首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A family of PI3Ks is the lipid kinases, which enhance intracellular pools of phosphatidyl inositol 3,4,5-tri-phosphate (PIP3) through phosphorylating its precursor. Amplifications and deletions of genes, as well as somatic missense of the PIK3CA gene have been described in many human cancer varieties, including of the brain, colon, liver, lung and stomach.Immunohistochemistry and Real-time quantitative PCR tests were used to determine the PIK3CA gene amplification (gene copy number) and to detect protein expression, respectively. The results obtained were analysed and the ratio of PIK3CA to β-actin gene copy number was calculated. Positive gene amplification of PIK3CA was appointed as a copy number of ≥4. Also, PI3K p110α protein expression was scored from 0 to 3+ and the scores of 2+ and 3+ were considered as positive for PI3K p110α protein expression.We studied 50 breast carcinoma samples for PI3K p110α protein expression and PIK3CA gene copy numbers. In general, 36 out of 50 (72%) breast carcinoma samples showed a significant increase in PIK3CA gene amplification. 12 out of 50 (24%) showed positive staining, and 38 out of 50 (76%) showed negative staining for PI3K p110α expression.We have identified no significant relationship between PIK3CA amplification, race (p= 0.630) and histological type (p=0. 731) in breast carcinoma, but correlation of PIK3CA amplification and age showed a significant relationship (p=0. 003) between them.No significant relationship has been identified in correlation of PI3K p110α protein expression compared to age (p=0. 284), race (p=0. 546) and histological type (p=0. 285).Amplification of PIK3CA was frequent in breast carcinoma and occurs in stages of breast carcinoma. Our result shows that there is a relationship between gene amplification and age in breast carcinoma. We suggest that PIK3CA is significant in breast tumorigenesis serve as a prevalent mechanism contributes to the oncogenic activation pathway of PIK3CA in breast cancer.  相似文献   

2.
Ovarian primary mucinous tumours (OPMTs) show an adenoma–borderline–carcinoma sequence with gastrointestinal metaplasia. Gastric gland mucin-specific O-glycans are unique with an α1,4-linked N-acetylglucosamine (αGlcNAc) residue attached to mucin 6 (MUC6). Although αGlcNAc is expected to be expressed in OPMTs, the relationship between αGlcNAc expression and OPMT progression remains unknown. Here, we analysed 104 areas of benign mucinous tumours (benign), 55 areas of borderline mucinous tumours (borderline), and 18 areas of malignant mucinous tumours (malignant) to investigate the expression patterns of αGlcNAc, mucin 2 (MUC2), mucin 5AC (MUC5AC), and MUC6 during the progression of OPMT from benign to malignant. MUC5AC expression was observed in all areas. The frequencies of MUC6- and αGlcNAc-positive areas were decreased with tumour progression. In particular, the decrease in αGlcNAc-positive areas was remarkable. Furthermore, αGlcNAc expression was lower than MUC6 expression at all grades (benign, p < 0.0001; borderline, p = 0.0014; malignant, p = 0.0039). Conversely, there was no difference in the expression frequency or level of MUC2 among the three grades. These results suggest that decreased expression of αGlcNAc relative to MUC6 occurs early in tumour development and marks the initiation of OPMT progression.  相似文献   

