首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of poly(ethylene oxide) (PEO)/poly(epsilon-caprolactone) (PCL) containing biodegradable poly(ether ester urethane)s, covering a wide range of compositions, were synthesized and characterized. The synthesis consisted of a two-step process. During the first step, the ring-opening reaction of epsilon-caprolactone was carried out, initiated by the hydroxyl terminal groups of the PEO chain. The second step involved the chain extension of these PCL-PEO-PCL trimers with hexamethylene diisocyanate. By varying either the ethylene oxide/epsilon-caprolactone ratio or the length of both segments, we obtained a series of polymers having different morphologies and displaying a broad range of properties.  相似文献   

2.
By sequential ring-opening polymerization of ethylene oxide and epsilon-caprolactone, poly(ethylene oxide) (PEO)-poly(epsilon-caprolactone) (PCL) di-block co-polymers with a phosphoryl choline (PC)-terminated group were synthesized. Using FT-IR, NMR, DSC and SEC, the products were characterized and the results proved the successful synthesis of functionalized di-block co-polymer. After blending the products with polyurethane (PU) and casting the result as film, the PEO segments migrated to the surface of the blend and the PCL segments acted as an anchor to fix the co-polymer on PU matrix, while the PEO segments provided PU the hydrophibility to prevent the fibrinogen adsorption on PU. This specific di-block co-polymer and the method of processing are hoped to be applied in the biomedical field to improve the biocompatibility of polymer materials.  相似文献   

3.
In this article, a kind of biodegradable poly(epsilon-caprolactone)-Poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL, PCEC) copolymer was synthesized by ring-opening polymerization method. The PCEC nanoparticles were prepared at one-step by modified emulsion solvent evaporation method using CTAB as stabilizer. With increase in PCEC concentration, the particle size increased obviously, but zeta potential only increased slightly. The obtained cationic PCEC nanoparticle was employed to condense and adsorb DNA onto its surface. Plasmid GFP (pGFP) was used as model plasmid to evaluate the loading capacity of cationic PCEC nanoparticles in this work. The DNA/nanoparticles weight ratio at 1:16 induced almost neutral zeta potential of DNA-nanoparticles complex. At this time, the size of complex became abnormally large which implied aggregates formed. So DNA-nanoparticles weight ratio should be chosen carefully. The cationic PCEC nanoparticles had the capacity of condensing plasmid DNA into complex when the DNA/nanoparticles weight ratio was lower than 1:8, which was evidenced by gel retardation assay. In vitro release behavior of DNA/nanoparticle complexes was also studied here. The obtained cationic PCEC nanoparticles might have great potential application in DNA delivery.  相似文献   

4.
5.
The aqueous solutions of triblock copolymers of poly(ethylene glycol)-poly(epsilon-caprolactone-co-glycolide)-poly(ethylene glycol) [PEG-P(CL-GA)-PEG] undergoing sol-gel transition as the temperature increases from 20 to 60 degrees C were successfully prepared. The thermogelling block copolymers were synthesized by subtle control of the hydrophilic/hydrophobic balance and the chain microstructures. The amphiphilic block copolymer formed micelles in aqueous solution, and the micelle aggregated as the temperature increased. The sol-gel transition of the copolymer aqueous solutions was studied focusing on the structure-property relationship. GA was incorporated into the polymer chain to prevent crystallization of PCL component and increase the polymer degradation. It is expected to be a promising long-term delivery system for pH-sensitive drugs, proteins, and genes.  相似文献   

6.
Zhou S  Deng X  Yang H 《Biomaterials》2003,24(20):3563-3570
Poly(epsilon-caprolactone)-poly(ethylene glycol) (PECL) copolymers were synthesized from polyethylene glycol (PEG) and epsilon-caprolactone (epsilon-CL) using stannous octoate as catalyst at 160 degrees C by bulk polymerization. The effect of the molecular weight of PEG and the copolymer ratio on the properties of the copolymers was investigated by (1)H-NMR, IR, DSC and GPC. PCL and PECL microspheres containing human serum albumin were elaborated by solvent extraction method based on the formation of double w/o/w emulsion. Microspheres were characterized in terms of morphology, size, loading efficiency, and the efficiency of microspheres formation. The results show that the microspheres prepared from PECL-10 and PECL-15 copolymers achieved the highest loading efficiency (about 50%) among all copolymers. These results indicate that the properties of copolymers could be tailored by adjusting polymer composition. It is suggested that these matrix polymers may be optimized as carriers in the protein (antigen) delivery system for different purposes.  相似文献   

