首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Data from systematic, light microscopic examination of cochlear histopathology in an age-graded series of C57BL/6 mice (1.5-15 months) were compared with threshold elevations (measured by auditory brain stem response) to elucidate the functionally important structural changes underlying age-related hearing loss in this inbred strain. In addition to quantifying the degree and extent of hair cell and neuronal loss, all structures of the cochlear duct were qualitatively evaluated and any degenerative changes were quantified. Hair cell and neuronal loss patterns suggested two degenerative processes. In the basal half of the cochlea, inner and outer hair cell loss proceeded from base to apex with increasing age, and loss of cochlear neurons was consistent with degeneration occurring secondary to inner hair cell loss. In the apical half of the cochlea with advancing age, there was selective loss of outer hair cells which increased from the middle to the extreme apex. A similar gradient of ganglion cell loss was noted, characterized by widespread somatic aggregation and demyelination. In addition to these changes in hair cells and their innervation, there was widespread degeneration of fibrocytes in the spiral ligament, especially among the type IV cell class. The cell loss in the ligament preceded the loss of hair cells and/or neurons in both space and time suggesting that fibrocyte pathology may be a primary cause of the hearing loss and ultimate sensory cell degeneration in this mouse strain.  相似文献   

3.
Neuroanatomical basis of cochlear coding mechanisms.   总被引:1,自引:0,他引:1  
The afferent cochlear neurons to outer and inner hair cells differ not only in their relative numbers (95% to inner hair cells and only 5% to outer hair cells) and distribution pattern (great convergence for outer hair cells and divergence for inner hair cells) but also in their degeneration behaviour and metabolism. Some special afferent fibres seem to exist. The afferent neurons present three types of ganglion cells in the spiral ganglion with no morphological evidence for an extensive direct interaction between afferent neurons of the outer and the inner hair cell system at any level in the cochlea and even their efferent nerve supply is essentially separated.  相似文献   

4.
Patterns of degeneration in the human cochlear nerve   总被引:2,自引:0,他引:2  
The patterns of neural degeneration of the spiral ganglion were studied in 12 human pathologic specimens and 2 normal neonatal specimens. Morphometric analysis of spiral ganglion cells included the maximum cross-sectional areas of both large (type 1) and small (type II) spiral ganglion cells. The organ of Corti in segments corresponding to the spiral ganglion, was evaluated for the presence or absence of inner (IHC) and outer (OHC) hair cells and supporting cells. The relationship between degeneration of spiral ganglion cells and degeneration in the organ of Corti, the age, sex, duration of deafness, cochlear location and delay between death and fixation was evaluated statistically.

Both primary and secondary degeneration of the spiral ganglion were more severe in the basal than apical half of the cochlea. Degeneration of the spiral ganglion was most severe when both IHCs and OHCs were absent in the organ of Corti. No survival advantage was identified for type II ganglion cells as has been previously reported. That is, there was no correlation between the degree of degeneration of the spiral ganglion and the prevalence of type II ganglion cells. In fact, there was more severe degeneration of type II cells when the corresponding organ of Corti was severely degenerated.

These findings in the human were compared with animal models of degeneration of the spiral ganglion, and the implications for cochlear implantation were discussed.  相似文献   


5.
Although degeneration of spiral ganglion cells has been described as a histopathologic correlate of hearing loss both in animals and humans, the pattern and sequence of this degeneration remain controversial. Degeneration of hair cells and of spiral ganglion cells and their dendritic processes was evaluated in the C57BL/6J mouse, in which there is a genetically determined progressive sensorineural loss starting in the high frequencies that is similar to the pattern commonly seen in the human. Auditory function was evaluated by brainstem evoked responses, and degeneration of hair cells, ganglion cells and their dendrites was evaluated histologically at 3, 8, 12 and 18 months of age. Progressive loss of auditory sensitivity was correlated with the loss of outer and inner hair cells and spiral ganglion cells and their dendritic processes. In addition, dendritic counts were consistently lower at a distal location in the osseous spiral lamina (i.e. near the organ of Corti) than at a proximal location (i.e. near the spiral ganglion), and the difference between the number of distal dendrites and the number of proximal dendrites tended to be greater with advancing age. These observations suggest an age-related progressive retrograde degeneration of spiral ganglion cells. Thus, in degenerating cochleas, some remaining spiral ganglion cells may have no distal dendritic processes near the organ of Corti. This may have implications for successful stimulation of the cochlear neuron in cochlear implantation.  相似文献   

