首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Complete removal of synaptic zinc by the chelator dietyldithiocarbamate (DEDTC; 500 mg/kg i.p.) in rat was followed by convulsive behaviour including wet dog shakes alternating immobility. Histological analysis 1 day after DEDTC administration detected expression of heat shock protein in the hippocampus restricted to hilar cells. These cells colocalize the marker for neurons and the glutamate receptor GluR2/3 showing that they are excitatory neurons. Additionally, they projected to the contralateral dentate gyrus. Therefore, they correspond to hilar mossy cells. These data show that the synaptic zinc has a role in normal hippocampus avoiding overexcitation, that would impair functionality even in absence of pathological or exoexcitotoxic phenomena.  相似文献   

2.
3.
The establishment of functional synaptic connections and activity is a pivotal process in the development of neuronal networks. We have studied the synaptic activity in the developing rat cerebellum, and the contribution mediated by purinergic receptors. The mean frequency of the spontaneous postsynaptic currents (sPSCs) recorded with the whole-cell patch-clamp technique from Purkinje neurones in acute brain slices at room temperature, increased fourfold from 4.4 ± 0.8 Hz at postnatal day 9/10 ( n = 23) to 17.8 ± 1.6 Hz at postnatal day 17–20 (p17–p20; n = 113; P < 0.01). ATP, which increased the frequency of sPSCs by up to 100%  (EC50= 18 μ m )  in the third postnatal week, started to modulate the synaptic activity during the second postnatal week, which was determined by three processes: (1) the appearance of functional ATP receptors during p10–p12, (2) the enhancement of the sPSC frequency by endogenous ATP release becoming apparent after inhibition of ecto-ATPases by 6- N , N -diethyl-β,γ-dibromomethylene- d -adenosine-5-triphosphate (ARL67156; 50 μ m ) at p11–p12, and (3) with tonic stimulation of purinoceptors at p14, as revealed by the P2 receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 10 μ m ). ATP had a similar effect at later stages (p24–p27) and at 35°C. Our results suggest that endogenous release of ATP starts to enhance the synaptic activity in Purkinje neurones by the end of the second postnatal week.  相似文献   

4.
Amacrine cells are a heterogeneous class of interneurons that modulate the transfer of the light signals through the retina. In addition to ionotropic glutamate receptors, amacrine cells express two types of inhibitory receptors, GABA(A) receptors (GABA(A)Rs) and glycine receptors (GlyRs). To characterize the functional contribution of these different receptors, spontaneous postsynaptic currents (sPSCs) were recorded with the whole cell configuration of the patch-clamp technique in acutely isolated slices of the adult mouse retina. All amacrine cells investigated (n = 47) showed spontaneous synaptic activity. In six amacrine cells, spontaneous excitatory postsynaptic currents could be identified by their sensitivity to kynurenic acid. They were characterized by small amplitudes [mean: -13.7 +/- 1.5 (SE) pA] and rapid decay kinetics (mean tau: 1.35 +/- 0.16 ms). In contrast, the reversal potential of sPSCs characterized by slow decay kinetics (amplitude-weighted time constant, tau(w), >4 ms) was dependent on the intracellular Cl(-) concentration (n = 7), indicating that they were spontaneous inhibitory postsynaptic currents (sIPSCs). In 14 of 34 amacrine cells sIPSCs were blocked by bicuculline (10 microM), indicating that they were mediated by GABA(A)Rs. Only four amacrine cells showed glycinergic sIPSCs that were inhibited by strychnine (1 microM). In one amacrine cell, sIPSCs mediated by GABA(A)Rs and GlyRs were found simultaneously. GABAergic sIPSCs could be subdivided into one group best fit by a monoexponential decay function and another biexponentially decaying group. The mean amplitude of GABAergic sIPSCs (-42.1 +/- 5.8 pA) was not significantly different from that of glycinergic sIPSCs (-28.0 +/- 8.5 pA). However, GlyRs (mean T10/90: 2.4 +/- 0.08 ms) activated significantly slower than GABA(A)Rs (mean T10/90: 1.2 +/- 0.03 ms). In addition, the decay kinetics of monoexponentially decaying GABA(A)Rs (mean tau(w): 20.3 +/- 0.50), biexponentially decaying GABA(A)Rs (mean tau(w): 30.7 +/- 0.95), and GlyRs (mean tau(w) = 25.3 +/- 1.94) were significantly different. These differences in the activation and decay kinetics of sIPSCs indicate that amacrine cells of the mouse retina express at least three types of functionally different inhibitory receptors: GlyRs and possibly two subtypes of GABA(A)Rs.  相似文献   

