首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We examined whether PTH could increase glucagon secretion in an in vitro system, the isolated perfused rat pancreas. Since the response of the A cell has been shown to be modulated by antecedent exposure to elevated concentrations of glucose, bovine PTH (Beckman 1-34) was superimposed upon 15-min infusions of glucose followed by arginine or upon infusions of arginine alone. In the presence of PTH (44 ng/ml) and when the ambient calcium concentration was 9.0 mg/dl, arginine (168 mg/dl)-induced glucagon secretion was augmented. This occurred regardless of whether arginine was preceded by glucose (150 mg/dl). The glucagonotropic effect of PTH was absent in the presence of a low ambient calcium concentration (3.0 mg/dl). PTH failed to affect glucose-induced glucagon suppression.  相似文献   

3.
Summary Previous exposure to glucose enhances insulin and depresses glucagon secretion by the pancreas. We have investigated whether secretion of somatostatin is also influenced by a glucose priming effect. In perfused rat pancreas from 36 h fasted rats a 5 min pulse of arginine (8 mmol/l) rapidly elicited a peak of somatostatin release. A similar somatostatin response was evoked by a second, identical, pulse of arginine after perfusion with basal glucose (3.9 mmol/l) for 45 min. On the other hand when 27.7 mmol/l D-glucose, was administered for 20 min between arginine pulses, there was significant stimulation of somatostatin secretion. When arginine was re-introduced 15 min after the cessation of the pulse of elevated glucose the magnitude of the arginine-induced peak (min 0–2 of stimulation) was increased from 16.2±4.1 to 33.1±4.7 pg/2 min, p<0.01, relative to the first stimulation with arginine. None of these effects of glucose could be reproduced by Dgalactose. The somatostatin response to arginine was higher in pancreata from fed than from 36 h fasted animals as was also basal release (22.8±5.0 vs 9.0±2.0 pg/min). In the fed state the response to the second pulse of arginine was however reduced by 50% after perfusion with basal glucose. This decrease in responsiveness was counteracted by perfusion with 27.7 mmol/l glucose for 20 min between the arginine pulses. It is concluded that previous exposure to an elevated concentration of glucose enhances D-cell responsiveness to arginine in the fasted as well as the fed state.  相似文献   

4.
The effects of glucose and insulin on pancreatic enzyme release have been investigated using the isolated perfused rat pancreas. Basal and caerulein-stimulated secretion was significantly less in the presence of 15 mM glucose than with 5 mM glucose, except at a supramaximal concentration of caerulein (10(-9) M) where secretion was similar in both groups. Addition of exogenous insulin also caused a reduction in enzyme secretion, but the time of onset of the inhibitory action was delayed compared to that observed with glucose. Furthermore, it was found that the effects of 15 mM glucose and exogenous insulin were not additive at the concentration used in these experiments, and that the inhibitory action of insulin was glucose-dependent. Such glucose-insulin interactions must play an important role in the modulation of pancreatic enzyme secretion.  相似文献   

5.
Pancreatic polypeptide (PP) secretory cells are abundant in the islets of Langerhans. Results concerning the effects of exogenous PP on islet-cell secretion are controversial. This might be due in part to species specificity, given that most reports refer to studies performed using PP of bovine, porcine, or human origin in a heterologous animal model. Thus, we have investigated the influence of synthetic rat PP (80 nmol/L) on unstimulated insulin, glucagon, and somatostatin release, and on the responses of these hormones to glucose (11 mmol/L) and to arginine (3.5 mmol/L) in a homologous animal model, the perfused rat pancreas. Infusion of rat PP (rPP) reduced unstimulated insulin release by 35% (P = .03), and the insulin responses to glucose by 65% (P = .029) and to arginine by 50% (P = .026), without modifying glucagon output. rPP did not affect somatostatin secretion, either in unstimulated conditions or in the presence of 11 mmol/L glucose. However, it induced a clear-cut increase in somatostatin release during 3.5 mmol/L arginine infusion. Our observation that rPP inhibited insulin secretion without affecting glucagon and somatostatin output points to a direct effect of PP on B-cell function. However, during aminogenic priming of the D cell, the inhibition of insulin output induced by rPP was accompanied by an increase in somatostatin release. Thus, in this circumstance, it might be considered that the blocking effect of PP on B-cell secretion could be, at least in part, mediated by a D-cell paracrine effect.  相似文献   

