首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Immunology》2017,151(2):239-247
Lymph nodes (LN) are secondary lymphoid organs spread throughout the lymphatic system. They function to filter pathogenic material from the lymphatic fluid to maintain the health of the organism. Subcapsular sinus macrophages (SCSM) are among the first‐responders within the LN due to their strategic location within the subcapsular sinus region. These macrophages aid the delivery of immune complexes to B cells and follicular dendritic cells (FDC) within the LN. Here we show an increase in SCSM and other macrophage populations within aged LN. However, immune complex uptake by macrophages within LN was not altered with age, nor was immune complex uptake by B cells. LN stromal cell populations, important in immune responses and the localization and survival of leucocytes, were altered in their representation and distribution in aged LN. In particular, FDC regions were decreased in size and had decreased chemokine CXCL13 expression. Furthermore, the retention of immune complexes by FDC was decreased in aged LN at 24 hr post‐injection. As FDC are important in the maintenance of germinal centre responses, the decreased retention of immune complex in aged LN may contribute to the reduced germinal centre responses observed in aged mice.  相似文献   

2.
The dynamics of growth and proliferative activity of the population of multipotent mesenchymal stromal cells from rat bone marrow was studied during 7 passages. The efficiency of colony formation, the morphology of multipotent mesenchymal stromal cells, and the possibility of spontaneous and induced differentiation were studied. The rat bone marrow fibroblast-like multipotent mesenchymal stromal cells are capable of clonal growth; their proliferative activity and the yield remained high until passage 4, but then decreased. Induction of osteo-or adipogenic differentiation of bone marrow multipotent mesenchymal stromal cells increased the percentage of morphologically modified cells carrying specific markers. __________ Translated from Kletochnye Tekhnologii v Biologii i Medicine, No. 2, pp. 102–107, April, 2006  相似文献   

3.
4.
The tissue engineering construction was developed from human bone marrow multipotent stromal cells and 3D porous foamed—ceramic carriers of a zirconium oxide--aluminum oxide system. The carriers had no cytotoxic activity and were potent in maintaining the cell adhesion and proliferation. We developed the method for inoculation and cultivation of bone marrow multipotent stromal cells on these carriers. The optimal time of incubation to obtain a tissue engineering construction was estimated. Bone marrow multipotent stromal cells could be cultured at a depth of 9 mm from the edge of the matrix. The tissue engineering construction holds promise for the repair of extensive defects in bone tissue. Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 1, pp. 38–47, 2009  相似文献   

5.
Antigen-presenting molecules vary between individuals of the same species, making it more difficult for pathogens to evade immune recognition and spread through the whole population. As a result of this genetic diversity, transplants between individuals are recognized as foreign and are rejected. This alloreactivity turns placental viviparity into a major immunological challenge. The maternal immune system has to balance the opposing needs of maintaining robust immune reactivity to protect both mother and fetus from invading pathogens, while at the same time tolerating highly immunogenic paternal alloantigens in order to sustain fetal integrity. Regulatory T cells are responsible for the establishment of tolerance by modulating the immune response, and uterine natural killer cells direct placentation by controlling trophoblast invasion. A variety of other cell types, including decidual stromal cells, dendritic cells, and immunomodulatory multipotent mesenchymal stromal cells, are found at the fetal-maternal interface. These cells conspire to establish a suitable environment for fetal development without compromising systemic immunity. Defects in any of these components can lead to gestational failure despite successful fertilization.  相似文献   

6.
Extensive studies on CD4+ CD25+ regulatory T (Treg) cells suggest that they are important in regulating immune responses. However, mechanisms of peripheral Treg cell homeostasis are unknown. We found that stromal cells isolated from secondary lymphoid organs such as spleen and lymph nodes could support the survival of Treg cells. This was dependent on CD2 engagement and a direct interaction between Treg cells and stromal cells. In the presence of stromal cells, Bim, a pro‐apoptotic factor, was partially decreased in Treg cells. This effect could be inhibited by anti‐CD2 blocking antibodies, indicating that stimulation through CD2 on Treg cells regulates Bim expression, which may be relevant to Treg cell apoptosis. Therefore, Treg cell interactions with stromal cells through CD2 may be essential for Treg cell survival. Surprisingly, the expression of CD2 ligands on stromal cells was not detected. Hence, it is not clear how CD2 on Treg cells contributes to a direct interaction with the stromal cells and participates in survival support for Treg cells. Taken together, CD2 stimuli were mandatory for Treg cell survival with reduced Bim expression, but CD2 may not function as a direct receptor for molecules on stromal cells.  相似文献   