3.
Triggering receptor expressed by myeloid cells (TREM-1) is an amplifier of inflammatory responses triggered by bacterial or fungal infection. Soluble TREM-1 (sTREM-1) expression was found to be upregulated in sepsis-associated acute kidney injury (SA-AKI) and predicted to be a potential biomarker. However, the mechanism remains unclear. The human kidney-2 (HK-2) cell line was treated with lipopolysaccharide (LPS) and used to examine the potential roles of TREM-1 in apoptosis and autophagy. A cell viability assay was employed to assess the number of viable cells and as a measure of the proliferative index. The concentrations of sTREM-1, interleukin (IL)-1β, tumor necrosis factor-α (TNFα) and IL-6 in cell-free culture supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Western blot analysis was performed to analyze apoptosis, autophagy and the relevant signaling pathways. The results suggested that TREM-1 overexpression after LPS treatment decreased proliferation and increased apoptosis. The concentrations of sTREM-1, IL-1β, TNFα and IL-6 in cell-free culture supernatants were increased in the TREM-1 overexpression group after LPS treatment. Expression of the antiapoptotic gene Bcl-2 was downregulated in the TREM-1 overexpression group, while that of the proapoptotic genes Bax, cleaved caspase-3 and cleaved caspase-9 was upregulated. Overexpression of TREM-1 downregulated expression of the autophagy genes Beclin-1, Atg-5 and LC3b and increased the gene expression of p62, which inhibits autophagy. Conversely, treatment with TREM-1-specific shRNA had the opposite effects. The nuclear factor-κB (NF-κB) signaling pathway (P-p65/p65 and P-IκBα/IκBα) in LPS-induced HK-2 cells was regulated by TREM-1. In summary, TREM-1 promoted apoptosis and inhibited autophagy in HK-2 cells in the context of LPS exposure potentially through the NF-κB pathway.  相似文献   

4.
Background: Severe hepatitis is a common cause of chronic or acute liver disease and autophagy might play an important role in cellular response to inflammation and injury. It has been reported that Ginsenoside-Rg1 (G-Rg1) has strong hepatoprotective effects for acute liver injury, but its protective mechanisms have not yet been elucidated. This study aims to explore the detailed molecular mechanisms of G-Rg1 on acute liver injury via autophagy.Methods: The role of G-Rg1 by autophagic induction was studied in the mouse model of acute liver injury which induced by carbon tetrachloride (CCl4). Liver function, inflammatory reaction and apoptosis were detected when autophagy has been inhibited by 3-MA or stimulated by RPA. MCC950 and ATP were applied to investigate the role of NLRP3 inflammasome in acute liver injury. The differential expression of NF-κB, NLRP3 inflammasome, caspase 1, caspase 3, IL-1β, IL-18, LC3-I, LC3-II, Beclin-1, PINK1 and Parkin have been detected by the quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot.Results: G-Rg1 could decrease ALT, AST, TNF-α, IL-1β and IL-6 in mice with CCl4-induced acute liver injury. The change of autophagy and apoptosis after the treatment of 3-MA or RPA demonstrated that the autophagy played a key role in the protective effect of G-Rg1 in acute liver injury. The enhancement of G-Rg1 promoted-autophagy resulted in the significant decrease in NF-κB, NLRP3 inflammasome, caspase 1, caspase 3, IL-1β and IL-18, which suggesting that NF-κB/NLRP3 inflammasome signaling pathway was associated with the autophagy induced by G-Rg1 in acute liver injury.Conclusion: G-Rg1 ameliorated acute liver injury via the autophagy, which may be related to NF-κB/NLRP3 inflammasome signaling pathway.  相似文献   

5.
Fluid resuscitation after hemorrhagic shock is a model of systemic ischemia/reperfusion injury (SI/RI), and the liver is one of the main target organs. Ischemic preconditioning (IPC) can reduce hepatic ischemia-reperfusion injury (I/RI) via autophagy. However, whether remote ischemic preconditioning (RIPC) can alleviate the liver injury that is secondary to hemorrhagic shock and the role of autophagy in this process remain unclear. Thus, we constructed a hemorrhagic shock model in rats with or without RIPC to monitor mean arterial pressure (MAP) and investigate liver secondary injury levels via serum aminotransferase, ultrasound, HE staining and TUNEL fluorescence staining. We also detected levels of serum inflammatory factors including tumor necrosis factor-alpha (TNF-α) and interleukin 1β (IL-1β) by enzyme-linked immunosorbent assay (ELLSA), observed autophagosomes by Transmission electron microscopy (TEM), and analyzed LC3, Beclin-1, p62 protein expression levels by immunohistochemical (IHC) and western blot (WB). We found that RIPC increased blood pressure adaptability, decreased lactate (Lac) and aminotransferase levels, and delayed the decrease in liver density. Levels of inflammatory factors TNF-α, IL-1β and apoptosis were attenuated, autophagosomes was increased in the RIPC group compared with controls. IHC and WB both revealed increased LC3 and Beclin-1 but decreased p62 protein expression levels in the RIPC group. Together, our data suggest that RIPC-activated autophagy could play a protective role against secondary liver injury following hemorrhagic shock.  相似文献   