7.
Poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) triblock co-polymers with number-average molar mass (Mn) over 20000 g/mol were prepared by ring-opening polymerization of epsilon-caprolactone initiated by poly(ethylene glycol) under microwave irradiation. This method was proposed as a means to improve in vivo compatibility as no harmful chemicals were involved in the polymerization except epsilon-caprolactone and poly(ethylene glycol). The resulting tri-block co-polymers were characterized by FT-IR, H-NMR, GPC and WAXD. Their Mn and their composition was controlled by the amount and the chain length of the poly(ethylene glycol) macromers involved in the feed. The ability of poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) co-polymers to entrap and deliver drugs was investigated with ibuprofen as a model drug. The release of ibuprofen was significantly influenced by the co-polymer composition and the extent of loading. The in vitro release of ibuprofen was sustained from 3 to 15 days for 10% loading, depending on the ratio of epsilon-caprolactone to ethylene glycol-derived subunits in co-polymer chains. This ratio ranged from 0.97 to 9.78. In the case of the co-polymer whose epsilon-caprolactone molar ratio to ethylene glycol-derived subunits was 2.49, the ibuprofen release was sustained for 2 to 24 days for ibuprofen loads going from 5 to 20 wt%.  相似文献   

8.
Peng CL  Shieh MJ  Tsai MH  Chang CC  Lai PS 《Biomaterials》2008,29(26):3599-3608
Amphiphilic 4-armed star-shaped chlorin-core diblock copolymers based on methoxy poly(ethylene glycol) (mPEG) and poly(varepsilon-caprolactone) (PCL) were synthesized and characterized in this study. The synthesized photosensitizer-centered amphiphilic star block copolymer that forms assembled micelle-like structures can be used in a photodynamic therapy (PDT)-functionalized drug delivery system. Moreover, the hydrophobic chemotherapeutic agent, paclitaxel, can be trapped in the hydrophobic inner core of micelles. In our results, the star-polymer-formed micelle exhibited efficient singlet oxygen generation, whereas the hydrophobic photosensitizer failed due to aggregation in aqueous solution. The chlorin-core micelle without paclitaxel loading exhibited obvious phototoxicity in MCF-7 breast cancer cells with 7J/cm2 or 14J/cm2 light irradiation at a chlorin concentration of 125microg/ml. After paclitaxel loading, the size of micelle increased from 71.4nm to 103.2nm. Surprisingly, these micelles were found to improve the cytotoxicity of paclitaxel significantly in MCF-7 cells after irradiation through a synergistic effect evaluated by median effect analysis. This functionalized micellar delivery system is a potential dual carrier for the synergistic combination of photodynamic therapy and chemotherapy for the treatment of cancer.  相似文献   

9.
A study of the rheological behaviour of poly(ethylene oxide)-poly(methyl methacrylate) and poly(ethylene oxide)-poly(vinyl acetate) compatible blends in the molten state is reported. Zero shear viscosity η0 and the activation energy for the viscous flow ΔE* were obtained as function of both composition and molar mass of the components. Positive and negative deviations from the additivity rule were observed both in the case of log η0 and ΔE*.  相似文献   

