首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 399 毫秒
1.
Fleming GJ  Farooq AA  Barralet JE 《Biomaterials》2003,24(23):4173-4179
The influence of powder/liquid mixing regime on the performance of a hand-mixed restorative glass-ionomer cement (GIC) was evaluated in terms of compressive strength, working characteristics and the porosity distribution.Mean compressive fracture strengths, standard deviations and associated Weibull moduli (m) were determined from series of 20 cylindrical specimens (6mm height, 4mm diameter) prepared by hand-mixing the relative proportions of the powder and liquid constituents. Working characteristics were assessed using an oscillating rheometer whilst scanning electron microscopy and image analysis were used to investigate the influence of the mixing regime on pore distribution.For a constant volume of liquid (1ml) the mean compressive strength decreased from 102.1+/-23.1MPa for 7.4g of powder, to 93.8+/-22.9, 82.6+/-18.5 and 55.7+/-17.2MPa for 6.66, 5.94 and 3.7g of powder, respectively. A concomitant increase in both the working and setting times was also observed.GICs manipulated to a powder/liquid mixing consistency below the manufacturers' recommend ratio, for a constant volume of liquid, resulted in reduced porosity levels in the cement mass and extended working and setting times. Unfortunately, a reduction in the concentration of reinforcing glass particles in the set material below that specified by the manufacturers decreases the cements' load bearing capacity so that they fail at lower compressive stress levels in the posterior region of the mouth.  相似文献   

2.
The composition and viscosity of an acrylic bone cement have both been identified in the literature as being parameters that affect the mechanical properties of the material and, by extension, the in vivo longevity of cemented arthroplasties. The objective of the present study was to determine the relative influence of these parameters on a key cement mechanical property; namely, its fracture toughness. Two sets of cements were selected purposefully to allow the study objective to be achieved. Thus, one set comprised two cements with very similar compositions but very different viscosities (Cemex RX, a medium-viscosity brand, and Cemex Isoplastic, a high-viscosity brand) while the other set comprised two cements with similar viscosities but with many differences in composition (Cemex Isoplastic and CMW 1). Values of the fracture toughness (as determined using chevron-notched short rod specimens) [K(ISR)] obtained for Cemex RX and Cemex Isoplastic were 1.83 +/- 0.12 and 1.85 +/- 0.12 MPa square root(m), respectively, with the difference not being statistically significant. The K(ISR) values obtained for Cemex Isoplastic and CMW 1 were 1.85 +/- 0.12 and 1.64 +/- 0.18 MPa square root(m), respectively, with the difference being statistically significant. Thus, the influence of cement composition on its K(ISR) is more marked relative to the influence of cement viscosity. Explanations of this finding are offered, together with comments on the implications of the results for the in vivo longevity of cemented arthroplasties.  相似文献   

3.
Calcium phosphate cement (CPC) sets in situ to form resorbable hydroxyapatite with chemical and crystallographic similarity to the apatite in human bones, hence it is highly promising for clinical applications. The objective of the present study was to develop a CPC that is fast setting and has high strength in the early stages of implantation. Two approaches were combined to impart high early strength to the cement: the use of dicalcium phosphate dihydrate with a high solubility (which formed the cement CPC(D)) instead of anhydrous dicalcium phosphate (which formed the conventional cement CPC(A)), and the incorporation of absorbable fibers. A 2 x 8 design was tested with two materials (CPC(A) and CPC(D)) and eight levels of cement reaction time: 15 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 8 h, and 24 h. An absorbable suture fiber was incorporated into cements at 25% volume fraction. The Gilmore needle method measured a hardening time of 15.8 min for CPC(D), five-fold faster than 81.5 min for CPC(A), at a powder:liquid ratio of 3:1. Scanning electron microscopy revealed the formation of nanosized rod-like hydroxyapatite crystals and platelet crystals in the cements. At 30 min, the flexural strength (mean +/- standard deviation; n = 5) was 0 MPa for CPC(A) (the paste did not set), (4.2 +/- 0.3) MPa for CPC(D), and (10.7 +/- 2.4) MPa for CPC(D)-fiber specimens, significantly different from each other (Tukey's at 0.95). The work of fracture (toughness) was increased by two orders of magnitude for the CPC(D)-fiber cement. The high early strength matched the reported strength for cancellous bone and sintered porous hydroxyapatite implants. The composite strength S(c) was correlated to the matrix strength S(m): S(c) = 2.16S(m). In summary, substantial early strength was imparted to a moldable, self-hardening and resorbable hydroxyapatite via two synergistic approaches: dicalcium phosphate dihydrate, and absorbable fibers. The new fast-setting and strong cement may help prevent catastrophic fracture or disintegration in moderate stress-bearing bone repairs.  相似文献   