6.
Pancreatic intraductal papillary mucinous neoplasms (IPMNs) are mucin-producing neoplasms of the main and/or branch pancreatic ducts. To assess differences between various IPMN subtypes, immunohistochemical markers of gastric surface mucous cells (MUC5AC), gastric gland mucous cells (MUC6 and GlcNAcα1→4Galβ→R), gastric pyloric and duodenal epithelial cells (PDX1), intestinal cells (MUC2 and CDX2), small intestinal cells (CPS1) and large intestinal cells (SATB2) were evaluated in 33 surgically treated IPMNs. MUC2 expression classified IPMNs into gastric (n=17), intestinal (n=8) and mixed gastric and intestinal type (collision=7, composite=1). No differences in age or sex were observed among these types. MUC5AC and PDX1 were expressed in all IPMNs. MUC6 expression was higher in gastric and mixed types than in intestinal type. GlcNAcα1→4Galβ→R was detected in gastric and mixed type, but not in intestinal type. MUC2 and CDX2 expression were higher in intestinal type than gastric and mixed type. CPS1 expression was higher in intestinal type than gastric type. SATB2 was not observed in any IPMNs. Frequent abrupt transition between the two IPMN types in mixed-type IPMNs was observed. Gastric pyloric and small intestinal differentiation are characteristic of gastric and intestinal type IPMN, respectively, and these two IPMN types may have distinct pathogenesis.  相似文献   

7.
A high frequency of mutations at the PTEN locus has been noticed in carcinoma of lung. However, the role of PTEN alternations and its association with outcome variables in the genesis of lung carcinoma are not understood fully. The purpose of our study was to examine the impact of EGFR, TGF-α, P-AKT and PTEN in the genesis of non-small cell lung cancer (NSCLC). Total numbers of 66 histopathologically confirmed cases of NSCLC and 10 cases of benign control samples embedded with wax were studied. We assessed EGFR, TGF-α and P-AKT by the use of specific antibody through immunohistochemistry as directed by the manufacturer, and detected PTEN expression by in situ hybridization. There were progressive loss of PTEN expression and significant increasing in EGFR, TGF-α, P-AKT expression from benign samples to NSCLC (p<0.05). The overexpression of EGFR, TGF-α, P-AKT and loss of PTEN expression were correlated to differentiation extent of cancer tissue, metastasis of lymph nodes and histological classification. Thus, alteration of EGFR, TGF-α, P-AKT and PTEN are likely important molecular events in pathogenesis and carcinogenesis of NSCLC.  相似文献   

