首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oncolytic viruses are an innovative therapeutic strategy for cancer, wherein viral replication and cytotoxicity are selective for tumor cells. Here we show the efficacy of systemically administered oncolytic viruses for the treatment of spontaneously arising tumors, specifically the use of oncolytic herpes simplex viruses (HSV) administered i.v. to treat spontaneously developing primary and metastatic prostate cancer in the transgenic TRAMP mouse, which recapitulates human prostate cancer progression. Four administrations of systemically delivered NV1023 virus, an HSV-1/HSV-2 oncolytic recombinant, to TRAMP mice at 12 or 18 weeks of age (presence of prostate adenocarcinoma or metastatic disease, respectively) inhibited primary tumor growth and metastases to lymph nodes. Expression of interleukin 12 (IL-12) from NV1042 virus, a derivative of NV1023, was additionally effective, significantly reducing the frequency of development of prostate cancer and lung metastases, even when the mice were treated after the onset of metastasis at 18 weeks of age. NV1042-infected cells, as detected by 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside staining for Lac Z expressed by the virus, were present in prostate tumors 1 week after the final virus injection and viral DNA was detected at 2 weeks after final virus injection by real-time PCR in primary and metastatic tumors but not in liver or blood. No toxicity was observed in any of the treated mice. The efficacy of the IL-12-expressing NV1042 virus in this aggressive prostate cancer model using a clinically relevant treatment paradigm merits its consideration for clinical studies.  相似文献   

2.
Replication competent oncolytic herpes simplex viruses (HSV) with broad-spectrum activity against various cancers, including prostate cancer, exert a dual effect by their direct cytocidal action and by eliciting tumor-specific immunity. These viruses can deliver immunoregulatory molecules to tumors so as to enhance the cumulative antitumor response. This is particularly desirable for prostate cancers, which are usually poorly immunogenic. Initial studies described herein comparing the efficacy of three different oncolytic HSVs (G207, G47Delta, and NV1023) to inhibit the growth of the poorly immunogenic TRAMP-C2 mouse prostate tumors demonstrated that NV1023 was most effective in treating established tumors. The expression of IL-12 on an NV1023 background (NV1042), but not the expression of GM-CSF (NV1034), further enhanced the efficacy of NV1023 in two murine prostate cancer models with highly variable MHC class I levels, Pr14-2 with 91% and TRAMP-C2 with 2% of cells staining. NV1042 also inhibited the growth of distant noninoculated tumors in both prostate cancer models. NV1042 treated tumors exhibited increased immune cell infiltration and decreased levels of angiogenesis. Thus, an IL-12 expressing oncolytic herpes virus, which is capable of direct cytotoxicity and can modulate the otherwise suboptimal immune response through concomitant expression of the cytokine at the site of tumor destruction, could serve as a valuable clinical agent to seek out both overt and occult prostate cancers.  相似文献   

3.
PURPOSE: Oncolytic herpes simplex viruses (HSVs) may have significant antitumor effects resulting from the direct lysis of cancer cells. HSVs may also be used to express inserted transgenes to exploit additional therapeutic strategies. The ability of an interleukin (IL)-12-expressing HSV to treat squamous cell carcinoma (SCC) by inhibition of tumor angiogenesis is investigated in this study. EXPERIMENTAL DESIGN: A replication-competent, attenuated, oncolytic HSV carrying the murine IL-12 gene (NV1042), its non-cytokine-carrying analog (NV1023), or saline was used to treat established murine SCC flank tumors by intratumoral injection. The expression of secondary antiangiogenic mediators was measured. Angiogenesis inhibition was assessed by in vivo Matrigel plug assays, flank tumor subdermal vascularity, and in vitro endothelial cell tubule formation assay. RESULTS: Intratumoral injections of NV1042 (2 x 10(7) plaque-forming units) into murine SCC VII flank tumors resulted in smaller tumor volumes as compared with NV1023 or saline. IL-12 and IFN-gamma expression in tumors was 440 and 2.2 pg/mg, respectively, at 24 h after NV1042 injection, but both IL-12 and IFN-gamma were undetectable (<0.2 pg/mg) after NV1023 or saline injections. Expression of two antiangiogenesis mediators, monokine induced by IFN-gamma and IFN-inducible protein 10, was elevated after NV1042 treatment. Matrigel plug assays of NV1042-transfected SCC VII tumor cells demonstrated significantly decreased hemoglobin content and microvessel density as compared with NV1023 and PBS. Excised murine flank tumors treated with NV1042 had decreased subdermal vascularity as compared with NV1023 and PBS. Both splenocytes and IL-12 expression by NV1042 were required for in vitro inhibition of endothelial tubule formation. CONCLUSIONS: IL-12 expression by an oncolytic herpes virus enhances therapy of SCC through antiangiogenic mechanisms. Strategies combining HSV oncolysis with angiogenesis inhibition merit further investigation for potential clinical application.  相似文献   