6.
Histopathological investigation was conducted on both inner ears from a 4.5-month-old Rottweiler puppy with electrophysiologically confirmed bilateral deafness. The lesions were restricted to the organ of Corti and spiral ganglion that both displayed severe degenerative changes. The outer hair cells were less affected than the inner hair cells. The number of spiral ganglion neurons was reduced, and remaining neurons were altered. The basal and middle cochlear turns were more affected than the apical one. The vestibules were normal. Immunostaining with calbindin, calretinin, S100A1 and S100A6 polyclonal antisera was helpful in identifying different cell-types in the degenerated cochlea. The early and severe spiral ganglion cell degeneration is an uncommon finding no matter the species. Such lesions bear significance within the frame of cochlear implants technology for deaf infants.  相似文献   

7.
Recent work in mouse showed that acoustic overexposure can produce a rapid and irreversible loss of cochlear nerve peripheral terminals on inner hair cells (IHCs) and a slow degeneration of spiral ganglion cells, despite full recovery of cochlear thresholds and no loss of inner or outer hair cells (Kujawa and Liberman, J Neurosci 29:14077–14085, 2009). This contrasts with earlier ultrastructural work in guinea pig suggesting that acute noise-induced neural degeneration is followed by full regeneration of cochlear nerve terminals in the IHC area (Puel et al., Neuroreport 9:2109–2114, 1998; Pujol and Puel, Ann N Y Acad Sci 884:249–254, 1999). Here, we show that the same patterns of primary neural degeneration reported for mouse are also seen in the noise-exposed guinea pig, when IHC synapses and cochlear nerve terminals are counted 1 week post-exposure in confocal images from immunostained whole mounts and that the same slow degeneration of spiral ganglion cells occurs despite no loss of IHCs and apparent recovery of cochlear thresholds. The data cast doubt on prior claims that there is significant neural regeneration and synaptogenesis in the adult cochlea and suggest that denervation of the inner hair cell is an important sequela of “reversible” noise-induced hearing loss, which likely applies to the human ear as well.  相似文献   

8.
This study concerns the connections of the inner and outer hair cells and the different types of ganglion cells of the mammalian cochlea with the central nervous system by making use of their putative neurotransmitters. D-[3H]Aspartate (D-ASP), a putative marker for glutamatergic neurons, was injected into the cochlear nucleus of cats and guinea pigs and the cochleas prepared for light microscopic autoradiography after varying survival times. A quantitative, statistical autoradiographic method is described. Grain counts per unit area were made for each of 14 tissue compartments in the cochlea and normalized to permit comparisons between cases. An operationally defined background labeling level was computed for each case and a statistical test for significance applied to the neuron-containing tissue compartments. With increasing survival times, significant labeling appeared successively in the cochlear nerve root, in each type of spiral ganglion cell, and in the neuron-containing tissue compartments of the organ of Corti. The findings are consistent with uptake of D-ASP and retrograde transport by cochlear nerve axons from the cochlear nucleus to the perikarya and peripheral processes of the spiral ganglion. We conclude that axons of all spiral ganglion cells project to the cochlear nucleus and that this nucleus is directly connected with both the inner and outer hair cells. Transganglionic transport of D-ASP from the cochlear nucleus is consistent with the hypothesis that the cochlear nerve axons use glutamate or aspartate as a neurotransmitter.  相似文献   

9.
10.

Objectives

Morphological studies on presbycusis, or age-related hearing loss, have been performed in several different strains of mice that demonstrate hearing loss with auditory pathology. The C57BL/6 (C57) mouse is a known model of early onset presbycusis, while the CBA mouse is characterized by relatively late onset hearing loss. We performed this study to further understand how early onset hearing loss is related with the aging process of the cochlea.

Methods

We compared C57 cochlear pathology and its accompanying apoptotic processes to those in CBA mice. Hearing thresholds and outer hair cell functions have been evaluated by auditory brainstem response (ABR) recordings and distortion product otoacoustic emission (DPOAE).