6.
7.
OBJECTIVE: To investigate whether leptin interferes directly with glycogenolysis and gluconeogenesis in isolated rat hepatocytes and also in in situ rat perfused livers. ANIMALS: Male albino rats (200-250 g) were used in all experiments. MEASUREMENTS: D-glucose, L-lactate and pyruvate production. RESULTS: In the present study, no differences were found for the rates of glycolysis, as expressed by the areas under the curves, among control (24.2+5.0 mmol?g), leptin (32.0+4.5 mmol?g), glucagon (24.7+3.0 mmol?g), and the leptin + glucagon (23.8+3.4 mmol?g) groups. No difference was found for the rates of glycogenolysis between the control and the leptin perfused livers (15.2+3.9 and 15.0+3.2 mmol?g, respectively). In the presence of glucagon, the areas under the curves for the rate of glycogenolysis rose to 108.6+3.8 mmol?g. When leptin was combined with glucagon, the area under the curve for glycogenolysis was 43. 7+4.3 mmol?g. In fact, leptin caused a reduction of almost 60% (P<0. 001) in the rate of glucagon-stimulated glycogenolysis. Under basal conditions, the addition of leptin (100 ng?ml) to the incubation medium did not elicit any alteration in glucose production by isolated hepatocytes. However, in the presence of leptin, the production of glucose from glycerol (2 mM), L-lactate (2 mM). L-alanine (5 mM) and L-glutamine (5 mM) by the isolated hepatocytes was significantly reduced (30%, 30%, 23% and 25%, respectively). The rate of glucose production (glycogenolysis) by isolated hepatocytes was not different between the control and the leptin incubated groups (445.0+/-91.0 and 428.0+/-72.0 nmol?106 cells?h, respectively). CONCLUSION: We conclude that leptin per se does not directly affect either liver glycolysis or its glucose production, but a physiological leptin concentration is capable of acutely inducing a direct marked reduction on the rate of glucagon-stimulated glucose production in in situ rat perfused liver. Leptin is also capable of reducing glucose production from different gluconeogenic precursors in isolated hepatocytes.  相似文献   

8.
Summary To elucidate the mechanisms of insensitivity of hormone secretion to glucose in streptozotocin-induced diabetic rat islets, we investigated the effects of acetylcholine (ACh) and norepinephrine on insulin and glucagon secretion in response to changes in glucose concentration, using perfused pancreas preparations. Basal insulin secretion at a blood glucose level of 5.6 mmol/l was significantly higher and basal glucagon secretion significantly lower in streptozotocin-induced diabetic rats than in controls, and neither high (16.7 mmol/l) nor low (1.4 mmol/l) blood glucose concentrations influenced insulin or glucagon secretion. Addition of 10–6 mol/l ACh to the perfusate increased glucose-stimulated insulin secretion. Also, 10–6 mol/l ACh, 10–7 mol/l norepinephrine, as well as a combination of both, induced marked glucagon secretion, this was suppressed by high blood glucose level. Although simultaneous addition of 10–6 mol/l ACh and 10–7 mol/l norepinephrine induced only a slight increase in glucagon secretion in response to glucopenia, there was a significant increase in glucagon secretion in conjunction with an ambient decrease in insulin. Histopathological examination revealed a marked decline in acetylcholinesterase and monoamine-oxidase activities in the islets of streptozotocin-induced diabetic rats. We speculate that reduction of the potentiating effects of ACh and norepinephrine lessens glucose sensitivity of islet beta and alpha cells in this rat model of diabetes.Abbreviations STZ Streptozotocin - STZD streptozotocin-induce diabetic - ACh acetylcholine - AChE acetylcholinesterase - NE norepinephrine - MAO monoamine-oxidase  相似文献   

9.
M R Yelich 《Pancreas》1992,7(3):358-366
This study evaluated the in vivo effects of endotoxin and interleukin-1 (IL-1) on the simultaneous secretion of glucagon and insulin. The hypothesis that endotoxin, or IL-1 as a mediator, induces hyperglucagonemia secondary to pancreatic hypersecretion of glucagon was examined. Hormone secretion was measured using the in vitro perfused rat pancreas preparation. In response to an arginine stimulus, glucagon secretion was neither stimulated nor inhibited significantly by endotoxin or IL-1. Insulin secretion was significantly potentiated with both endotoxin and IL-1. In response to a low-glucose stimulus, glucagon secretion was significantly inhibited by endotoxin treatment, while insulin secretion was increased by endotoxin or IL-1. These results indicate that neither endotoxin nor IL-1 treatment resulted in glucagon hypersecretion, although either of these agents could induce insulin hypersecretion. Thus, the mechanism of endotoxin-induced hyperglucagonemia cannot be explained by a hypersecretory state of glucagon secretion. The parallel respective effects of endotoxin and IL-1 on glucagon and insulin secretion are consistent with the concept that IL-1 mediates some of the effects of endotoxin on the endocrine pancreas.  相似文献   