4.
The objective of the study was to evaluate the utility of NV1042, a replication competent, oncolytic herpes simplex virus (HSV) containing the interleukin-12 (IL-12) gene, as primary treatment for hepatic tumors and to further assess its ability to reduce tumor recurrence following resection. Resection is the most effective therapy for hepatic malignancies, but is not possible in the majority of the patients. Furthermore, recurrence is common after resection, most often in the remnant liver and likely because of microscopic residual disease in the setting of postoperative host cellular immune dysfunction. We hypothesize that, unlike other gene transfer approaches, direct injection of liver tumors with replication competent, oncolytic HSV expressing IL-12 will not only provide effective control of the parent tumor, but will also elicit an immune response directed at residual tumor cells, thus decreasing the risk of cancer recurrence after resection. Solitary Morris hepatomas, established in Buffalo rat livers, were injected directly with 10(7) particles of NV1042, NV1023, an oncolytic HSV identical to NV1042 but without the IL-12 gene, or with saline. Following tumor injection, the parent tumors were resected and measured and the animals were challenged with an intraportal injection of 10(5) tumor cells, recreating the clinical scenario of residual microscopic cancer. In vitro cytotoxicity against Morris hepatoma cells was similar for both viruses at a multiplicity of infection of 1 (MOI, ratio of viral particles to target cells), with >90% tumor cell kill by day 6. NV1042 induced high-level expression of IL-12 in vitro, peaking after 4 days in culture. Furthermore, a single intratumoral injection of NV1042, but not NV1023, induced marked IL-12 and interferon-gamma (IFN-gamma) expression. Both viruses induced a significant local immune response as evidenced by an increase in the number of intratumoral CD4(+) and CD8(+) lymphocytes, although the peak of CD8(+) infiltration was later with NV1042 compared with NV1023. NV1042 and NV1023 reduced parent tumor volume by 74% (P<.003) and 52% (P<.03), respectively, compared to control animals. Treatment of established tumors with NV1042, but not with NV1023, significantly reduced the number of hepatic tumors after resection of the parent tumor and rechallenge (16.8+/-11 (median=4) vs. 65.9+/-15 (median=66) in control animals, P<.025). In conclusion, oncolytic HSV therapy combined with local immune stimulation with IL-12 offers effective control of parent hepatic tumors and also protects against microscopic residual disease after resection. The ease of use of this combined modality approach, which appears to be superior to either approach alone, suggests that it may have clinical relevance, both as primary treatment for patients with unresectable tumors and also as a neoadjuvant strategy for reducing recurrence after resection.  相似文献   