5.
Amplitude and time course of spontaneous gamma-aminobutyric acid (GABA)-mediated miniature postsynaptic currents (MPSCs), recorded in cultured embryonic hippocampal neurons in presence of either tetrodotoxin (TTX) or increased external [Mg2+/Ca2+] ratio, revealed that they form two classes. The distribution of the most commonly recorded MPSCs was skewed both in terms of peak amplitude and rise-time (skew-MPSCs, mode: 70-120 pS). Another, less frequent class (mode: 1-3 nS) formed bell-shaped (bell-MPSCs) amplitude and rise-time distributions. MPSC initial slope did not correlate with rise time, indicating that smaller MPSCs were not electrotonically attenuated. Bell-MPSCs did not result from the integration of skew-MPSCs and both classes appeared to be composed of subunits.  相似文献   

6.
Individual components of activity and habituation of activity were determined throughout the 1st month of life in the rat pup. Total activity increased from 25% at 8 days of age to 68% at 22 days before declining to 49% at 26 days. Total slight activity (predominantly sniffing) increased to a maximum of 33% at 15 days whereas total very active behavior (predominantly ambulation) reached its maximum of 38% at 22 days. Habituation of activity expressed as the mean slope of decrement of activity over the 1st 30 min of the observation period was observed in rats as young as 8 days of age. By 12 days, habituation of total activity had increased significantly reflecting a 3-fold increase ihabituation of slight activity, an effect observed at 15 days as well. However, by 19 days the slope of activity decrement had declined to half of its 15-day value, indicating an impairment of habituation and reflecting the attenuation of very active behavior, predominantly ambulation. This decline in habituation continued through 22 days but by 26 days habituation of activity had increased again reaching a maximum for the 1st month of postnatal life. Our results suggest that the phenomenon of behavioral arousal observed in the developing rat pup 19 days of age reflects an inability of the organism to modulate his activity as effectively as the 15-day- or 26-day-old animal.  相似文献   

7.
The relevance of long-term potentiation (LTP) at excitatory synapses in CA3 circuits to generation of spontaneous epileptiform bursts in CA3 was investigated using rat hippocampal slices. CA3 pyramidal cells were antidromically stimulated through Schaffer collaterals. Evoked field potentials were extracellularly recorded from the stratum pyramidale and the stratum radiatum in CA3. Therefore, field potentials reflecting recurrent excitatory post-synaptic potentials (EPSPs) and inhibitory post-synaptic potentials (IPSPs) were positive at the stratum pyramidale and negative at the stratum radiatum. First, we tested how the amplitude of the evoked field potentials depends on a γ-aminobutyric acid (GABAA) antagonist. Both of the positive and negative field potential peaks reduced in the medium containing penicillin (2 mM) or bicuculline (20 μM). This suggests that unmasked EPSPs due to suppression of IPSPs do not result in an increase in the evoked potentials. Second, CA3 pyramidal cells were antidromically stimulated by tetanic stimulation of Schaffer collaterals in order to induce LTP at synapses in CA3 circuits. Both of the positive and negative field potentials increased, suggesting that recurrent EPSPs were enhanced by tetanic stimulation. Induction of LTP at recurrent excitatory synapses was followed by spontaneous epileptiform bursts which persisted throughout experiments (1.5 h), while LTP of afferent synaptic potential evoked by hilar test stimulation was not induced. These results suggest that LTP at the afferent synapses is not necessary to spontaneous epileptiform bursts in CA3, but LTP at excitatory synapses between CA3 pyramidal cells contribute to spontaneous epileptiform bursts.  相似文献   