7.
Peripheral arterial disease is a clinical problem in which mesenchymal stromal cell (MSC) transplantation may offer substantial benefit by promoting the generation of new blood vessels and improving limb ischemia and wound healing via their potent paracrine activities. MRI allows for the noninvasive tracking of cells over time using iron oxide contrast agents to label cells before they are injected or transplanted. However, a major limitation of the tracking of iron oxide‐labeled cells with MRI is the possibility that dead or dying cells will transfer the iron oxide label to local bystander macrophages, making it very difficult to distinguish between viable transplanted cells and endogenous macrophages in the images. In this study, a severely immune‐compromised mouse, with limited macrophage activity, was investigated to examine cell tracking in a system in which bystander cell uptake of dead, iron‐labeled cells or free iron particles was minimized. MRI was used to track the fate of MSCs over 21 days after their intramuscular transplantation in mice with a femoral artery ligation. In all mice, a region of signal loss was observed at the injection site and the volume of signal hypointensity diminished over time. Fluorescence and light microscopy showed that iron‐positive MSCs persisted at the transplant site and often appeared to be integrated in perivascular niches. This was compared with MSC transplantation in immune‐competent mice with femoral artery ligation. In these mice, the regions of signal loss caused by iron‐labeled MSC cleared more slowly, and histology revealed iron particles trapped at the site of cell transplantation and associated with areas of inflammation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Lymph nodes (LNs) are secondary immune organs dispersed throughout the body. They are primarily composed of lymphocytes, “transient passengers” that are only present for a few hours. During this time, they extensively interact with a meshwork of stromal cells. Although these cells constitute less than 5% of all LN cells, they are integral to LN function: Stromal cells create a three‐dimensional network that provides a rigid backbone for the transport of lymph and generates “roads” for lymphocyte migration. Beyond structural support, the LN stroma also produces survival signals for lymphocytes and provides nutrients, soluble factors, antigens, and immune cells collectively required for immune surveillance and the generation of adaptive immune responses. A unique feature of LNs is their ability to considerably and rapidly change size: the volume and cellularity of inflamed LNs can increase up to 20‐fold before returning to homeostatic levels. This cycle will be repeated many times during life and is accommodated by stromal cells. The dynamics underlying this dramatic remodeling are subject of this review. We will first introduce the main types of LN stromal cells and explain their known functions. We will then discuss how these cells enable LN growth during immune responses, with a particular focus on underlying cellular mechanisms and molecular cues. Similarly, we will elaborate on stromal dynamics mediating the return to LN homeostasis, a process that is mechanistically much less understood than LN expansion.  相似文献   

9.
The primary challenge in organ transplantation continues to be the need to suppress the host immune system long-term to ensure prolonged allograft survival. Long-term non-specific immunosuppression can, however, result in life-threatening complications. Thus, efforts have been pursued to explore novel strategies that would allow minimization of maintenance immunosuppression, eventually leading to transplant tolerance. In this scenario, bone marrow-derived mesenchymal stromal cells (MSC), given their unique immunomodulatory properties to skew the balance between regulatory and memory T cells, have emerged as potential candidates for cell-based therapy to promote immune tolerance. Here, we review our initial clinical experience with bone marrow-derived MSC in living-donor kidney transplant recipients and provide an overview of the available results of other clinical programs with MSC in kidney and liver transplantation, highlighting hurdles and success of this innovative cell-based therapy.  相似文献   

10.
The system of NMDA glutamate receptors in human adipose tissue multipotent stromal cells and SH-SY5Y human neuroblastoma cells was used as a model for studies of NMDA receptor expression during neurodifferntiation. Glutamate NMDA receptors were detected in multipotent stromal cells of human adipose tissue. The expression of NR1 subunits of NMDA receptors increased significantly after 6-day incubation of multipotent stromal cells of human adipose tissue with 10 μM retinoic acid. Only NR1 subunits of NMDA receptors were expressed in SH-SY5Y neuroblastoma cells. Incubation with retinoic acid did not promote the appearance of mRNA of other subunits (NR2A-D, NR3). The results indicate that expression of NMDA receptors can serve as an indicator of neuronal differentiation of cells and as a marker of the efficiency of neuronal differentiation protocol. __________ Translated from Kletochnye Tehnologii v Biologii i Medicine, No. 4, pp. 216–220, October, 2007  相似文献   