8.
The strong up-regulation of inflammatory mediators has been reported to play a key role in acute pancreatitis (AP). Elevated serum levels of interleukin-1β (IL-1β) are associated with the development of AP. However, the precise effect and mechanism of IL-1β in AP remains obscure. In this study, we investigated the potential role and mechanism of IL-1β in AP. We measured autophagy activation in response to IL-1β in AR42J cells. The disrupting effects of IL-1β on cellular Ca2+ were observed. To determine whether the disruption of Ca2+ signaling has protective effects in vivo during AP, male C57BL/6 mice were treated with cerulein to induce AP. We found that the treatment of AR42J cells with IL-1β triggered autophagy and that the autophagic flux was impaired. In addition, IL-1β induced Ca2+ release from the ER. Furthermore, the expression of the ER stress markers GRP78 and IRE1 also increased. 2APB, an antagonist of the InsP3 receptor, inhibited increased expression of autophagy markers. Subsequent biochemical assays revealed that co-culture with IL-1β could induce the activation of trypsinogen to trypsin and reduce the viability of acinar cells. Pathological changes of the pancreas were also observed in vivo. We found that the pathological injuries of the pancreas were significantly alleviated in mice co-treated with 2APB. Taken together, our results indicate that IL-1β can induce trypsin activation and decrease cellular viability in pancreatic acinar cells. These effects depend on impaired autophagy via intracellular calcium changes. Ca2+ signaling may become a promising therapeutic target in the treatment of pancreatitis.  相似文献   

9.
It has been approved for the clinical application of β-elemene to treat various cancers mainly brain tumors in China. In the present study, we found that β-elemene significantly inhibited the in vitro growth of human breast cancer cells by inducing apoptosis. In addition, β-elemene also induced the conversion of LC3-I into LC3-II as well as the formation of autolysosomes, indicating the activation of autophagy. Interestingly, inhibition of autophagy significantly potentiated the growth-inhibitory effect of β-elemene on breast cancer cells. In summary, β-elemene induced cytoprotective autophagy in human breast cancer cells in addition to apoptosis. Inhibition of autophagy significantly enhanced the cytotoxicity of β-elemene to human breast cancer cells. Therefore, combination of β-elemene with autophagy inhibitors could be a promising strategy for the treatment of breast cancer.  相似文献   

10.
Human aldo-keto reductase family 1 member C3 (AKR1C3) was initially identified as an enzyme in reducing 5α-dihydrotestosterone (5α-DHT) to 5α-androstane-3α, 17β-diol (3α-diol) and oxidizing 3α-diol to androsterone. It was subsequently demonstrated to possess ketosteroid reductase activity in metabolizing other steroids including estrogen and progesterone, 11-ketoprostaglandin reductase activity in metabolizing prostaglandins, and dihydrodiol dehydrogenase x (DDx) activity in metabolizing xenobiotics. AKR1C3 was demonstrated in sex hormone-dependent tissues including testis, breast, endometrium, and prostate; in sex hormone-independent tissues including kidney and urothelium. Our previous study described the expression of AKR1C3 in squamous cell carcinoma and adenocarcinoma but not in small cell carcinoma. In this report, we studied the expression of AKR1C3 in normal tissue, adenocarcinomas (43 cases) and neuroendocrine (NE) tumors (40 cases) arising from the aerodigestive tract and pancreas. We demonstrated wide expression of AKR1C3 in superficially located mucosal cells, but not in NE cells. AKR1C3-positive immunoreactivity was detected in 38 cases (88.4%) of adenocarcinoma, but only in 7 cases (17.5%) of NE tumors in all cases. All NE tumors arising from the pancreas and appendix and most tumors from the colon and lung were negative. The highest ratio of positive AKR1C3 in NE tumors was found in tumors arising from the small intestine (50%). These results raise the question of AKR1C3’s role in the biology of normal mucosal epithelia and tumors. In addition, AKR1C3 may be a useful adjunct marker for the exclusion of the NE phenotype in diagnostic pathology.  相似文献   