4.
In all acrylic bone cement formulations in clinical use today, radiopacity is provided by micron-sized particles (typical mean diameter of between about 1 and 2 microm) of either BaSO(4) or ZrO(2). However, a number of research reports have highlighted the fact that these particles have deleterious effects on various properties of the cured cement. Thus, there is interest in alternative radiopacifiers. The present study focuses on one such alternative. Specifically, a cement that contains covalently bound iodine in the powder (herein designated the I-cement) was compared with a commercially available cement of comparable composition (C-ment3), in which radiopacity is provided by BaSO(4) particles (this cement is herein designated the B-cement), on the basis of the strength (sigma(b)), modulus (E(b)), and work-to-fracture (U(b)), under four-point bending, plane-strain fracture toughness (K(IC)), Weibull mean fatigue life, N(WM) (fatigue conditions: +/-15 MPa; 2 Hz), activation energy (Q), and frequency factor (ln Z) for the cement polymerization process (both determined by using differential scanning calorimetry at heating rates of 5, 10, 15, and 20 K min(-1)), and the diffusion coefficient for the absorption of phosphate-buffered saline at 37 degrees C (D). For the B-cement, the values of sigma(b), E(b), U(b), K(IC), N(WM), Q, ln Z, and D were 53 +/- 3 MPa, 3000 +/- 120 MPa, 108 +/- 15 kJ m(-3), 1.67 +/- 0.02 MPa check mark m, 7197 cycles, 243 +/- 17 kJ mol(-1), 87 +/- 6, and (3.15 +/- 0.94) x 10(-12) m(2) s(-1), respectively. For the I-cement, the corresponding values were 58 +/- 5 MPa, 2790 +/- 140 MPa, 118 +/- 45 kJ m(-3), 1.73 +/- 0.11 MPa check mark m, 5520 cycles, 267 +/- 19 kJ mol(-1), 95 +/- 9, and (3.83 +/- 0.25) x 10(-12) m(2) s(-1). For each of the properties of the fully cured cement, except for the rate constant of the polymerization reaction, at 37 degrees C (k'), as estimated from the Q and ln Z results, there is no statistically significant difference between the two cements. k' for the I-cement was about a third that for the B-cement, suggesting that the former cement has a higher thermal stability. The influence of various characteristics of the starting powder (mean particle size, particle size distribution, and morphology) on the properties of the cured cements appears to be complex. When all the present results are considered, there is a clear indication that the I-cement is a viable candidate cement for use in cemented arthroplasties in place of the B-cement.  相似文献   

5.
The use of polymethylmethacrylate (PMMA) cement to reinforce fragile or broken vertebral bodies (vertebroplasty) leads to extensive bone stiffening. This might be one reason for fractures at the adjacent vertebrae following this procedure. PMMA with a reduced Young's modulus may be more suitable. The goal of this study was to produce and characterize PMMA bone cements with a reduced Young's modulus by adding bone marrow. Bone cements were produced by combining PMMA with various volume fractions of freshly harvested bone marrow from sheep. Porosity, Young's modulus, yield strength, polymerization temperature, setting time and cement viscosity of different cement modifications were investigated. The samples generated comprised pores with diameters in the range of 30-250 μm leading to porosity up to 51%. Compared to the control cement, Young's modulus and yield strength decreased from 1830 to 740 MPa and from 58 to 23 MPa respectively by adding 7.5 ml bone marrow to 23 ml premixed cement. The polymerization temperature decreased from 61 to 38 °C for cement modification with 7.5 ml of bone marrow. Setting times of the modified cements were lower in comparison to the regular cement (28 min). Setting times increased with higher amounts of added bone marrow from around 16-25 min. The initial viscosities of the modified cements were higher in comparison to the control cement leading to a lower risk of extravasation. The hardening times followed the same trend as the setting times. In conclusion, blending bone marrow with acrylic bone cement seems to be a promising method to increase the compliance of PMMA cement for use in cancellous bone augmentation in osteoporotic patients due to its modified mechanical properties, lower polymerization temperature and elevated initial viscosity.  相似文献   