5.
Liu R  Varghese S  Rabkin SD 《Cancer research》2005,65(4):1532-1540
Oncolytic herpes simplex virus vectors are a promising strategy for cancer therapy, as direct cytotoxic agents, inducers of antitumor immune responses, and as expressers of anticancer genes. Progress is dependent upon representative preclinical models to evaluate therapy. In this study, two families of oncolytic herpes simplex virus vectors (G207 and NV1020 series) that have been in clinical trials were examined for the treatment of breast cancer, using the C3(1)/T-Ag transgenic mouse model. Female mice spontaneously develop mammary carcinomas, and the C3(1)/T-Ag-derived tumor cell line M6c forms implantable tumors. Both in vitro and in vivo, G47Delta, derived from G207 by deletion of ICP47 and the US11 promoter, was more efficacious than G207. Whereas NV1023, derived from NV1020 by deletion of ICP47 and insertion of LacZ, was as cytotoxic to M6c cells in vitro as G47Delta, it did not inhibit the growth of s.c. M6c tumors but did extend the survival of intracerebral tumor bearing mice. In contrast, NV1042, NV1023 expressing interleukin 12, inhibited s.c. M6c tumor growth to a similar extent as G47Delta, but was less effective than NV1023 in intracerebral tumors. In the spontaneously arising mammary tumor model, when only the first arising tumor per mouse was treated, G47Delta inhibited the growth of a subset of tumors, and when all tumors were treated, G47Delta significantly delayed tumor progression. When the first mammary tumor was treated and the remaining mammary glands removed, NV1042 was more efficacious than G47Delta at inhibiting the growth and progression of injected tumors.  相似文献   

6.
In this model of hepatic micrometastases, the antitumor efficacy and role of the T-cell and natural killer (NK) cell populations were studied for oncolytic herpes simplex virus type-1 (HSV-1) viral mutants containing the granulocyte-monocyte colony stimulating factor (GM-CSF (NV1034)) or interluken-12 (IL-12 (NV1042)) cytokine genes. These were compared to saline and control virus (NV1023) in vitro and in vivo. HSV-1 mutants were assessed for cytotoxicity, replication and cytokine expression in CT-26 cells. A syngeneic micrometastatic liver model was then established in naive and immune cell-depleted animals to assess the antitumor efficacy of these viruses. In vitro cytotoxicity and viral replication were similar for each virus, resulting in greater than 80 and 98% cytotoxicity at multiplicity of infection of 1 and 10, respectively. Peak viral titers were 25- to 50-fold higher than initial titer and were not significantly different between viruses. In vivo, all three viruses reduced metastases relative to control, but cytokine-secreting viruses did so with greater efficacy compared to NV1023. This effect was abrogated by T-cell depletion, but not NK-cell depletion. Single-agent therapy with oncolytic viral agents containing GM-CSF or IL-12 is effective in a murine model of liver metastases and likely involves direct viral oncolysis and actions of specific immune effector cells.  相似文献   

7.
To establish optimized conditions for immunity against prostate cancer, we compared the efficacy of multiple approaches in autochthonous and s.c. transgenic adenocarcinoma of the mouse prostate (TRAMP)-based models. Mice immunized with interleukin (IL)-12-containing apoptotic, but not necrotic TRAMP-C2 cell-based, vaccines were resistant to TRAMP-C2 tumor challenge and re-challenge, independently of the route of vaccination (s.c. or i.p.). Administration of gamma-irradiated TRAMP-C2 cells preinfected with adenovirus containing both B7-1 and IL-12 genes, unlike adenovirus containing B7-1 alone, considerably protected C57BL/6 mice from TRAMP-C2 tumor growth and extended the life span of TRAMP mice. Vaccines that included dendritic cells, instead of IL-12, were equally efficient. Whereas injections of ligand-inducible caspase-1- and IL-12-containing adenoviruses cured small s.c. TRAMP-C2 tumors, nanopump-regulated delivery of viruses led to elimination of much larger tumors. The antitumor immune responses involved CD4+-, CD8+-, and natural killer cells and were strengthened by increasing the number of vaccinations. Intraprostatic administration of inducible caspase-1- and IL-12-containing adenoviruses resulted in local cell death and improved survival of adenocarcinoma-bearing TRAMP mice. Thus, tumor cell apoptosis induced by caspase in situ and accompanied by IL-12 is efficient against prostate cancer in a preclinical model.  相似文献   