10.
The aggregation of poly(alpha-hydroxy acid) microspheres during ethylene oxide (EO) gas sterilization makes it difficult for the microspheres to be used in clinical applications. In this study, six kinds of PLLA-PEG-PLLA triblock copolymers (TriPLE) were synthesized with various composition ratios of PEG/PLLA in the range of 0.012 to 0.103. TriPLE microspheres were prepared by the oil-in-water emulsion method. TriPLE microspheres were characterized by using 1H-NMR, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). After sterilization by EO gas at 55 degrees C, the microspheres were analyzed by scanning electron microscope (SEM), laser diffractometry, standard sieves, X-ray diffraction (XRD), GPC, and DSC. When the composition ratio of PEG/PLLA was above 0.02, the initial crystallinity of TriPLE in microspheres was as high as 50%, and the microspheres were suitable to be sterilized by EO gas. On the other hand, TriPLE microspheres, which had composition ratios of PEG/PLLA below 0.02, had low initial crystallinities of about 30%, and aggregated during EO gas sterilization. For these microspheres, crystallinity increased up to 50% during the sterilization, whereas other TriPLE microspheres did not show any changes in crystallinity. Therefore, the aggregation of TriPLE microspheres during EO gas sterilization was markedly reduced as the initial crystallinity of TriPLE in the microspheres was increased.  相似文献   

11.
The aim of this study was to prepare non-woven materials from a biodegradable polymer, poly(epsilon-caprolactone) (PCL) by electrospinning. PCL was synthesized by ring-opening polymerization of epsilon-caprolactone in bulk using stannous octoate as the catalyst under nitrogen atmosphere. PCL was then processed into non-woven matrices composed of nanofibers by electrospinning of the polymer from its solution using a high voltage power supply. The effects of PCL concentration, composition of the solvent (a mixture of chloroform and DMF with different DMF content), applied voltage and tip-collector distance on fiber diameter and morphology were investigated. The diameter of fibers increased with the increase in the polymer concentration and decrease in the DMF content significantly. Applied voltage and tip-collector distance were found critical to control 'bead' formation. Elongation-at-break, ultimate strength and Young's modulus were obtained from the mechanical tests, which were all increased by increasing fiber diameter. The fiber diameter significantly influenced both in vitro degradation (performed in Ringer solution) and in vivo biodegradation (conducted in rats) rates. In vivo degradation was found to be faster than in vitro. Electrospun membranes were more hydrophobic than PCL solvent-casted ones; therefore, their degradation was a much slower process.  相似文献   

12.
Amphiphilic block copolymers containing poly(dimethylsiloxane), poly(ethylene oxide), as well as heparin-coated glass beads and tubes were evaluated for the amounts and activities of surface-immobilized heparin. Because the amphiphilic copolymer system is thermodynamically predicted to demonstrate low-energy phase enrichment on the surfaces of air-cast films, studies were also undertaken to understand the in vitro results. Solvent-cast copolymer films have a heterogeneous microphase-separated structure according to transmission electron micrographs. Wilhelmy plate contact angle analysis indicates significant surface restructuring occurs upon hydration. Attenuated total reflectance infrared spectroscopy studies of the desiccated and hydrated films at two different sampling depths show compositional heterogeneity as a function of depth, as well as near surface restructuring allowing surface enrichment of the high-energy segments following contact with water. Significant concentrations of heparin are detected on the surface of these coatings by toluidine blue assays. In addition, a portion of the surface-bound heparin maintains its original bioactivity as determined by recalcification times, thrombin times, and Factor Xa assays. These substrates were also tested for platelet adhesion and activation reactions in vitro using polymer-coated beads in rabbit platelet-rich plasma. Heparinized polymers promoted low levels of platelet adhesion and serotonin release. Surface concentrations of heparin from bioactivity assays were then correlated with platelet adhesion and the extent of platelet release to assess the efficacy of this heparin-immobilized copolymer as a blood-compatible material or coating.  相似文献   