11.
Background and objectivesAbnormal activation of the PI3K/AKT pathway is closely related to tumor occurrence, development and angiogenesis. PI3K, as a key protein in the PI3K/Akt pathway, has different subtypes that play diverse roles in various tumors. The aim of this study was to examine the roles of different PI3K protein subtypes (PI3Kp110α, PI3Kp110β, and PI3Kp110δ) in the metastasis, angiogenesis and prognosis of hepatocellular carcinoma (HCC).MethodsThe roles of different PI3K protein subtypes in the metastasis, angiogenesis and prognosis of HCC were assessed by immunohistochemical staining of 97 HCC tissues and the STRING database.ResultsOur results showed that PI3Kp110α and PI3Kp110δ were associated with HCC metastasis and angiogenesis. Patients with high expression of PI3Kp110α and PI3Kp110δ had a worse prognosis and shorter survival time, respectively, than those with low expression, whereas these effects were not observed for PI3Kp110β. Cox regression analysis showed that PI3Kp110α and clinical stage were independent risk factors for the overall survival of HCC patients.ConclusionsPI3Kp110α and PI3Kp110δ promoted HCC metastasis and angiogenesis via the PI3K/AKT pathway, and PI3Kp110α was an independent risk factor for HCC patients. These findings provide valuable insights for the prognosis evaluation and the selection of subtype inhibitors of HCC patients.  相似文献   

12.
The therapeutic effect of dihydroartemisinin (DHA) against cutaneous squamous cell carcinoma (cSCC) has been previously demonstrated; however, the underlying mechanism remains unclear. This study sought to verify the therapeutic effect of DHA against cSCC and explore its underlying mechanism in A431 cSCC cells. This study reported that DHA inhibited A431 cells proliferation in a time- and concentration-dependent manner and promoted A431 cells apoptosis. Moreover, DHA inhibited the invasion and migration of A431 cells. Mechanistically, DHA promoted autophagy and inhibited activation of the absent in melanoma 2 (AIM2) inflammasome pathway and NF-κB/HIF-1α/VEGF pathway. Treatment of A431 cells with the mTOR inhibitor, and autophagy promoter, rapamycin also inhibited these two pathways. In conclusion, DHA inhibited activation of the AIM2 inflammasome pathway and NF-κB/HIF-1α/VEGF pathway by promoting autophagy in A431 cells, thus accounting for its therapeutic effect. Induction of autophagy by DHA may be mediated by inhibiting the mTOR pathway and promoting reactive oxygen species production.  相似文献   

13.
Increased PI 3-kinase (PI3K) signaling in pancreatic ductal adenocarcinoma (PDAC) correlates with poor prognosis, but the role of class I PI3K isoforms during its induction remains unclear. Using genetically engineered mice and pharmacological isoform-selective inhibitors, we found that the p110α PI3K isoform is a major signaling enzyme for PDAC development induced by a combination of genetic and nongenetic factors. Inactivation of this single isoform blocked the irreversible transition of exocrine acinar cells into pancreatic preneoplastic ductal lesions by oncogenic Kras and/or pancreatic injury. Hitting the other ubiquitous isoform, p110β, did not prevent preneoplastic lesion initiation. p110α signaling through small GTPase Rho and actin cytoskeleton controls the reprogramming of acinar cells and regulates cell morphology in vivo and in vitro. Finally, p110α was necessary for pancreatic ductal cancers to arise from Kras-induced preneoplastic lesions by increasing epithelial cell proliferation in the context of mutated p53. Here we identify an in vivo context in which p110α cellular output differs depending on the epithelial transformation stage and demonstrate that the PI3K p110α is required for PDAC induced by oncogenic Kras, the key driver mutation of PDAC. These data are critical for a better understanding of the development of this lethal disease that is currently without efficient treatment.  相似文献   

14.
Ovarian carcinoma the commonly observed gynecological cancers has a high mortality rate. In the present study effect of retinoic acid aliphatic amide (RACA) in ovarian cancer cells was investigated using proliferation, migration and invasion assays. Western blot was used to examine the Bcl-2, cleaved caspase 3, p-ERK, MMP-2, p-FAK, P-P38, p-AMPKα and HIF-1α protein expression. CoCl2 was used to induce HIF-1α expression in SKOV3ip. 1 and HEY-A8 cells. The results revealed that RACA treatment prompted cell proliferation, invasion and migration but inhibited apoptosis of SKOV3ip. 1 and HEY-A8 cells. RACA treatment also induced upregulation of Bcl-2 and MMP-2, activation of p-P38, p-ERK and p-FAK, inhibition of cleaved caspase 3. RACA treatment also caused upregulatation of HIF-1α in ovarian cells with the activation of p-AMPKα. Upregulation of HIF-1α expression in CoCl2-treated cancer cells resulted in decrease in SDHB. Thus RACA plays a key role in cell proliferation, invasion, migration and apoptosis of human ovarian carcinoma through AMPK-HIF-1α pathway.  相似文献   