11.
Mesenchymal stromal cells (MSCs) are multipotent progenitors of mesodermal origin that not only differentiate into osteoblasts, chondrocytes, connective stromal cells, and adipocytes, but also exert immunoregulatory activities, usually induced by soluble molecules released during the cross‐talk between MSCs and their target immune cell populations. In this issue of the European Journal of Immunology, Dorronsoro et al. [Eur. J. Immunol. 2014. 44: 480–488] demonstrate for the first time that TNF‐α released by activated T cells confers immunosuppressive properties upon MSCs by binding to TNF‐R1 and activating the NF‐kB pathway. Such findings may improve our knowledge of the mechanisms underlying the reported efficacy of human MSCs administered locally or systemically to patients with autoimmune/inflammatory disorders, such as Crohn's disease and graft versus host disease, as discussed in this commentary.  相似文献   

12.
This review examines the evidence that a subset of patients with breast cancer have tumors that are stimulated to grow by host cells in the tumor stroma. The search for such a minority group was prompted by the following observations. Adjuvant chemotherapy which is immunosuppressive improves disease-free interval and survival, whereas non-specific immunostimulation worsens the prognosis. Intrinsic immune reactivity is associated with a poor prognosis. A subset of tumors with a bad prognosis has anaplastic cells, dermal lymphatic invasion and a moderate to intense lymphoplasmacytic stromal infiltrate. Evidence is reviewed that adjuvant chemotherapy may be beneficial by virtue of its immunosuppressive effects in addition to tumor kill of minimal residual disease.  相似文献   

13.
Curettage of bone marrow cavities of two bones (femoral and crural) in recipient mice causes a drastic (more than 7-fold) increase in the count of stromal precursor cells in heterotopic bone marrow transplants. Stromal colonies in cell cultures from these transplants consist of fibroblasts with an appreciable admixture of macrophages. All Y chromosome-typed colonies from cultures of female donor bone marrow transplants in recipient males (intact and subjected to curettage) contained cells carrying and not carrying Y chromosome. Quantitative results of Y chromosome typing of cells from colonies corresponded to the fibroblast/macrophage ratio in colonies and the predominant localization of the label corresponded to predominant localization of macrophages (at the periphery of colonies). The results indicate that the pool of bone marrow stromal precursor cells under conditions of increased demands originates from local sources, which confirms ample data on inability of these cells to migration. __________ Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 143, No. 5, pp. 568–567, May, 2007  相似文献   

14.
骨髓基质细胞的造血支持作用等生物学特性的研究   总被引:6,自引:1,他引:5  
目的研究人骨髓基质细胞体外长期培养的生物学特性和造血支持功能。方法①采用静置贴壁细胞培养法,体外长期培养胎儿、儿童和成人的骨髓基质细胞。②采用免疫细胞化学染色法和流式细胞仪检测法,分析细胞的表型。③将不同发育阶段的骨髓基质细胞体外培养,并扩增脐血造血干细胞。结果①建立了成纤维肌样细胞系,可传至10代,维持6个月,同时还培养出内皮细胞和巨噬细胞。②儿童骨髓基质肌样细胞的染色特征为波形纤维蛋白(viementin)呈阳性,第VIII因子呈阴性;儿童骨髓基质细胞的表型为CD33  相似文献   

15.
The precise mechanisms responsible for immunosenescence still remain to be determined, however, considering the evidence that disruption of the organization of primary and secondary lymphoid organs results in immunodeficiency, we propose that this could be involved in the decline of immune responses with age. Therefore, we investigated the integrity of the splenic microarchitecture in mice of increasing age and its reorganization following immune challenge in young and old mice. Several differences in the anatomy of the spleen with age in both the immune and stromal cells were observed. There is an age‐related increase in the overall size of the white pulp, which occurs primarily within the T‐cell zone and is mirrored by the enlargement of the T‐cell stromal area, concurrent to the distinct boundary between T cells and B cells becoming less defined in older mice. In conjunction, there appears to be a loss of marginal zone macrophages, which is accompanied by an accumulation of fibroblasts in the spleens from older animals. Furthermore, whereas the reorganization of the white pulp is resolved after several days following antigenic challenge in young animals, it remains perturbed in older subjects. All these age‐related changes within the spleen could potentially contribute to the age‐dependent deficiencies in functional immunity.  相似文献   