8.
We developed a preclinical prostate cancer model to study the feasibility of adoptive immunotherapy for residual tumor following neo-adjuvant in situ adenoviral-vector-mediated interleukin 12 (AdIL-12) gene therapy. Splenocytes were obtained from mice with orthotopic 178-2 BMA metastatic mouse prostate cancers treated previously with AdIL-12, or a vector with the IL-12 genes plus the costimulatory gene B7-1 (AdIL-12/B7), or a control gene (Adbetagal). The splenocytes were subsequently injected intravenously into syngeneic mice bearing orthotopic 178-2 BMA tumors generated 3 days previously. Significant orthotopic tumor growth suppression was achieved with splenocytes derived from mice whose tumors had been injected with AdIL-12 compared to splenocytes from control Adbetagal mice (P = 0.0005) and splenocytes from AdIL-12/B7-treated mice significantly suppressed spontaneous lung metastases compared to splenocytes from control mice (P = 0.0356). Adoptive transfer of splenocytes from either AdIL-12 (P = 0.004) or AdIL-12/B7 (P = 0.009)-treated mice significantly prolonged survival relative to controls. Transfer of NK and tumor-specific CTL activities was detected and depletion of CD4+ and CD8+ T cells by in vitro antibody-mediated complement lysis of the splenocytes prior to injection abrogated the effects. Systemic IL-12 administration delivered by intramuscular AdIL-12 injection enhanced the antitumor effects of adoptive splenocyte transfer and boosted the CTL response. Our data provide evidence that this form of adoptive immunotherapy can enhance the effectiveness of neo-adjuvant in situ IL-12 gene therapy in cases of persistent malignancy.  相似文献   

9.
PURPOSE: Cancer metastases may have phenotypic and genetic differences from their primary cancers of origin. Engineered, replication-competent, attenuated viruses based on herpes simplex virus-1 (HSV-1) have shown potent oncolytic effects in treating primary tumors in animal tumor models, but their efficacy in treating lymph node metastases is poorly understood. We compared the efficacy of an attenuated oncolytic HSV-1 (NV1023) in treating a series of murine squamous carcinoma cell lines derived from serial implantation and harvest from metastatic lymph nodes. EXPERIMENTAL DESIGN and RESULTS: The auricles of C3H/HeJ mice were implanted with SCCVII. Cervical nodal metastases were isolated, expanded in vitro, and reimplanted into new mice. A series of cell lines (LN1-LN7) were generated through seven serial passages. Cells from higher LN passages showed consistent trends toward increased migratory and invasive ability, increased cell surface nectin-1 (an HSV-1 receptor) expression, and increased glycoprotein D binding. Exposure to NV1023 showed increased viral entry, replication, and cytotoxicity with higher LN passages. Intratumoral injection of NV1023 in a murine flank tumor model caused significantly greater tumor regression and increased viral infection of LN7 compared with SCCVII. CONCLUSIONS: These results show that lymph node metastases may undergo selection for characteristics, including increased nectin-1 expression, that make them more sensitive targets for herpes oncolytic therapy. These findings support the clinical application of these agents for the treatment of lymph node metastases.  相似文献   

10.
PURPOSE: The invasion of cancer cells along nerves is an ominous pathologic finding associated with poor outcomes for a variety of tumors, including pancreatic and head and neck carcinomas. Peripheral nerves may serve as a conduit for these cancers to track into the central nervous system. Cancer progression within nerves and surgical resection of infiltrated nerves result in a permanent loss of neural function, potentially causing cosmetic and functional morbidity. Herpes simplex viruses (HSV) have utility for gene transfer into nerves and as oncolytic agents. We studied the use of an attenuated HSV, NV1023, as treatment for cancers with neural invasion. EXPERIMENTAL DESIGN AND RESULTS: NV1023 injection into the sciatic nerves of nude mice had no toxic effect on nerve function, whereas similar doses of wild-type HSV-1 (F' strain) caused complete nerve paralysis within 4 days and 100% mortality at day 6. NV1023 showed effective cytotoxicity in vitro on three neurotrophic human carcinoma cell lines, including pancreatic (MiaPaCa2), squamous cell (QLL2), and adenoid cystic (ACC3) carcinomas. A model of neural invasion was established by implanting human carcinoma cells in the sciatic nerves of nude mice. All control group mice developed left hind limb paralysis 5 to 7 weeks after tumor injection, whereas animals treated with NV1023 maintained intact nerve function and showed significant tumor regression (P < 0.0001). CONCLUSIONS: These results show that NV1023 oncolytic therapy may effectively treat cancers with neural invasion and preserve neural function. These findings hold significant clinical implications for patients with cancer neural invasion.  相似文献   