8.
Neuronal heterotopia has a strong association with epilepsy, but the mechanisms that underlie this relationship are largely unknown. We have utilized the in utero irradiated rat model to study circuit abnormalities in experimentally induced subcortical heterotopic gray matter. Spontaneous and miniature inhibitory (IPSCs) and excitatory (EPSCs) postsynaptic currents were recorded from visualized heterotopic pyramidal neurons in in vitro hemispheric slices and compared with control neocortical pyramidal neurons using the whole cell patch-clamp technique. The frequency of spontaneous and miniature IPSCs was significantly reduced in pyramidal neurons from heterotopic cortex. Amplitude and kinetics of IPSCs were not different between the two groups. Spontaneous and miniature EPSCs were not different between the two groups. Short-term synaptic plasticity of stimulus-evoked EPSCs showed depression in heterotopic neurons and facilitation in control pyramidal neurons. This study shows a selective impairment of the GABAergic circuitry in experimental heterotopic gray matter. We have reported similar findings in normotopic dysplastic cortex from this model. Taken together, these studies demonstrate a pervasive defect in inhibition throughout the cortex of irradiated rats with cortical dysplasia and neuronal heterotopia. This may have important implications regarding cortical development and function following in utero injuries.  相似文献   

9.
We tested the characteristics of acetylcholine (ACh) release from cultured rat septal cells. The spontaneous release was inhibited by treatment with tetrodotoxin (TTX) and omega-conotoxin (GVIA), indicating that the release was elicited by synaptic activity. The release was also inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor blocker, in both the absence and presence of nerve growth factor (NGF), suggesting that endogenously released glutamate produced the ACh release by stimulating AMPA receptors.This is the first report of detection of the release of ACh by endogenous spontaneous synaptic activity conducted by glutamate AMPA receptor activation in cultured septal cells. This in vitro experimental system is useful for the study of cholinergic functions.  相似文献   

10.
11.
Summary One of the most distinctive and common cell types in Golgi preparations of the hilus of the rat dentate gyrus is the mossy cell. We have used a variety of techniques including the Golgi method, the combined Golgi and electron microscopic (EM) method and the retrograde transport of horseradish peroxidase (HRP) to study the development, ultrastructure and synaptic connections of this cell type. The mossy cells identified in our light microscopic preparations are characterized by: (1) triangular or multipolar shaped somata; (2) three to four primary dendrites that arise from the soma and bifurcate once or more to produce an extensive dendritic arborization restricted, for the most part, to the hilus; (3) numerous thorny excrescences on their somata and proximal dendrites with typical spines on distal dendrites; and (4) axons that bifurcate and are directed toward the fimbria and the molecular layer of the dentate gyrus.The mossy cells have an immature appearance at birth and on subsequent days their maturation appears to lag somewhat behind that of the hippocampal pyramidal cells. On postnatal day 1, many of the dendrites bear growth cones primarily at their termini and have long, thin filipodia emanating from various points along their lengths. Many of the dendrites enter the molecular layer of the dentate gyrus, though this is rarely seen in the mature brain. Typical pedunculate spines are first commonly seen on the distal dendrites around postnatal day 7 while thorny excrescences are first commonly seen between postnatal days 11 and 14. By postnatal day 21, the dendrites have attained a mature appearance although the density of both typical spines and thorny excrescences is less than that found in adults.Two different retrograde transport methods were used to confirm that mossy cells give rise to the commissural projection to the contralateral dentate gyrus. The first method combined HRP histochemistry with a silver intensification procedure and the second method combined HRP histochemistry with Golgi staining. While the majority of commissurally projecting hilar neurons had the appearance of mossy cells, there were others that were smaller and either ovoid or fusiform.  相似文献   

