast agent at different concentration levels. A CT scan was carried out followed by 5 min emission with 1-h and 3-min transmission frames. Clinical data were acquired in 50 patients, who had a CT scan under normal breathing conditions (CTAC(nb)) or under breath-hold with inspiration (CTAC(insp)) or expiration (CTAC(exp)), followed by a PET scan of 5 and 3 min per bed position for the emission and transmission scans respectively. Phantom and patient studies were reconstructed using segmented AC (SAC) and CTAC. In addition, measured AC (MAC) was performed for the phantom study using the 1-h transmission frame. Comparing the attenuation coefficients obtained using the CT- and the rod source-based attenuation maps, differences of 3% and <6% were recorded before and after segmentation of the measured transmission maps. Differences of up to 6% and 8% were found in the average count density (SUV(avg)) between the phantom images reconstructed with MAC and those reconstructed with CTAC and SAC respectively. In the case of CTAC, the difference increased up to 27% with the presence of contrast agent. The presence of metallic implants led to underestimation in the surrounding SUV(avg) and increasing non-uniformity in the proximity of the implant. The patient study revealed no statistically significant differences in the SUV(avg) between either CTAC(nb) or CTAC(exp) and SAC-reconstructed images. The larger differences were recorded in the lung. Both the phantom and the patient studies revealed an average increase of approximately 25% in the SNR for the CTAC-reconstructed emission images compared with the SAC-reconstructed images. In conclusion, CTAC(nb) or CTAC(exp) is a viable alternative to SAC for whole-body studies. With CTAC, careful consideration should be given to interpretation of images and use of SUVs in the presence of oral contrast and in the proximity of metallic implants.  相似文献   

20.
PET-CT scanners allow generation of transmission maps from CT. The use of CT attenuation correction (CTAC) instead of germanium-68 attenuation correction (Ge AC) might be expected to cause artifacts on reconstructed emission images if differences in respiratory status exist between the two methods of attenuation correction. The aim of this study was to evaluate for possible respiratory motion artifacts (RMA) in PET images attenuation corrected with CT from PET-CT in clinical patients. PET-CT scans were performed using a Discovery LS PET-CT system in 50 consecutive patients (23 males, 27 females; mean age 58.2 years) with known or suspected malignancy. Both CTAC and Ge AC transmission data obtained during free tidal breathing were used to correct PET emission images. Cold artifacts at the interface of the lungs and diaphragm, believed to be due to respiratory motion (RMA), that were seen on CTAC images but not on the Ge AC images were evaluated qualitatively on a four-point scale (0, no artifact; 1, mild artifact; 2, moderate artifact; 3, severe artifact). RMA was also measured for height. Curvilinear cold artifacts paralleling the dome of the diaphragm at the lung/diaphragm interface were noted on 84% of PET-CT image acquisitions and were not seen on the (68)Ge-corrected images; however, these artifacts were infrequently severe. In conclusion, RMA of varying magnitude were noted in most of our patients as a curvilinear cold area at the lung/diaphragm interface, but were not diagnostically problematic in these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号