6.
The use of polymethylmethacrylate (PMMA) cement to reinforce fragile or broken vertebral bodies (vertebroplasty) leads to extensive bone stiffening. Fractures in the adjacent vertebrae may be the consequence of this procedure. PMMA with a reduced Young's modulus may be more suitable. The goal of this study was to produce and characterize stiffness adapted PMMA bone cements. Porous PMMA bone cements were produced by combining PMMA with various volume fractions of an aqueous sodium hyaluronate solution. Porosity, Young's modulus, yield strength, polymerization temperature, setting time, viscosity, injectability, and monomer release of those porous cements were investigated. Samples presented pores with diameters in the range of 25-260 microm and porosity up to 56%. Young's modulus and yield strength decreased from 930 to 50 MPa and from 39 to 1.3 MPa between 0 and 56% porosity, respectively. The polymerization temperature decreased from 68 degrees C (0%, regular cement) to 41 degrees C for cement having 30% aqueous fraction. Setting time decreased from 1020 s (0%, regular cement) to 720 s for the 30% composition. Viscosity of the 30% composition (145 Pa s) was higher than the ones received from regular cement and the 45% composition (100-125 Pa s). The monomer release was in the range of 4-10 mg/mL for all porosities; showing no higher release for the porous materials. The generation of pores using an aqueous gel seems to be a promising method to make the PMMA cement more compliant and lower its mechanical properties to values close to those of cancellous bone.  相似文献   

7.
Setting times, volume after setting, injectability and hardness (at 37 degrees C in contact with Ringer's solution) were determined for cements made of mixtures of calcium sulphate hemihydrate (CS) and hydroxyapatite (HA) with a range of compositions. The purpose of these experiments was to determine the behaviour of a mixture that could be used as an injectable cement for orthopaedic applications, including spinal fusion. A suitable mixture consisted of 60% CS and 40% HA by mass; a slurry was made by mixing solid (36 g) with water (15 cm(3)). The slurry had initial and final setting times of 5.7+/-1.3 min and 19.6+/-0.7 min (mean +/- standard deviation), respectively. The hardness of the cement did not systematically increase or decrease in the 72 h following the final setting time. The volume of the cement was 99.8+/-0.4% of the volume of the initial slurry, i.e. there was negligible shrinkage on setting. It was able to withstand a pressure of 7.3+/-1.2 MPa, applied by a hemispherical indenter before the onset of permanent damage, indicating adequate strength for spinal fusion.  相似文献   

8.
Beta-tricalcium phosphate (beta-TCP) has been encapsulated with poly(ethylene glycol) (PEG) to improve the filler/cement interface, and it was later incorporated to a poly(methyl methacrylate) bone cement in order to obtain cements with improved stability in the long term. Size and size distribution of the agglomerates forming the initial powder was drastically changed after its dispersion in a PEG aqueous solution. Whereas the initial beta-TCP particles had a 584 microm average diameter, the treated particles (TCP-PEG) presented more than 60% of the particles in a range of 2-6 microm. The effect of adding the treated particles to an acrylic cement was evaluated in terms of curing parameters, in vitro behaviour and mechanical performance. The presence of the TCP-PEG particles did not affect either peak temperature or setting time, indicating a good homogeneity of polymerising mass in contrast to the effect observed with the plain beta-TCP particles, which gave rise to higher setting times. In vitro behaviour studies revealed hydration degree values of the modified cements comparable to that of PMMA cements. Early stages of water uptake was Fickian in nature for all the experimental formulations indicating that the water absorption followed a diffusion controlled mechanism. After 3 months of storage in SBF the experimental formulations presented values of compressive strength in the range 76-78 MPa, higher than the minimum required by ISO 5833 (70 MPa) and those of tensile strength in the range 42-48 MPa, higher than the minimum reported for commercial formulations (30 MPa), but no significant differences in the strengths and elastic modulus were observed with the treatment of the filler particles. This observation was confirmed by ESEM analysis of the tensile fracture surfaces, which revealed a rather good cohesion between the bioceramic particles with some gaps around them, independently of the type of particles. The themogravimetric analysis of dry and wet specimens showed a higher dissolution rate of the plain beta-TCP particles in comparison to the encapsulated ones, indicating that the PEG adsorbed on the surface of the TCP particles could be a way to control the resorbability of the bioceramic component.  相似文献   