13.
Liang SL  Yang XY  Fang XY  Cook WD  Thouas GA  Chen QZ 《Biomaterials》2011,32(33):8486-8496
Enzymatic degradation is a major feature of polyester implants in vivo. An in vitro experimental protocol that can simulate and predict the in vivo enzymatic degradation kinetics of implants is of importance not only to our understanding of the scientific issue, but also to the well-being of animals. In this study, we explored the enzymatic degradation of PGS-based materials in vitro, in tissue culture medium or a buffer solution at the pH optima and under static or cyclic mechanical-loading conditions, in the presence of defined concentrations of an esterase. Surprisingly, it was found that the in vitro enzymatic degradation rates of the PGS-based materials were higher in the tissue culture medium than in the buffered solution at the optimum pH 8. The in vitro enzymatic degradation rate of PGS-based biomaterials crosslinked at 125°C for 2 days was approximately 0.6-0.9 mm/month in tissue culture medium, which falls within the range of in vivo degradation rates (0.2-1.5mm/month) of PGS crosslinked at similar conditions. Enzymatic degradation was also further enhanced in relation to mechanical deformation. Hence, in vitro enzymatic degradation of PGS materials conducted in tissue culture medium under appropriate enzymatic conditions can quantitatively capture the features of in vivo degradation of PGS-based materials and can be used to indicate effective strategies for tuning the degradation rates of this material system prior to animal model testing.  相似文献   

14.
Wan Y  Chen W  Yang J  Bei J  Wang S 《Biomaterials》2003,24(13):2195-2203
A series of poly(L-lactide)-poly(ethylene glycol) multiblock copolymers (Multi-PLE) with high molecular weight were synthesized and successfully used to fabricate three-dimensional scaffolds. Using mouse NIH 3T3 fibroblasts as model cells, the cell affinity of various Multi-PLE copolymers was evaluated and compared with that of poly(L-lactide) (PLLA) by means of cell attachment efficiency measurement, scanning electron microscopy observation and MTT assay. On one hand, the results showed that the cell attachment efficiency on Multi-PLE 4/1(4/1 refers to the molar ratio of lactidyl units to ethylene oxide units) films was close to that on PLLA film, however, the other Multi-PLE films exhibited much lower cell attachment efficiency than PLLA film, such as Multi-PLE 2/1 and Multi-PLE 1/1, which had higher PEG content. On the other hand, it was interesting to find that cell proliferation on Multi-PLE4/1 and Multi-PLE2/1 scaffolds was better than that on PLLA scaffold, which was closely related to the improved hydrophilicity of Multi-PLE copolymers due to the incorporation of PEG in comparison with pure PLLA. The Multi-PLE copolymer scaffolds with appropriate hydrophilicity were in favor of mass transportation, and then of cell proliferation and cell affinity. It meant that the cell proliferation would be much improved by increasing the hydrophilicity of the three-dimensional scaffolds, which even outweighed the disadvantages of the cell attachment efficiency reduction with the incorporation of PEG.  相似文献   

15.
16.
It is known that poly(methacrylic acid) and poly(ethylene oxide) interact with each other through hydrogen bonds and form polymer complexes in an aqueous medium. The initially formed polymer complexes were considered to exist in a semi-stable state, and they aggregated through desolvation and hydrophobic interaction. A successive aggregation of polymer complexes was observed following the rapid initial complexation. The aggregation was affected by some chemical factors e.g., polymer concentration, temperature, pH and so on. These effects were measured as the changes of the molecular shape by means of laser-light scattering, turbidity measurements, and scanning electron microscopy. It was observed that lower pH and higher temperature made the aggregation faster within such experimental conditions as pH 2–7, 20–50°C. The aggregates were nearly spherical with almost the same diameter (200 nm), and spontaneously grew larger with time.  相似文献   

17.
A series of three biocompatible P(CL-co-LA)-PEG-P(CL-co-LA) copolymers were synthesized using ring-opening polymerization and characterized by 1H-NMR, gel permeation chromatography, DSC, dynamic-mechanical analysis, and X-ray diffraction. The number of monomer units was kept constant, while the D,L-LA fraction was varied so as to constitute 0, 30, or 70% of the end segments. The molecular weights were sufficiently high to eventually permit 3D scaffold preparation. A degradation study was carried out over 26 weeks, and the effect of monomer composition on the rate of degradation as well as on changes in mechanical strength was investigated. Pure polycaprolactone (PCL)-poly(ethylene glycol) (PEG)-PCL copolymer, P(100/0), was a crystalline material displaying no measurable mass loss, a 30% reduction in mean molecular weight (Mn), and only very slight changes in tensile strength. The random incorporation of 30 and 70% D,L-LA into the end sections of the polymer chain, produced more and more amorphous materials, exhibiting increasingly high rates of degradation, mass loss, and loss of tensile strength. Compared with random P(CL-co-LA), the presence of the PEG block was found both to improve hydrophilicity and thus the rate of degradation and to infer a stabilizing quality, thereby pacing the decrease in tensile strength during degradation. The tested copolymers range from materials exhibiting low mechanical strength and high rate of degradation to slow-degrading materials with high mechanical strength suitable, e.g., for three-dimensional scaffolding.  相似文献   