12.
1. The effects of the metabotropic glutamate receptor (mGluR) agonist 1S,3R-ACPD on excitatory postsynaptic potentials (EPSPs) evoked by stimulation of mossy fibers (MF) and parallel fibers (PF) were examined in turtle cerebellar Purkinje cells. 2. 1S,3R-ACPD (1-25 microM) reversibly potentiated the amplitude of the MF-evoked EPSPs and revealed a late, slow EPSP component, but was without effect on PF-evoked EPSPs. The potentiation of both components of MF-evoked EPSPs was dose dependent, with an ED50 of approximately 3 microM. At higher doses (15-25 microM) 1S,3R-ACPD produced a direct depolarization of Purkinje cells in 57% of cells examined. 3. The enhancement of MF EPSPs by 1S,3R-ACPD was blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovalerate (AP-5), but not by the mGluR antagonist L-2-amino-3-phosphonopionic acid (L-AP3; 1 mM), or the 1R,3S isomer of ACPD (25-500 microM). 4. The results demonstrate that mGluR activation by 1S,3R-ACPD produces a potent, stereospecific facilitation of NMDA receptor-mediated transmission at the MF-granule cell synapse.  相似文献   

13.
Parallel morphometric, karyometric and ultrastructural studies of the aortic wall in Okamoto-Aoki rats with short term (3-6 months) and long-term (12-16 months) spontaneous hypertension have revealed a progressive thickening of the medial layer, which is associated with an increaase in the mean nuclear area of the arterial medial smooth muscles and reduction in their mean number per unit area. Electron microscopic studies have shown a multiplication of the intracellular components of aortic smooth muscle cells as a base for their enlargement, as well as small single foci of smooth muscle hyperplasia in the area of the innermost interlamellar space in parts of the aortic wall with intimal thickening. Results of these studies allow the conclusion, that hypertrophy is a reaction of arterial smooth muscle cells to an increased mechanical load in hypertension which, in turn, is responsible for the thickening of arterial with Hyperplasia - increase in smooth muscle cells' number in the media - played a subordinate role. The reaction of the aortic wall to elevate blood pressure is interpreted as a manifestation of the normally limited division capacity of smooth muscle cells in mammals, which does not allow an increase in its cellular components. The function of existing arterial smooth muscle smooth cells is enhanced, instead, by hyperplasia of their specific organelles and augmentation of their volume.  相似文献   

14.
15.
16.
Yang L  Ling DS 《Neuroscience letters》2007,416(3):221-226
Gap junction (GJ) coupling between neocortical GABAergic interneurons plays a critical role in the synchronization of activity in cortical networks in physiological and pathophysiological states, e.g., seizures. Past studies have shown that GJ blockers exert anticonvulsant actions in both in vivo and in vitro models of epilepsy. However, the precise mechanisms underlying these antiepileptic effects have not been fully elucidated. This is due, in part, to a lack of information of the influence of GJ blockade on network activity in the absence of convulsant agents or enhanced neuronal excitation. One key question is whether GJ blockers act on excitatory or inhibitory systems, or both. To address this issue, we examined the effects of the GJ blocker carbenoxolone (CarbX, 150 microM) on spontaneous inhibitory postsynaptic currents (sIPSCs) and excitatory postsynaptic currents (sEPSCs) in acute slices of rat somatosensory cortex. Results showed that CarbX decreased the amplitude and frequency of sIPSCs by 30.2% and 25.7%, respectively. CarbX increased the mean frequency of sEPSCs by 24.1%, but had no effect on sEPSC amplitude. During blockade of GABAA-mediated events with picrotoxin (20 microM), CarbX induced only a small increase in sEPSC frequency that was not statistically different from control, indicating CarbX enhancement of sEPECs was secondary to the depression of synaptic inhibition. These findings suggest that in neocortex, blockade of GJs leads to an increase in spontaneous excitation by uncoupling GABAergic interneurons, and that electronic communication between inhibitory cells plays a significant role in regulating tonic synaptic excitation.  相似文献   