9.
The suitability of glass polyalkenoate cements (GPCs) for skeletal applications is limited by the presence, in the glass phase, of the aluminium ion (Al3+), a neurotoxin. The zinc ion (Zn2+), a bacteriocide, has been incorporated into aluminium-free GPCs based on zinc silicate glasses. However, these GPCs have considerably shorter working times and poorer mechanical properties than their Al3+-containing counterparts. Based on results for calcium phosphate cements, there is an indication that mixing a GPC with an organic compound, tricalcium citrate (TSC), may lead to cements with improved rheological and mechanical properties. We developed a range of Zn-based GPCs and determined their working times (Tw), setting times (Ts), compressive strength (CS) and biaxial flexural strengths (BFS). A GPC composed of 1g of a calcium-zinc silicate glass (BT100) mixed with a 50wt.% aqueous solution on polyacrylic acid (coded E9, Mw 80,800) at a powder liquid ratio of 2:1.5 exhibited the best combination of Tw, Ts, CS and BFS. We also found that the addition of TSC (over the range 5-15wt.%) to a GPC led to significant increases in both Tw (from 40+/-3 to 100+/-4s) and Ts (from 70+/-2 to 3000+/-4s) accompanied by changes in both CS and BFS that were affected by the duration of the aging time of the specimens in distilled water (for example, after aging for 7 days CS dropped from 62+/-2 to 17+/-1MPa, while after aging for 30 days, BFS increased 27+/-6 to 31+/-7MPa and then dropped to 17+/-1MPa). Future modification and characterization of the examined GPCs are needed before they may be considered as candidates for orthopaedic applications.  相似文献   

10.
Most biocements are two- or three-component acid-based systems with large differences in the component particle sizes, which occurs by virtue of the differing processing routes. This work aimed to improve injectability and strength of a single reactive component cement, that is, mechanically activated alpha-tricalcium phosphate (TCP)-based cement by adding 13-33 wt % of several fine-particle-sized (d(50) of 0.5-1.1 microm) fillers [dicalcium phosphate anhydrous (DCPA), titanium dioxide (TiO(2)), and calcium carbonate] to the monomodal alpha-TCP matrix (d(50) = 9.8 microm). A high zeta-potential was measured for all particles in trisodium citrate solution. The fraction of alpha-TCP cement "injected" through an 800-microm hypodermic needle was found to be only 35% at a powder-to-liquid ratio of 3.5 g/mL. In contrast, the use of fillers decreased cement viscosity to a point, where complete injectability could be obtained. Mechanistically, these additives disrupted alpha-TCP particle packing yet decreased the interparticle spacing by a factor of approximately 5.5 such that the electrostatic repulsion effect was enhanced. A strength improvement was found when DCPA and TiO(2) were used as fillers despite the lower degree of conversion of these cements. Compressive strengths of precompacted cement samples increased from 70 MPa for unfilled alpha-TCP cement to 140 (110) MPa for 23 wt % DCPA (or TiO(2)) fillers as a result of porosity reduction. Strength improvement for more clinically relevant uncompacted cements was achieved by higher powder-to-liquid ratio mixes for filled cements such that maximum strengths of 90 MPa were obtained for 23 wt % DCPA filler compared with 50 MPa for single-component alpha-TCP cement.  相似文献   

11.
Increased fracture risk has been reported for the adjacent vertebral bodies after vertebroplasty. This increase has been partly attributed to the high Young's modulus of commonly used polymethylmethacrylate (PMMA). Therefore, a compliant bone cement of PMMA with a bulk modulus closer to the apparent modulus of cancellous bone has been produced. This compliant bone cement was achieved by introducing pores in the cement. Due to the reduced failure strength of that porous PMMA cement, cancellous bone augmented with such cement could deteriorate under dynamic loading. The aim of the present study was to assess the potential of acute failure, particle generation and mechanical properties of cancellous bone augmented with this compliant cement in comparison to regular cement. For this purpose, vertebral biopsies were augmented with porous- and regular PMMA bone cement, submitted to dynamic tests and compression to failure. Changes in Young's modulus and height due to dynamic loading were determined. Afterwards, yield strength and Young's modulus were determined by compressive tests to failure and compared to the individual composite materials. No failure occurred and no particle generation could be observed during dynamical testing for both groups. Height loss was significantly higher for the porous cement composite (0.53+/-0.21%) in comparison to the biopsies augmented with regular cement (0.16+/-0.1%). Young's modulus of biopsies augmented with porous PMMA was comparable to cancellous bone or porous cement alone (200-700 MPa). The yield strength of those biopsies (21.1+/-4.1 MPa) was around two times higher than for porous cement alone (11.6+/-3.3 MPa).  相似文献   