18.
Heparin and poly(ethylene oxide) were coupled to a central anchoring block of poly(dimethylsiloxane) in order to investigate its blood compatible properties. Diamino telechelic poly(dimethylsiloxane) (PDMS-(NH2)2, Mw = 20,000) was first modified to isocyanate functionalities using toluene 2,4-diisocyanate. This modified PDMS was then coupled to diamino-telechelic poly(ethylene oxide) (PEO-(NH2)2, Mw = 2000, 4000, 6000) to create BAB type copolymers having terminal free amino groups. These amino groups were covalently coupled to heparin containing terminal aldehyde groups using sodium cyanoborohydride to yield a bioactive, CBABC type block copolymer. The physical characterization of these copolymers was performed with IR, NMR, sulphur elemental analysis, Wilhelmy plate contact angle, and differential scanning calorimetry (DSC). CBABC block copolymer surfaces demonstrated heparin bioactivity in in vitro evaluation, and improved nonthrombogenic properties during ex vivo A-A shunt experiments.  相似文献   

19.
背景:目前生物降解水凝胶已被广泛应用于抗癌药物及生物活性大分子的装载,但为了保护生物活性大分子的活性,需要得到凝胶化条件更温和,凝胶化时间更短的凝胶体系。 目的:制备对映异构聚乳酸∕聚乙二醇的空间异构复合水凝胶,使其具有更短的凝胶化时间,实现对模拟药物溶菌酶的装载和控释。 方法:以聚乙二醇为引发剂,辛酸亚锡为催化剂,丙交酯与聚乙二醇发生开环聚合反应,得到聚乳酸/聚乙二醇的三嵌段共聚物(PLLA-PEG-PLLA 和 PDLA-PEG-PDLA)。用1H NMR,FT-IR 和 XRD表征三嵌段共聚物。10% PLLA20-PEG227-PLLA20的水溶液和10%PDLA21-PEG227-PDLA21的水溶液在室温下混合,12 h后形成凝胶。通过XRD考察凝胶化机制,以溶菌酶为模拟药物,考察凝胶的释药特性,通过扫描电镜考察凝胶的形貌,采用MTT法考察凝胶的细胞毒性。 结果与结论:成功得到聚乳酸/聚乙二醇的三嵌段共聚物,在嵌段共聚物中,聚乳酸嵌段和聚乙二醇嵌段都能结晶,但以聚乙二醇嵌段的结晶为主。通过XRD证明凝胶中存在空间异构复合作用,溶菌酶在凝胶中通过凝胶的溶蚀和降解行为,在7 d之内释放完全。通过扫描电镜观察到冻干的水凝胶呈三维贯穿的多孔结构,空隙尺寸在50~100 μm 之间。鼠成纤维细胞与浓度为100%的凝胶浸提液共培养72 h之后,细胞的存活率为99.3%。  相似文献   

20.
In vivo and in vitro degradation of high molecular weight poly(L-lactide) used for internal bone fixation has been investigated. Within 3 months as-polymerized, microporous PLLA (Mv = 6.8-9.5 X 10(5] exhibited a massive strength-loss (sigma b = 68-75 MPa to sigma b = 4 MPa) and decrease of Mv (90-95%). At week 39, the first signs of resorption were evident (mass-loss 5 wt%). Except for dynamically loaded bone plates no differences between in vivo and in vitro degradation of PLLA were observed. The increase of crystallinity of PLLA upon degradation (up to 83%) is likely to be attributed to recrystallization of tie-chain segments. A more ductile PLLA exhibiting a lower rate of degradation was prepared by extraction of low molecular weight compounds with ethyl acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号