15.
The specific mechanism underlying the role of putative stem cell marker aldehyde dehydrogenase 1 (ALDH1) playing in development and progression of breast cancer is currently unclear. Transforming growth factor β (TGFβ) signaling pathway is reported to be activated in most cancers. Thus a study was initiated to explore possible differences and correlation of ALDH1 and TGFβ2 expression in the most common malignant and benign tumors of the breast in Chinese women. Samples of 75 breast cancer tissues, 30 paracancerous normal tissues, and 39 fibroadenoma breast tissues were investigated for the expression of ALDH1 and TGFβ2 using immunohistochemistry. The positive rates of ALDH1 and TGFβ2 protein were 62.67% and 66.67%, respectively, in breast cancer tissues, which were significantly higher than that in normal fibroadenoma breast (P<0.05) and paracancerous tissues (P<0.01). ALDH1 and TGFβ2 status were significantly associated with tumor histological grade and receptor status (P<0.05). Expression of ALDH1 was found to be positively correlative to TGFβ2 in breast cancer (r = 0.33, P<0.01). Expression of both proteins remained significantly associated with reduced overall survival (OS) by univariate analysis (P<0.05). Multivariate Cox regression analysis showed that ALDH1 expression, tumor stage, and lymph node status are independent prognostic factors in invasive breast cancer patients. Thus ALDH1 and TGFβ2 play important roles in the development of breast cancer. The ALDH1 phenotype is an independent predictor of poor prognosis, and TGFβ2 signaling pathway activation might be involved in the pathological regulation of ALDH1 in breast cancer.  相似文献   

16.
PTEN hamartoma tumor syndrome (PHTS) comprises a collection of genetic disorders associated with germline mutations in the tumor suppressor gene PTEN. Therapeutic options and preventative measures for PHTS are limited. Using both genetically engineered mouse models and pharmacological PI3K isoform-selective inhibitors, we found that the roles of PI3K isoforms are spatially distinct in the skin: While p110α is responsible for the sustained survival of suprabasal cells of the epidermis in the absence of PTEN, p110β is important for the hyperproliferation of basal cells in PHTS. Furthermore, we identified a differential expression pattern of p110α and p110β in basal and suprabasal keratinocytes as well as differential PI3K regulation by upstream signals in the basal and suprabasal compartments of the epidermis, providing a potential molecular mechanism underlying the specific roles of PI3K isoforms in the epidermis. Finally, we demonstrate that combined inhibition of both PI3K isoforms prevents the development of PHTS and also reverses skin hamartomas that have reached advanced stages in mice. Together, these results not only advance our overall understanding of the diverse roles of PI3K isoforms, but also have the potential for meaningful translation via the clinical utilization of PI3K inhibitors for both prevention and therapy in PHTS patients.  相似文献   

17.
Bone metastasis is mediated by complex interactions between tumor cells and resident stromal cells in the bone microenvironment. The functions of metalloproteinases in organ-specific metastasis remain poorly defined despite their well-appreciated role in matrix degradation and tumor invasion. Here, we show a mechanism whereby two distinct metalloproteinases, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS1) and matrix metalloproteinase-1 (MMP1), orchestrate a paracrine signaling cascade to modulate the bone microenvironment in favor of osteoclastogenesis and bone metastasis. Proteolytic release of membrane-bound epidermal growth factor (EGF)-like growth factors, including Amphiregulin (AREG), heparin-binding EGF (HB-EGF), and transforming growth factor α (TGFα) from tumor cells suppress the expression of osteoprotegerin (OPG) in osteoblasts and subsequently potentiate osteoclast differentiation. EGF receptor (EGFR) inhibitors block osteolytic bone metastasis by targeting EGFR signaling in bone stromal cells. Furthermore, elevated MMP1 and ADAMTS1 expression is associated with increased risk of bone metastasis in breast cancer patients. This study established MMP1 and ADAMTS1 in tumor cells, as well as EGFR signaling in osteoblasts, as promising therapeutic targets for inhibiting bone metastasis of breast cancer.  相似文献   