12.
Modified strontium-containing hydroxyapatite (Sr-HA) bone cement was loaded with gentamicin sulfate to generate an efficient bioactive antibiotic drug delivery system for treatment of bone defects. Gentamicin release and its antibacterial property were determined by fluorometric method and inhibition of Staphylococcus aureus (S. aureus) growth. Gentamicin was released from Sr-HA bone cement during the entire period of study and reached around 38% (w/w) cumulatively after 30 days. Antibacterial activity of the gentamicin loaded in the cements is clearly confirmed by the growth inhibition of S. aureus. The results of the amount and duration of gentamicin release suggest a better drug delivery efficiency in Sr-HA bone cement over polymethylmethacrylate bone cement. Bioactivity of the gentamicin-loaded Sr-HA bone cement was confirmed with the formation of apatite layer with 1.836 ± 0.037 μm thick on day 1 and 5.177 ± 1.355 μm thick on day 7 after immersion in simulated body fluid. Compressive strengths of the gentamicin-loaded Sr-HA cement reached 132.60 ± 10.08 MPa, with a slight decrease from the unloaded groups by 4-9%. Bending moduli of Sr-HA cements with and without gentamicin were 1.782 ± 0.072 GPa and 1.681 ± 0.208 GPa, respectively. On the contrary, unloaded Sr-HA cement obtained slightly larger bending strength of 35.48 ± 2.63 MPa comparing with 33.00 ± 1.65 MPa for loaded cement. No statistical difference was found on the bending strengths and modulus of gentamicin-loaded and -unloaded Sr-HA cements. Sr-HA bone cement loaded with gentamicin was proven to be an efficient drug delivery system with uncompromised mechanical properties and bioactivity.  相似文献   

13.
Bone cements prepared with methyl methacrylate and either methacrylic acid or diethyl amino ethyl methacrylate as comonomers were characterized by infrared spectroscopy, nuclear magnetic resonance, gel permeation chromatography, dynamic mechanical thermal analysis, and mechanical testing. Selected formulations containing these functionalized methacrylates were filled with hydroxyapatite and studied in terms of their properties in tension, compression and bending, and X-ray diffraction. It was found that residual monomer was not greatly affected by the presence of either acid or basic comonomers in the unfilled bone cements. In contrast, molecular weight, curing times, and glass transition temperature were composition dependent. For samples with acidic comonomer, a faster curing time, higher molecular weight, and higher glass transition temperatures were observed with respect to those with the basic comonomer. X-ray diffraction revealed that the crystalline structure was not affected by the nature of comonomer in the bone cement while scanning electron microscopy showed that hydroxyapatite remained as clusters in the bone cement.The mechanical properties of filled bone cements depended mainly on composition and type of testing. Hydroxyapatite-filled bone cements fullfilled the minimum compressive strength (70 MPa) required for bone cement use. However, the minimum tensile strength (30 MPa) was only fullfilled by cements prepared without comonomer and those containing methacrylic acid. The minimum bending strength requirement (50 MPa) was not satisfied by any of the formulations studied.  相似文献   

14.
PMMA bone cements (Refobacin-Palacos R, Sulfix 6, AKZ, and CMW bone cement, types I and II), from six different clinics, were investigated in three stages. In the first stage, studies of density, hardness, flexural strength, and compressive strength were made, as well as molecular weight measurements and microscopic investigations. These studies reflected the current state of techniques of application used in operating theaters. They revealed wide variations in the properties of the materials studied. Secondly, a comprehensive study of the process-technology in the laboratory was performed. The following variables were investigated or discussed: mixing vessel, order of the individual components, mixing time, rate of mixing, pressure application on the mixed bone cement, kneading, cement thickness, pouring into the syringe, contact force during polymerization, and preparation quantity. The third stage involved the development and clinical testing of an improved mixing technique. Using this improved mixing technique, all three selected clinics achieved far better results with reduced variability. A comparison between a centrifuging technique after mixing and our improved, but conventional, mixing technique, displays advantages for the latter. The question regarding a correlation between cement specimens of high porosity and early implant loosening could not be answered on the basis of the 43 PMMA bone cement explants investigated (implanted 6 months to 15 years). In some cases, the studies revealed that the bone cement manufacturers should be required to revise and quantify existing instructions for use. The users, on the other hand, should give more consideration to the mixing technique and its consequences.  相似文献   