10.
Age changes in the beta-cell's sensitivity to glucose as well as in its overall capacity to secrete insulin may play a part in the glucose intolerance of aging. The isolated perfused rat pancreas preparation was used to study the effect of age and glucose level on insulin secretion. Overnight-fasted male Wistar 12- and 23-month-old rats had basal plasma glucose levels of 106 +/- 4 (SE) and 100 +/- 4 mg/dl. Perfusate glucose levels were raised from 80 mg/dl to either 150, 220, or 360 mg/dl for 50 min (n = 6 to 8 in each group). Insulin secretion followed the typical biphasic pattern of an early spike and fall, followed by a sustained gradual increase at both ages. First-phase (0-10 min) insulin secretion in the old rats was significantly lower at 150 (184 vs. 524 microU/min, P less than 0.05) and 220 mg/dl (327 vs. 644 microU/min, P less than 0.05), while it was nearly identical at 360 mg/dl. Although lower in the old rats, second-phase (11-50 min) insulin secretion was not statistically significantly different for each glucose level. When first- and second-phase insulin secretion rates were combined, the old rats' insulin secretion was only lower at the 150 mg/dl level (248 vs. 426 microU/min, P less than 0.05). Thus, at the more physiological glucose level, old rats showed a significantly lower response, while at the higher levels insulin secretion was similar. This diminishing age effect with increasing glucose dose suggests a defect in islet sensitivity to glucose rather than a diminished capacity to secrete insulin.  相似文献   

11.
12.
The ability of various C-terminal fragments of cholecystokinin (CCK) to increase pancreatic exocrine and endocrine secretion was examined in the isolated perfused rat pancreas. CCK octapeptide (CCK-8) induced biphasic dose-response curves for stimulation of pancreatic juice and amylase secretion. Maximal pancreatic juice and amylase output were obtained with 100 pM CCK-8. Concentrations of CCK-8 that caused pancreatic exocrine secretion also increased insulin release in the presence of 8.3 mM glucose. The tetrapeptide of CCK also simultaneously stimulated both exocrine and endocrine secretion, but was about 100,000 times less potent than CCK-8. By contrast both deca- and tetradecapeptide of CCK at a concentration of 100 pM stimulated secretion of pancreatic juice and amylase, and elicited insulin release comparably to CCK-8. The complete CCK-8 sequence was required as deamidated CCK-8 was without effects on exocrine and endocrine pancreatic secretion at a concentration of 100 pM. The present observations suggest that the structural requirements for CCK-induced insulin secretion are the same as those for CCK-induced exocrine secretions, and that the amino acids in position 5-8 and the amidated residue on the C-terminus are required for physiological activity of CCK on both the exocrine and endocrine pancreas. It is concluded that C-terminal fragments of CCK with eight or more amino acid residues are potent potentiators of insulin release as well as pancreatic exocrine stimulants.  相似文献   

13.
Summary The effects of-ketoisocaproate (KIC, 10 mmol/l) on glucagon and insulin release were studied in the in vitro perfused rat pancreas. The experiments were performed at low glucose concentration (3.3 mmol/l) in the absence or presence of arginine (10 mmol/l). In all the experiments KIC induced a marked and not rapidly reversible inhibition of glucagon release. This inhibition was more pronounced in the absence (76 percent) than presence of arginine (61 percent). These inhibitory patterns closely duplicated those which were seen in parallel experiments which included a rise in the concentration of glucose (from 3.3 to 11.1 mmol/l). KIC was also a potent stimulator of insulin release. The results are compatible with the view that the intracellular metabolism of KIC and glucose plays an essential role in the regulation of glucagon release by exogenous substrates.  相似文献   