11.
To investigate the influence of interleukin 6 (IL-6) production on malignancy of tumor cells we transfected cells of the high-metastatic, low-immunogenic D122 clone of the Lewis lung carcinoma with a mammalian expression vector containing the human IL-6 complementary DNA. In vitro, IL-6 positive transfectants showed growth inhibition that was directly correlated with the levels of IL-6 production. The in vitro growth arrest did not seem to be a function of an autocrine system mediated via the secreted human IL-6 acting on the tumor cell surface receptors since neutralizing antibodies to human IL-6 did not prevent the growth inhibition. Neither did exogenous human recombinant IL-6 affect the growth of D122 cells. In vivo, IL-6 positive transfectants showed reduction of tumorigenicity and significant suppression of metastatic competence in syngeneic, immunocompetent mice. In mature T-cell deficient nude mice, the IL-6 transfectants showed some arrest of local growth but no suppression of lung metastasis. It seems therefore that the reduction of metastatic competence of IL-6 transfectants is primarily a function of stimulation by the transfectants of host T-cell immune responses. Immunization with inactivated high-positive IL-6 transfectants induced high levels of anti-tumor cytotoxic T-lymphocytes and protected mice against metastatic growth of a subsequent graft of parental tumor cells. Moreover, reduction of metastatic growth of parental highly metastatic D122 cells was also achieved when immunization of mice was begun after establishment of the primary parental tumors. Thus, inactivated IL-6 transfectants were effective when used as a cellular vaccine for experimental immunotherapy of metastasis.  相似文献   

12.
We assessed the in vivo efficacy of Flt3-ligand (Flt3-L) treatment in C57BL/6 mice bearing a well-established MHC class I-negative prostate carcinoma TRAMP-C1. Flt3-L immunotherapy was initiated approximately 30 days after tumor inoculation, a time when > or =80% of the mice had palpable TRAMP-C1 tumors. Treatment with Flt3-L at 10 microg/day for 21 consecutive days suppressed TRAMP-C1 tumor growth and induced tumor stabilization (P = 0.0337). Enhanced tumor regression was demonstrated at a higher dose of 30 microg/day (P < 0.0001). Tumors excised from mice treated with Flt3-L were smaller than carrier-treated controls and contained a more pronounced mixed inflammatory cell infiltrate primarily composed of mphi. In regressor nice, tumors reappeared at the site of injection when Flt3-L therapy was terminated. When the experiment was repeated with MHC class I-positive TRAMP-C1 cells, tumor stabilization and/or regression was again observed after treatment (P < 0.0001); however, once again, tumors reappeared after the termination of therapy despite an extended treatment schedule (35 days). MHC class I-negative variants were present in tumors isolated from carrier- and Flt3-L-treated mice, and this phenotype could be reversed by IFN-gamma treatment in vitro. Thus, Flt3-L treatment of mice with preexisting transplantable prostate tumors results in tumor regression that is dose-dependent and accompanied by a pronounced mixed-cell inflammatory tumor infiltrate. However, disease relapse was invariably observed after the termination of therapy, which suggests that Flt3-L treatment of advanced MHC- prostate cancers will require adjuvant modalities to achieve a durable response.  相似文献   

13.
Oncolytic herpes simplex virus vectors for cancer virotherapy   总被引:15,自引:0,他引:15  
Oncolytic herpes simplex virus type 1 (HSV-1) vectors are emerging as an effective and powerful therapeutic approach for cancer. Replication-competent HSV-1 vectors with mutations in genes that affect viral replication, neuropathogenicity, and immune evasiveness have been developed and tested for their safety and efficacy in a variety of mouse models. Evidence to-date following administration into the brain attests to their safety, an important observation in light of the neuropathogenicity of the virus. Phase I clinical traits of three vectors, G207, 1716, and NV1020, are either ongoing or completed, with no adverse events attributed to the virus. These and other HSV-1 vectors are effective against a myriad of solid tumors in mice, including glioma, melanoma, breast, prostate, colon, ovarian, and pancreatic cancer. Enhancement of activity was observed when HSV-1 vectors were used in combination with traditional therapies such as radiotherapy and chemotherapy, providing an attractive strategy to pursue in the clinic. Oncolytic HSV-1 vectors expressing "suicide" genes (thymidine kinase, cytosine deaminase, rat cytochrome P450) or immunostimulatory genes (IL-12, GM-CSF, etc.) have been constructed to maximize tumor destruction through multimodal therapeutic mechanisms. Further advances in virus delivery and tumor specificity should improve the likelihood for successful translation to the clinic.  相似文献   