Results

ABR recordings and DPOAE studies demonstrated high frequency hearing loss in C57 mice at P3mo of age. Cochlear morphologic studies of P1mo C57 and CBA mice did not show differences in the organ of Corti, spiral ganglion, or stria vascularis. However, from P3mo and onwards, a predominant early outer hair cell degeneration at the basal turn of the cochlea in C57 mice without definitive degeneration of spiral ganglion cells and stria vascularis/spiral ligament, compared with CBA mice, was observed. Additionally, apoptotic processes in the C57 mice also demonstrated an earlier progression.

Conclusion

These data suggest that the C57 mouse could be an excellent animal model for early onset ''sensory'' presbycusis in their young age until P6mo. Further studies to investigate the intrinsic or extrinsic etiologic factors that lead to the early degeneration of organ of Corti, especially in the high frequency region, in C57 mice may provide a possible pathological mechanism of early onset hearing loss.  相似文献   

11.
Aminoglycoside ototoxicity: a human temporal bone study.   总被引:4,自引:0,他引:4  
OBJECTIVE: Hearing loss after aminoglycoside administration has been thought to result primarily from hair cell injury. The purpose of the study was to determine the potential for direct injury of spiral ganglion cells and hair cells in cases of documented human aminoglycoside ototoxicity. STUDY DESIGN: Retrospective case review. METHODS: The clinical course of two individuals with aminoglycoside ototoxicity are documented, including the details of administration of tobramycin and other ototoxic medication and serial audiograms. The temporal bones were processed, and the cochlear elements quantified. RESULTS: Histopathological study of the temporal bones from the individuals in the study demonstrated reduction of both ganglion cell and hair cell populations. Spiral ganglion cell loss was not necessarily subadjacent to areas of hair cell loss in cases of aminoglycoside ototoxicity. Instead, spiral ganglion cell reduction may be present in segments of the cochlea with normal-appearing hair cells. CONCLUSIONS: The study suggests that aminoglycoside antibiotics can injure spiral ganglion cells directly, as well as hair cells. Thus, the characteristic hearing loss of ototoxicity can result from degeneration of either cochlear element.  相似文献   

12.
Cochlear pathology of long term neomycin induced deafness in cats   总被引:7,自引:0,他引:7  
The long term sequelae of hair cell destruction consequent from administration of the ototoxic aminoglycoside antibiotic, neomycin sulfate, were evaluated in histological and ultrastructural studies of cochlear morphology in cats. Complete hearing loss, as defined by an absence of brainstem evoked responses to click stimulation at 120 dB peak SPL, was induced by intramuscular injections of neomycin at 50 mg/kg body weight/day, and cochlear pathology was studied at 6 months and 1, 3 and 4 years following onset of profound deafness. In these long term ototoxicity cases the organ of Corti was collapsed and resorbed over the basal one-quarter to three-quarters of the cochlear spiral, depending on duration of deafness. Significant progressive reduction in the spiral ganglion cell population and sequential degenerative alterations in the remaining neurons were observed with increasing time elapsed after induced hearing loss. The sequence of pathological alterations in spiral ganglion neurons appeared to be: a) swelling, demyelination and degeneration of the peripheral dendrites; b) demyelination and shrinkage of the cell soma with preservation of the central axon; and c) demyelination of the central axon and degeneration of the cell perikaryon. In apical cochlear regions, severe degeneration of the spiral ganglion preceded the collapse of the tunnel of Corti and regional loss of pillar cells. Residual populations of spiral ganglion neurons were as low as 1-2% of the normal values in the most severely degenerated cochleae in the series. Light microscopic and ultrastructural studies revealed a selective survival advantage for the unmyelinated type II neurons over the myelinated type I neurons with these long survival periods. The prolonged time course and atrophic nature of these pathological alterations suggests that degeneration of spiral ganglion neurons progresses continuously following drug-induced insult to the cochlea. Some possible factors contributing to this long term progressive degeneration will be discussed.  相似文献   