18.
Olfactory dysfunction is one of the early symptoms seen in Parkinson’s disease (PD). However, the mechanisms underlying olfactory pathology that impacts PD disease progression and post‐mortem appearance of alpha‐Synuclein (α‐Syn) inclusions in and beyond olfactory bulb in PD remain unclear. It has been suggested that environmental toxins inhaled through the nose can induce inflammation in the olfactory bulb (OB), where Lewy body (LB) is the first to be found, and then, spread to related brain regions. We hypothesize that OB inflammation triggers local α‐Syn pathology and promotes its spreading to cause PD. In this study, we evaluated this hypothesis by intranasal infusion of lipopolysaccharides (LPS) to induce OB inflammation in mice and examined cytokines expression and PD‐like pathology. We found intranasal LPS‐induced microglia activation, inflammatory cytokine expression and α‐Syn overexpression and aggregation in the OB via interleukin‐1β (IL‐1β)/IL‐1 receptor type I (IL‐1R1) dependent signaling. In addition, an aberrant form of α‐Syn, the phosphorylated serine 129 α‐Syn (pS129 α‐Syn), was found in the OB, substantia nigra (SN) and striatum 6 weeks after the LPS treatment. Moreover, 6 weeks after the LPS treatment, mice showed reduced SN tyrosine hydroxylase, decreased striatal dopaminergic metabolites and PD‐like behaviors. These changes were blunted in IL‐1R1 deficient mice. Further studies found the LPS treatment inhibited IL‐1R1‐dependent autophagy in the OB. These results suggest that IL‐1β/IL‐1R1 signaling in OB play a vital role in the induction and propagation of aberrant α‐Syn, which may ultimately trigger PD pathology.  相似文献   

19.
20.
Chondrocyte apoptosis is mostly responsible for the development and progression of osteoarthritis. IL-1β is generally served as an agent that induces chondrocyte apoptosis. Shikonin exerts its anti-inflammatory effect on cartilage protection in vivo. We aimed to explore the protective effect of shikonin on interleukin-1beta (IL-1β)-induced chondrocyte apoptosis and the potential molecular mechanisms. Chondrocytes were isolated from the joints of newborn Sprague-Dawley rats. The MTT assay and LDH cell death assay were used to determine the cell viability and chondrocyte apoptosis was detected by Annexin-V/PI staining and nucleosomal degradation. The contents of phosphorylated-PI3K (p-PI3k), phosphorylated-Akt (p-Akt), Bcl-2, Bax, and cytochrome c were detected by Western blotting. A quantitative colorimetric assay was used to detect the caspase-3 activity. Our results showed that pretreatment with shikonin (4 μM) inhibited cytotoxicity and apoptosis induced by IL-1β (10 ng/ml) in chondrocytes. Shikonin pretreatment also decreased the activity of IL-1β that decreased Bcl-2 expression and levels of p-PI3K and p-Akt, and increased Bax expression, cytochrome c release, and caspase-3 activation. It also reversed the activity of IL-1β that promoted the synthesis of matrix metalloproteinase-13 and inhibited the expression of tissue inhibitor of metalloproteinase-1 expression, with the net effect of suppressing extracellular matrix degradation. These data suggested that shikonin may protect chondrocytes from apoptosis induced by IL-1β through the PI3K/Akt signaling pathway, by deactivating caspase-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号