14.
Yu Z  Li S  Huang YY  Fong Y  Wong RJ 《Cancer gene therapy》2007,14(8):738-747
Attenuated, replication-competent, oncolytic herpes simplex virus type 1 (HSV-1) are effective at infecting and lysing many human malignancies in preclinical studies. Nectin-1 is a cell-surface receptor for HSV-1 envelope glycoprotein D (gD) that also forms a component of intercellular adherens junctions (AJs). We sought to determine if the disruption of AJs in squamous cell carcinoma (SCC) through calcium depletion could be utilized to increase nectin-1 exposure and enhance HSV therapy. NV1023 is a single copy gamma(1)34.5-deleted, lacZ-expressing, oncolytic HSV-1. Calcium depletion caused cell separation and increased nectin-1 expression for three SCC cell lines growing at confluence. NV1023 viral entry, soluble gD protein binding and NV1023 cytotoxicity were all significantly enhanced for these cell lines at low calcium conditions. The increase in NV1023 entry at low calcium conditions was abrogated by nectin-1 antibody blockade. Murine SCC flank tumors treated with ethylenediaminetetraacetic acid (EDTA) showed increased nectin-1 expression and increased susceptibility to NV1023 infection. Combined NV1023 and EDTA intratumoral injections demonstrated significantly enhanced tumor regression as compared to NV1023 alone. These findings establish, as proof-of-principle, that herpes viral receptor expression may be modulated on cancer cells to enhance oncolytic therapy. This strategy might have future application toward improving therapy with a variety of herpes vectors.  相似文献   

15.
16.
Interleukin-12 (IL-12), with the ability of inducing production of interferon-gamma and enhancing of NK activity and Th1 response, has potent antitumor role and has been used in treatment of tumors[1-7]. Dendritic cells (DC) are the uniquely potent APCs involved in the initiation of immune responses. As adjuvants for Ag delivery, DC pick up Ags in the periphery and carry them to T cells area in lymphoid organs to prime the immune responses. With the development of the methods for propaga…  相似文献   

17.
The major goal in cancer immunotherapy is the induction of tumor-specific T lymphocytes capable of killing tumor cells. As both dendritic cells (DCs) and interleukin-12 (IL-12) can play immunostimulatory roles in vivo, the use of a combination of these has become a promising approach. In the present study, we used a murine tumor model to examine whether spleen-derived DCs transduced with the IL-12 gene could elicit tumor-specific immune responses. BALB/c mice injected peritumorally with adenovirus-mediated IL-12 gene-transduced antigen-unpulsed DCs inhibited the growth of day 5-established subcutaneous CT26 tumors. Splenocytes from treated mice responded specifically to parental tumor cells and showed increased production of interferon gamma (IFN-gamma) and antitumor cytotoxic T-lymphocyte (CTL) activity. Increased numbers of both CD4(+) and CD8(+) T cells were detected in the treated tumors. The inhibition of tumor growth was significantly greater in mice injected with IL-12 gene-transduced DCs than in those injected with IL-12 gene-transduced fibroblasts or the IL-12 gene-encoding adenovirus itself. Taken together, these results indicate that DCs transduced with the IL-12 gene by a recombinant adenovirus are effective in inducing tumor-specific Th1 and CTL responses that inhibit the growth of established subcutaneous tumors.  相似文献   