16.
Spontaneous tumors grow and kill the host unless therapy reduces their mass to a level where the immune system, it is thought, can control their growth and diffusion. Indeed, in many instances tumors can reappear, become resistant to therapy, and escape the host immune response. Many mechanisms of tumor escape operating in the tumor microenvironment have been proposed: 1) low or absent expression of molecules on tumor cells involved in tumor target cell recognition; 2) absence of co-stimulation leading to tolerization of T cells; 3) soluble factors secreted by tumor cells inhibiting T cell response; and 4) regulatory T cells, myeloid suppressor cells, and stromal cells may impair immune-cell responses to tumors. Furthermore, tumors can release soluble molecules such as HLA-I (sHLA-I). This, in turn, reduces T cell-mediated immune response and induces apoptosis of cytolytic effector cells such as natural killer and CD8+ T lymphocytes through the engagement of HLA-I receptors such as CD8 and/or activating isoforms of the inhibitory receptor superfamily. The release of soluble ligand for activating receptors, e.g. UL16 binding proteins and/or MHC class I-related proteins A and B, the natural ligands of NKG2D, may impair activation, effector cell-mediated recognition, and cytolysis of tumor cells. Furthermore, the elimination of anti-tumor effector cells may be achieved by induction of apoptosis consequent to triggering elicited via activating molecules, such as receptors responsible for natural cytotoxicity, upon their binding with ligands expressed on tumor cells.  相似文献   

17.
Cancers are characterized by invasive growth and distant metastasis. Cancer cells not only destroy the pre-existing extracellular matrix, but cancer invasion per se usually induces new matrix formation by activation of stromal cells; that is, desmoplastic reaction. This process includes both matrix production and degradation; that Is, the remodeling process. The similarity between desmoplastic reactions in cancer stroma and the wound healing process has already been pointed out, and it has been well documented that matrix-degrading processes are actively involved In the wound healing process. A recent study revealed that most matrix-degrading enzymes, generally considered to be one of the main mechanisms of cancer invasion and metastasis, are originated from stromal cells. Based on these preconditions, the present review postulates that the abundant expression of matrix-degrading enzymes by fibroblasts, coupled with the abundant expression of type I procollagen, is involved in the matrix remodeling processes occurring in cancer stroma; that is, the mechanism similar to the wound healing process. Next, macrophages distributed along the invasive margin are known to express matrix-degrading enzymes/factors. Data from past studies of colon carcinoma indicate that the tissue expression of matrix metalloproteinase-9 and urokinase-type plas-mlnogen activator receptor Is inversely associated with simultaneous liver metastasis and infiltrating growth pattern. Previous clinicopathologic data have indicated that immune/Inflammatory cells are one of the factors for a favorable prognosis. This suggests that the expression of matrix-degrading enzymes/factors by these host cells may be involved in host immune/inflammatory reactions, and that the net function of these cells can be defensive towards the host. Data from past studies of colon carcinoma on the expression of the intercellular adhesion molecule-1 suggest that the interaction between macrophages, lymphocytes, and the phenotypes of venules distributed along the Invasive margin, further support the pro-inflammatory milieu there. Therefore, the matrix degradation process in cancer tissue is multifunctional: besides the Involvement in cancer invasion and metastasis, the matrix degradation process is also involved in the tissue remodeling process and in the immune/inflammatory reaction occurring in the stroma.  相似文献   