13.
PURPOSE OF REVIEW: Degeneration of spiral ganglion neurons following hair cell loss carries critical implications for efforts to rehabilitate severe cases of hearing loss with cochlear implants or hair cell regeneration. This review considers recently identified neurotrophic factors and therapeutic strategies which promote spiral ganglion neuron survival and neurite growth. Replacement of these factors may help preserve or regenerate the auditory nerve in patients with extensive hair cell loss. RECENT FINDINGS: Spiral ganglion neurons depend on neurotrophic factors supplied by hair cells and other targets for their development and continued survival. Loss of this trophic support leads to spiral ganglion neuron death via apoptosis. Hair cells support spiral ganglion neuron survival by producing several peptide neurotrophic factors such as neurotrophin-3 and glial derived neurotrophic factor. In addition, neurotransmitter release from the hair cells drives membrane electrical activity in spiral ganglion neurons which also supports their survival. In animal models, replacement of peptide neurotrophic factors or electrical stimulation with an implanted electrode attenuates spiral ganglion neuron degeneration following deafferentation. Cell death inhibitors can also preserve spiral ganglion neuron populations. Preliminary studies show that transfer of stem cells or neurons from other ganglia are two potential strategies to replace lost spiral ganglion neurons. Inducing the regrowth of spiral ganglion neuron peripheral processes to approximate or contact cochlear implant electrodes may help optimize signaling from a diminished population of neurons. SUMMARY: Recent studies of spiral ganglion neuron development and survival have identified several trophic and neuritogenic factors which protect these specialized cells from degeneration following hair cell loss. While still preliminary, such strategies show promise for future clinical applications.  相似文献   

14.
OBJECTIVE: To determine if exogenous neurotrophins can prevent spiral ganglion neuron degeneration in the rat cochlea. BACKGROUND: The loss of hair cells resulting in sensorineural hearing loss also leads to the secondary degeneration of spiral ganglion neurons. The effectiveness of cochlear implantation in patients with profound sensorineural hearing loss relies in part on the survival of spiral ganglion neurons; therefore, any therapy that can prevent or halt the loss of these neurons would be of potential clinical benefit. Previous research has shown that intracochlear infusion with neurotrophins can provide trophic support to SGNs in deafened guinea pigs. Whether this effect is seen in other species remains to be determined. METHODS: After documenting the rate of spiral ganglion neuron degeneration after ototoxic deafening, we investigated the trophic effects of exogenous brain-derived neurotrophic factor (BDNF) on rat spiral ganglion neurons. The left cochleae of profoundly deafened rats were implanted with a drug delivery system connected to a mini-osmotic pump. BDNF or artificial perilymph was infused for 28 days; then the cochleae were prepared for histological study. RESULTS: Treatment with BDNF led to a statistically significant increase in spiral ganglion neuron density and a highly significant increase in spiral ganglion neuron soma area compared with artificial perilymph-treated and untreated deafened cochleae. CONCLUSION: The study has demonstrated the trophic advantage of exogenous BDNF in the mature rat cochlea and provides confidence that spiral ganglion neuron rescue after sensorineural hearing loss with exogenous BDNF may have clinical application.  相似文献   

15.
KCNQ1 and KCNQ4 voltage-gated potassium channel subunits play key roles in hearing. Other members of the KCNQ family also encode slow, low voltage-activated K(+) M currents. We have previously reported the presence of M-like K(+) currents in sensory hair cells, and expression of Kcnq family genes in the cochlea. Here, we describe Kcnq2/3 gene expression and distribution of M channel subunits KCNQ2 and 3 in the cochlea. By using RT-PCR, we found expression of Kcnq2 in the modiolus and organ of Corti, while Kcnq3 expression was also detected in the cochlear lateral wall. Five alternative splice variants of the Kcnq2 gene, one of which has not been reported previously, were identified in the rat cochlea. KCNQ2 and KCNQ3 immunoreactivities were observed in spiral ganglion auditory neurons. In addition, the unmyelinated parts of the nerve fibers innervating hair cells and synaptic regions under hair cells showed KCNQ2 immunoreactivity. KCNQ3 immunoreactivity was also prominent in spiral ganglion satellite cells. These findings suggest that cochlear M channels play important roles in regulation of cellular excitability and maintenance of cochlear K(+) homeostasis in the auditory system.  相似文献   

16.
Conclusion With age, in a mouse model, degenerative changes to the capillaries of the stria vascularis are observed. These range from a narrowing of vessel lumen to complete degeneration of strial vessels. Other vascular beds in the cochlea are relatively unchanged with age. Strial capillaries at the cochlear base are significantly more affected than those in mid-apical turns.