18.
Using a nonviral, electroporation-based gene transfection approach, we demonstrate the efficient and consistent transfection of two poorly immunogenic tumor cell lines: B16F10 melanoma and renal carcinoma (RENCA). Three genes, IL-12, angiostatin (AS), and an endostatin:angiostatin fusion protein (ES:AS) were subcloned into a DNA plasmid containing EBNA1-OriP, which was then transfected into B16F10 and RENCA cells. Significant levels of protein were secreted into the culture supernatants of transfected cells in vitro. Transfected tumor cells were injected subcutaneously into mice. All the three transgenes were capable of significantly delaying and reducing the formation of primary B16F10 and RENCA tumors, as well as B16F10 lung metastases. By day 11 post-injection, all control mice that received either mock-transfected or empty vector DNA-transfected B16F10 tumor cells had developed large primary tumors. In contrast, mice that received IL-12-transfected B16F10 cells did not develop appreciable tumors until day 17, and these were significantly smaller than controls. Similar results were observed for the RENCA model, in which only one of the IL-12 mice had developed tumors out to day 31. Expression of AS or ES:AS also significantly delayed and reduced primary tumors. Overall, ES:AS was more effective than AS alone. Furthermore, 25% of the AS mice and 33% of the ES:AS mice remained tumor-free at day 17, by which point all control mice had significant tumors. Mouse survival rates also correlated with the extent of tumor burden. Importantly, no lung metastases were detected in the lungs of mice that had received either AS or ES:AS-transfected B16F10 tumor cells and significantly fewer metastases were found in the IL-12 group. The consistency of our transfection results highlight the feasibility of directly electroporating tumor cells as a means to screen, identify, and validate in vivo potentially novel antiangiogenic and/or antineoplastic genes.  相似文献   

19.
An alternative technology for the local and sustained delivery of cytokines to tumors for cancer immunotherapy was evaluated and shown here to induce tumor regression, suppression of metastasis, and development of systemic antitumor immunity. Treatment of tumor-bearing BALB/c mice with a single intratumoral injection of biodegradable polylactic acid microspheres loaded with recombinant interleukin-12 (IL-12) promoted complete regression of the primary tumor and prevented the metastatic spread to the lung. Mice that experienced tumor regression after being treated rejected a subsequent challenge with live tumor cells, which indicated the development of systemic antitumor immunity. In situ tumor vaccination, ie., injection of IL-12 microspheres into existing tumors, was superior to vaccination of mice with mixtures of tumor cells (live or irradiated) and IL-12 microspheres in inducing systemic antitumor immunity. The sustained release of IL-12 from the microspheres was superior to bolus injection of free IL-12, and intratumoral delivery of microspheres was more effective than other routes of administration. These studies establish the utility of biodegradable polymer microspheres as a clinically feasible alternative to systemic cytokine therapy and cytokine gene-modified cell vaccines for the treatment of neoplastic disease.  相似文献   

20.
We established an orthotopic treatment model of prostate cancer to generate reproducible primary and metastatic carcinoma in immunocompetent C57BL/6 mice. Using an in vivo selection scheme of intraprostatic implantation of TRAMP-C1 cells, primary prostate tumors were cultured and recycled three times by intraprostatic injection resulting in the selection and establishment of the recycled cell line TRAMP-C1P3. Prostate tumors were detected approximately 30 days post-implantation with periaortic lymph node metastasis in 19/20 (95%) of mice. Tissue culture amplification, DNA ploidy and PCR amplification of the SV40 transgene were used to detect metastatic TRAMP-C1P3 in lymph node specimens. Tissue culture amplification and DNA ploidy were as sensitive as SV40 transgene amplification by PCR in detection of early metastatic disease in draining lymph nodes. To establish the use of the orthotopic model of prostate cancer for immunotherapy, mice were injected orthotopically with TRAMP-C1P3 cells and 7 days post-implantation treated daily for 28 days with either flt3L or carrier control. Carrier-treated mice had clinically detectable prostate tumors, lymph node metastasis and were moribund at 29-35 days, whereas flt3L therapy markedly suppressed primary TRAMP-C1P3 growth and lymph node metastasis, and prolonged survival. In summary, we have established a reproducible and clinically relevant orthotopic treatment model of prostate cancer in immunocompetent mice with application to a variety of therapeutic strategies. We demonstrate that flt3L treatment suppressed orthotopic prostate tumor growth and lymph node metastasis reinforcing a role for flt3L as an immunotherapeutic strategy for prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号