18.
Summary: A central characteristic of the immune system is the constantly changing location of most of its constituent cells. Lymphoid and myeloid cells circulate in the blood, and subsets of these cells enter, move, and interact within, then leave organized lymphoid tissues. When inflammation is present, various hematopoietic cells also exit the vasculature and migrate within non-lymphoid tissues, where they carry out effector functions that support host defense or result in autoimmune pathology. Effective innate and adaptive immune responses involve not only the action of these individual cells but also productive communication among them, often requiring direct membrane contact between rare antigen-specific or antigen-bearing cells. Here, we describe our ongoing studies using two-photon intravital microscopy to probe the in situ behavior of the cells of the immune system and their interactions with non-hematopoietic stromal elements. We emphasize the importance of non-random cell migration within lymphoid tissues and detail newly established mechanisms of traffic control that operate at multiple organizational scales to facilitate critical cell contacts. We also describe how the methods we have developed for imaging within lymphoid sites are being applied to other tissues and organs, revealing dynamic details of host-pathogen interactions previously inaccessible to direct observation.  相似文献   

19.
There is a paucity of therapies for most central nervous system (CNS) disorders. Bone marrow stromal cells (MSCs) are a mixed cell population, including stem and progenitor cells, and are currently a strong candidate for cell-based therapy in “brain attack”, including stroke, and traumatic brain injury (TBI), since they are easily isolated and can be expanded in culture from patients without ethical and technical problems. Although it has been suggested that trans-differentiation of MSCs into cells of neural lineage may occur in vitro, no one has yet observed that MSCs give rise to fully differentiated and functional neurons in vivo. The overwhelming body of data indicate that bioactive factors secreted by MSCs in response to the local environment underlie the tissue restorative effects of MSCs. The MSCs that are employed in this therapy are not necessarily stem cells, but progenitor and differentiated cells that escape immune system surveillance and survive in the CNS even for transplantation of allogeneic or xenogeneic MSCs. The injured CNS is stimulated by the MSCs to amplify its intrinsic restorative processes. Treatment of damaged brain with MSCs promotes functional recovery, and facilitates CNS endogenous plasticity and remodeling. The current mini-review is mainly based on our data and focuses on possible cellular and molecular mechanisms of interaction of MSCs with glia, neurons and vessels after brain attack. The transplantation of MSCs opens up new avenues of cell therapy and may provide an effective treatment for various CNS diseases.  相似文献   

20.

Background

Marrow stromal cells (MSC), the non-hematopoietic precursor cells in bone marrow, are being investigated for therapeutic potential in CNS disorders. Although in vitro studies have suggested that MSC may be immunologically inert, their immunogenicity following transplantation into allogeneic recipients is unclear. The primary objective of this study was to investigate the cellular immune response to MSC injected into the striatum of allogeneic recipients (6-hydroxydopamine [6-OHDA]-hemilesioned rats, an animal model of Parkinson's disease [PD]), and the secondary objective was to determine the ability of these cells to prevent nigrostriatal dopamine depletion and associated motor deficits in these animals.

Methods

5-Bromo-2-deoxyuridine (BrdU) – labeled MSC from two allogeneic sources (Wistar and ACI rats) were implanted into the striatum of adult Wistar rats at the same time as 6-OHDA was administered into the substantia nigra. Behavioral tests were administered one to two weeks before and 16–20 days after 6-OHDA lesioning and MSC transplantation. Immunocytochemical staining for T helper and T cytotoxic lymphocytes, microglia/macrophages, and major histocompatibility class I and II antigens was performed on post-transplantation days 22–24. MSC were detected with an anti-BrdU antibody.

Results

Tissue injury due to the transplantation procedure produced a localized cellular immune response. Unexpectedly, both sources of allogeneic MSC generated robust cellular immune responses in the host striatum; the extent of this response was similar in the two allograft systems. Despite these immune responses, BrdU+ cells (presumptive MSC) remained in the striatum of all animals that received MSC. The numbers of remaining MSC tended to be increased (p = 0.055) in rats receiving Wistar MSC versus those receiving ACI MSC. MSC administration did not prevent behavioral deficits or dopamine depletion in the 6-OHDA-lesioned animals.

Conclusion

MSC, when implanted into the striatum of allogeneic animals, provoke a marked immune response which is not sufficient to clear these cells by 22–24 days post-transplantation. In the experimental paradigm in this study, MSC did not prevent nigrostriatal dopamine depletion and its associated behavioral deficits. Additional studies are indicated to clarify the effects of this immune response on MSC survival and function before initiating trials with these cells in patients with PD or other neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号