15.
Kobayashi M  Kon M  Miyai K  Asaoka K 《Biomaterials》2000,21(20):2051-2058
The purpose of this study was to determine if short fibres of CaO-P2O5-SiO2-Al2O3 (CPSA) glass possessing a particular aspect ratio (length/diameter) could be used as a reinforcing agent for glass-ionomer cement. The powder of a commercial glass-ionomer cement (not resin modified) was mixed with variously sized CPSA glass short fibres before mixing with the liquid of the glass-ionomer cement. The mixed powders containing 60 mass% CPSA glass short fibres (diameter, 9.7 +/- 2.1 microm, aspect ratio, 5.0 +/- 0.9) obtained maximum values of 18 and 35 MPa for the diametral tensile strength (DTS) and flexural strength (FS) of set cements, respectively, after 24 h. These DTS and FS values were 1.8 and 4.5 times larger, respectively, than those of the set glass-ionomer cement not containing short fibres. Moreover, it was found that the addition of CPSA glass short fibres was remarkably more effective in the strengthening than electric glass (a typical glass fibre) short fibres. The results suggested that the CPSA glass short fibres acted as a reinforcing agent for strengthening the glass-ionomer cement, because of the shape of short fibres and reactivity between the mixing liquid and short fibres.  相似文献   

16.
Bone cements prepared with methyl methacrylate and either methacrylic acid or diethyl amino ethyl methacrylate as comonomers were characterized by infrared spectroscopy, nuclear magnetic resonance, gel permeation chromatography, dynamic mechanical thermal analysis, and mechanical testing. Selected formulations containing these functionalized methacrylates were filled with hydroxyapatite and studied in terms of their properties in tension, compression and bending, and X-ray diffraction. It was found that residual monomer was not greatly affected by the presence of either acid or basic comonomers in the unfilled bone cements. In contrast, molecular weight, curing times, and glass transition temperature were composition dependent. For samples with acidic comonomer, a faster curing time, higher molecular weight, and higher glass transition temperatures were observed with respect to those with the basic comonomer. X-ray diffraction revealed that the crystalline structure was not affected by the nature of comonomer in the bone cement while scanning electron microscopy showed that hydroxyapatite remained as clusters in the bone cement.The mechanical properties of filled bone cements depended mainly on composition and type of testing. Hydroxyapatite-filled bone cements fullfilled the minimum compressive strength (70 MPa) required for bone cement use. However, the minimum tensile strength (30 MPa) was only fullfilled by cements prepared without comonomer and those containing methacrylic acid. The minimum bending strength requirement (50 MPa) was not satisfied by any of the formulations studied.  相似文献   

17.
The composition of acrylic bone cement has been identified as one of the important parameters affecting its mechanical properties and may, in turn, ultimately influence the longevity of a cemented arthroplasty. Our aim in this study was to determine the influence of change of one compositional variable, the activator, on the fatigue performance and fracture toughness of specimens of the fully cured cement. To that end, three sets of cements were prepared, containing either the conventional activator, 4-N,N dimethyl p-toluidine (DMPT), or novel ones that are tertiary amines based on long-chain fatty acids, that is, 4-N,N dimethylaminobenzyl oleate (DMAO) and 4-N,N dimethylaminobenzyl laurate (DMAL). In the fatigue tests, the specimens were subjected to tension-tension loading, and the results (number of cycles to failure, Nf) were analyzed using the linearized form of the three-parameter Weibull equation. The fracture toughness (KIc) tests were conducted with rectangular compact tension specimens. All fracture surfaces were subsequently examined with scanning electron microscopy. We found that the Weibull mean fatigue lives for specimens fabricated using the DMPT, DMAL, and DMAO containing cements were 272,823, 453,551, and 583,396 cycles, respectively. The corresponding values for KIc were 1.94 +/- 0.05, 2.06 +/- 0.09, and 2.00 +/- 0.07 MPa radical m, respectively. Statistical analyses showed that for both the DMAL- and DMAO-containing cements, the mean values of Nf were significantly higher compared to the corresponding value for the DMPT-containing cement (Mann-Whitney test; alpha < 0.10). This result is attributed to the higher molecular weights of the former cements compared to the latter. The same trend was found for the mean KIc values (Mann-Whitney test; alpha < 0.05), with the trend being explained in terms of the differences seen in the crack morphologies. These results thus demonstrate that these novel amines are viable alternatives to DMPT for incorporation into acrylic bone cement formulations in the future.  相似文献   