14.
15.
Summary In order to compare the effects of D-glyceraldehyde or glucose on glucagon secretion in insulin deficiency, the isolated streptozotocin-treated rat pancreas was perfused with arginine alone and arginine plus either glucose or D-glyceraldehyde. The glucagon secretion induced by arginine alone was not modified by pretreatment with streptozotocin, but the glucagon secretion induced by arginine plus either glucose or D-glyceraldehyde was less inhibited in the streptozotocin-treated pancreas. We conclude, therefore, that insulin deficiency may interfere with the metabolism of D-glyceraldehyde as well as glucose in the pancreatic A-cells, thus interfering with the inhibitory effect of glucose and D-glyceraldehyde of glucagon secretion.  相似文献   

16.
Galanin-like immunoreactivity has been visualized in nerve fibers in the islets of Langerhans, suggesting an involvement of galanin in the neural regulation of islet function. In this study, we investigated the effects of galanin on basal and stimulated insulin and glucagon secretion by infusing the peptide at three different dose rates in rats. We also studied the direct effect of galanin on insulin secretion from freshly isolated rat islets. At 320 pmol/kg/min, but not at 20 or 80 pmol/kg/min, galanin lowered basal plasma insulin levels. In contrast, basal plasma glucagon levels were lowered by galanin already at 20 and 80 pmol/kg/min. Furthermore, galanin inhibited both glucose- and arginine-induced insulin release at all three dose levels, whereas arginine-induced glucagon release was not affected by galanin. Glucose-stimulated insulin secretion from isolated rat islets was dose-dependently suppressed by galanin (10(-6)-10(-8) M). Therefore, it is concluded that galanin in rats inhibits insulin secretion, both in vivo and in vitro, and that at lower dose levels, the peptide also inhibits basal glucagon release.  相似文献   

17.
Galanin-like immunoreactivity has been visualized in nerve fibers in the islets of Langerhans, suggesting an involvement of galanin in the neural regulation of islet function. In this study, we investigated the effects of galanin on basal and stimulated insulin and glucagon secretion by infusing the peptide at three different dose rates in rats. We also studied the direct effect of galanin on insulin secretion from freshly isolated rat islets. At 320 pmol/kg/min, but not at 20 or 80 pmol/kg/min, galanin lowered basal plasma insulin levels. In contrast, basal plasma glucagon levels were lowered by galanin already at 20 and 80 pmol/kg/min. Furthermore, galanin inhibited both glucose- and arginine-induced insulin release at all three dose levels, whereas arginine-induced glucagon release was not affected by galanin. Glucose-stimulated insulin secretion from isolated rat islets was dose-dependently suppressed by galanin (10-6-10-8M). Therefore, it is concluded that galanin in rats inhibits insulin secretion, both in vivo and in vitro, and that at lower dose levels, the peptide also inhibits basal glucagon release.  相似文献   

18.
Dynamics of insulin secretion by the perfused rat pancreas   总被引:52,自引:0,他引:52  
  相似文献   

19.
The effects of glucose and arginine on the release of amylin from the perfused rat pancreas were studied. Amylin, or islet amyloid polypeptide, is a 37-amino acid peptide isolated from pancreatic islet amyloid of patients with non-insulin-dependent diabetes mellitus (NIDDM). Glucose stimulated dose-dependently amylin release, showing a typical biphasic pattern. Additionally, 10 mM arginine in the presence of 5.5 mM glucose also stimulated amylin release. These findings suggest that amylin is a secretory protein and its release from the pancreas is regulated by glucose and other nutrients.  相似文献   

20.
The effects of exogenous insulin were examined in the isolated perfused chicken pancreas with the duodenum excluded. At low background glucose (50 mg/dl), exogenous insulin infused at a concentration of 20,000 microU/ml elicited clear stimulation of somatostatin secretion while simultaneously inhibiting glucagon release. When the background glucose concentration was elevated to 750 mg/dl, exogenous insulin, had no effect on either somatostatin or glucagon release. When graded doses of exogenous insulin were infused into the chicken pancreas at low background glucose, low concentrations (200 microU/ml) had little effect on somatostatin or glucagon release, but higher concentrations (2000 and 20,000 microU/ml) had clear effects on both somatostatin and glucagon secretion. Glucagon infused at 100 ng/ml stimulated both insulin and somatostatin release. When somatostatin was infused at 25 ng/ml, clear inhibition of glucagon was seen with insulin inhibited to a lesser extent. This study supports the notion of a negative feedback relation between B and D-cells of the pancreatic islets and suggests a paracrine mediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号