17.
Summary Following destruction of the ipsilateral temporo-ammonic tract, which originates in the entorhinal cortex, and terminates on the granule cells of the dentate gyrus, fibers from the surviving contralateral entorhinal area proliferate forming extensive new connections with the denervated dentate granule cells. Utilizing extracellular recording techniques, we have compared the characteristics of synaptic transmission in the lesion induced afferents with the characteristics of the normal ipsilateral afferents by analyzing the responses of dentate granule cells to paired pulse activation of temporo-dentate circuitry.In the dentate gyrus of the normal rat, an extracellularly recorded EPSP evoked by stimulation of the ipsilateral entorhinal cortex is enhanced by as much as 100% by a conditioning pulse to the same afferent system. This is called paired pulse potentiation. In the reinnervated dentate gyrus, the extracellular EPSP evoked by a test stimulus delivered to the contralateral entorhinal cortex is also potentiated by a conditioning pulse. The paired pulse potentiation in the reinnervated dentate gyrus has a time course which is comparable to that of the normal ipsilateral afferent system, but the magnitude of the potentiation is somewhat less, averaging approximately 140% of control.A second manifestation of paired pulse potentiation in the normal ipsilateral temporo-dentate circuit is that more granule cells discharge in response to the second of a pair of stimuli. Potentiation of granule cell discharge, as measured by the increase in the size of the population spike in the test response, may be as much as 500% of control at the optimal interstimulus interval. In the operated animals, however, paired pulse stimulation of the lesion induced crossed temporo-dentate circuit results in little, if any, enhancement of granule cell discharge in response to the second stimulus, despite the fact that theextracellulrly recorded EPSP is potentiated.These results are discussed in relation to the similarity between the normal and the lesion induced afferents to the dentate cells, with consideration for the normal functioning of the circuit from the entorhinal cortex to the dentate gyrus.Some of the material in this paper was included in a dissertation submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy at the University of California at Irvine, Irvine, California 92717 (1974).  相似文献   

18.
Mossy fibre synapses on the CA3 hippocampal neurons in the brain of ground squirrels repeatedly undergo a striking structural transformation during hibernation. In the middle of hibernation bout the giant complex mossy fibre synapses have a reduced number of dendritic spine infoldings that are smaller and have a decreased number of postsynaptic densities in comparison with mossy fibre synapses of active animals. Two hours after arousal all these parameters of mossy fibre synapses increase and significantly exceed their levels not only in torpid but in active euthermic animals between bouts of torpor. The longer postsynaptic densities and the greater proportion of perforated postsynaptic densities were found soon after arousal. These rapid, reversible and repeated changes indicate a cyclic process of partial denervation/reinnervation of hippocampal neurons by mossy fibres in the course of the innate, stereotyped behaviour.  相似文献   

19.
An outside-out configuration of the patch-clamp method was used to study the properties of spontaneous and glutamate-evoked single channel activity in cerebellar granule cells in culture. Both spontaneous occurring events and glutamate-evoked single channel currents had similar conductances (17.7, 36.5; 17.3, 35.8 pS) and mean open times (0.7, 7.1; 0.6, 7.8 ms). In magnesium free solution, the spontaneous channels were blocked by the NMDA-receptor antagonist APV (0.1 mM) and by the NMDA-channel blocker MK-80 (0.1 mM). The spontaneous activity disappeared at negative holding potentials when the bathing solution contained magnesium (5 mM). Maximum conductance of spontaneous channels increased with days in culture (DIC) from 9 pS at 1 DIC to 59 pS at 10 DIC. These experiments suggest that endogenous transmitter activates NMDA-receptors in cerebellar granule cells in culture.  相似文献   

20.
Isolation of sensitized rat mast cells by density gradient centrifugation in Ficoll decreases the histamine release obtained when they are subsequently exposed to antigen. The histamine release from such isolated cells is potentiated by the addition of 2% boiled rat serum. This potentiation is dose-dependent and has a temperature optimum of about 25 degrees C. The potentiating activity was localized to the serum phospholipid fraction. Of the pure phospholipids studies (LPC, PC, PE, PI, PS and SM) only phosphatidylserine and lysophosphatidylcholine were found to potentiate the histamine release. The mechanism behind this potentiation is discussed and it is suggested that the potentiation by phosphatidylserine and lysophosphatidylcholine is due to a requirement of these phospholipids for the ion exchange (Na+, K+ and Ca++) or the adenylcyclase activity essential for the histamine release process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号