Objectives Previous work suggests that age-related hearing loss is associated with degenerative changes to cochlear vasculature; the term strial presbyacusis is often cited. This study reports on vascular changes observed in a murine model of presbyacusis, analyzed using corrosion cast techniques.

Methods A novel corrosion cast technique was developed to compare cochlear vasculature in control mice (non-presbycusic, CD1) and old (>?6 months) C57BL/6 animals. ABR measures indicated a significant age-related threshold elevation in the C57BL/6 mice. Cochlear vascular casts were imaged using scanning electron microscopy, and vessel degeneration was quantified by measuring capillary diameters.

Results Corrosion casts of cochlear vasculature in 6–12 month old C57BL/6 mice reveal significant degeneration of stria vascularis. Other capillary beds (spiral ligament and the spiral limbus) appear unchanged. Comparison of strial capillary diameters reveals significantly more damage in basal/lower-turn regions compared with the cochlear mid-turn.  相似文献   

17.
The distribution of aspartate aminotransferase-like immunoreactivity in the cochlea of the guinea pig was studied at the light microscopy level. Indirect immunofluorescence histochemistry using antisera against cytoplasmic aspartate aminotransferase prepared from pig heart was applied to surface preparations of the organ of Corti and cryostat sections of the cochlea. In the modiolus, immunofluorescence was localized to spiral ganglion cells and myelinated fibers of the auditory nerve and intraganglionic spiral bundles. In the organ of Corti, immunofluorescence was seen in upper tunnel crossing fibers and at the base of outer hair cells, following a distribution similar to that of the efferent innervation of the outer hair cells. Weak immunofluorescence was seen in the inner spiral bundle and tunnel spiral bundle, but was not present in all preparations. Immunofluorescence was not seen in inner hair cells, nor at the base of inner hair cells, and may have been absent from outer hair cells.It is concluded that spiral ganglion cells and myelinated auditory nerve axons contain aspartate aminotransferase-like immunoreactivity; such immunoreactivity has previously been determined in auditory nerve endings in the cochlear nucleus. Olivocochlear neurons that innervate outer hair cells also contain such immunoreactivity while other cochlear efferents contain little or none.  相似文献   

18.
19.
Single afferent and efferent neurones in the guinea pig spiral ganglion were injected with horseradish peroxidase. They could be recovered in subsequent histological processing and traced from the injection site in the ganglion to their final termination in the organ of Corti. All responsive primary afferents innervated the inner hair cells (58 neurones). One outer spiral fibre innervating the outer hair cells was recovered. This cell was non-spiking and unresponsive to acoustic stimulation. Neurones having properties previously attributed to cochlear efferents, terminated on the outer hair cells in regions of the cochlea consistent with their characteristic frequencies.  相似文献   

20.
Objectives: The mechanistic association between endolymphatic hydrops (ELH) and hearing loss (HL) is unclear. Although ELH severity has been shown to correlate in some studies with HL, injury of vital structures, including hair cells and the cochlear nerve, have failed to demonstrate correlation with ELH severity. The goal of this study is to evaluate the hypothesis that spiral ganglion cell degeneration is the principle pathologic site of ELH‐related cochlear injury, correlates with ELH severity, and is most profound in the apical region. Study Design: Surgical induction of ELH in the guinea pig model was followed by histologic confirmation of ELH and subsequent correlation with segmental spiral ganglion cell densities. Methods: Guinea pigs (N = 14) were subjected to unilateral ELH induction and killed after 4 to 6 months. ELH severity and spiral ganglion densities were obtained using computer‐aided morphometric analysis. Densities were normalized by calculating a spiral ganglion degeneration index (DI) for each animal. Results: The apical spiral ganglion demonstrated significantly greater degeneration than that noted in the basal spiral ganglion (DI: 1.93 vs. 1.13; P = .004). The degree of spiral ganglion degeneration in the apex correlates well with a total hydrops index (P = .006) and an apical hydrops index (P = .003). Basal spiral ganglion degeneration however, does not correlate well with hydrops severity (total hydrops index: P > .05; basilar hydrops index: P > .05). Conclusions: ELH‐related pathology appears to focus initially on the apical spiral ganglion and the degree of deterioration correlates well with the severity of ELH. These findings mirror some reports in the human condition, and imply that the mechanism of cochlear injury in ELH and secondary dysfunction appears to be a neural toxicity that begins in the apex of the cochlea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号