18.
Calcium phosphate cement (CPC) can conform to complex cavity shapes and set in situ to form bioresorbable hydroxyapatite. The aim of this study was to introduce cell-encapsulating alginate hydrogel beads into CPC and to improve the mechanical properties using chitosan and fiber mesh reinforcement. Because the CPC setting was harmful to the MC3T3-E1 osteoblast cells, alginate was used to encapsulate and protect the cells in CPC. Cells were encapsulated into alginate beads, which were then mixed into three pastes: conventional CPC, CPC-chitosan, and CPC-chitosan-mesh. After 1 day culture inside the setting cements, there were numerous live cells and very few dead cells, indicating that the alginate beads adequately protected the cells. Cell viability was assessed by measuring the mitochondrial dehydrogenase activity, using a Wst-1 colorimetric assay. Absorbance at 450 nm (arbitrary units) (mean +/- SD; n = 5) was 1.36 +/- 0.41 for cells inside conventional CPC, 1.29 +/- 0.24 for cells inside CPC-chitosan composite, and 0.73 +/- 0.22 for cells inside CPC-chitosan-mesh composite. All three values were similar to 1.00 +/- 0.14 for the control with cells in beads in the cell culture medium without any CPC (Tukey's at p = 0.05). Flexural strength for conventional CPC containing cell-encapsulating beads was 1.3 MPa. It increased to 2.3 MPa when chitosan was incorporated. It further increased to 4.3 MPa with chitosan and the reinforcement from one fiber mesh, and 9.5 MPa with chitosan and three sheets of fiber mesh. The latter two strengths matched reported strengths for sintered porous hydroxyapatite implants and cancellous bone. In summary, cell-encapsulated-alginate-CPC constructs showed favorable cell viability. The use of chitosan and mesh progressively improved the mechanical properties. These strong, in situ hardening, and cell-seeded hydroxyapatite cements may have potential for bone tissue engineering in moderate stress-bearing applications.  相似文献   

19.
The development of a calcium phosphate cement, comprising tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD), that hardens in 14 min with water as the liquid or 6 min with a 0.25 mol/L sodium phosphate solution as the liquid, without using hydroxyapatite (HA) seeds as setting accelerator, is reported. It was postulated that reduction in porosity would increase cement strength. Thus, the effects of applied pressure during the initial stages of the cement setting reaction on cement strength and porosity were studied. The cement powder comprised an equimolar mixture of TTCP and DCPD (median particle sizes 17 and 1.7 microm, respectively). Compressive strengths (CS) of samples prepared with distilled water were 47.6 +/- 2.4 MPa, 50.7 +/- 4.2 MPa, and 52.9 +/- 4.7 MPa at applied pressures of 5 MPa, 15 MPa, and 25 MPa, respectively. When phosphate solution was used, the CS values obtained were 41.5 +/- 2.3 MPa, 37.9 +/- 1.7 MPa, and 38.1 +/- 2.3 MPa at the same pressure levels. Statistical analysis of the results showed that pressure produced an improvement in CS when water was used as liquid but not when the phosphate solution was used. Compared to previously reported TTCP-DCPD cements, the greater CS values and shorter setting times together with a simplified formulation should make the present TTCP-DCPD cement a useful material as a bone substitute for clinical applications.  相似文献   

20.
Dunne NJ  Orr JF 《Biomaterials》2001,22(13):1819-1826
Palacos R bone cement was prepared using three commercially available mixing techniques, first generation, second generation and third generation, to determine the mechanical properties and porosity contents of the bone cement. The compressive strengths, bending strengths and flexural moduli were expressed as a function of void content. The volume of pores within the cement structure was found to be a contributing factor to the physical properties of acrylic bone cement. The lower the volume of voids in the cement the better the compressive and flexural properties, hence stronger bone cement. It was found that the best results were obtained from cement that had been mixed using the Mitab Optivac or Summit HiVac Syringe systems at a reduced pressure level of between -72 and -86 kPa below atmospheric pressure, resulting in cement of porosity 1.44-3.17%; compressive strength 74-81 MPa; flexural modulus 2.54-2.60 GPa; and flexural strength 65-73 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号