首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 探讨骨髓基质干细胞(BMSCs)与软骨细胞体外共培养成软骨的可行性,以及能有效促进BMSCs的软骨向分化混合培养的比例.方法 以全骨髓法及梯度密度离心法分离幼兔BMSCs、梯度密度离心法分离软骨细胞,并分别对这2种细胞进行培养、扩传,将P2 BMSCs与P3软骨细胞进行体外共培养,分为:BMSCs/软骨细胞为2/1及4/1的2个共培养组,软骨细胞组,BMSCs组,分别于第1,3,5,7,9 d以MTT法检测细胞的增殖情况;分别于第1、2、3周对4组的细胞进行甲苯胺蓝染色及以RT-PCR方法检测蛋白多糖和Ⅱ型胶原表达的变化.结果 2种分离培养方法所得BMSCs及软骨细胞增殖旺盛,细胞形态正常,各组增殖情况良好,1,3,5,7,9 d时各组之间的差异具有统计学意义(P<0.05),但2/1与4/1共培养组之间无显著性差异;2/1及4/1共培养组在3周时以软骨样细胞为主,细胞呈均一异染,细胞被染成紫色,核仁染成深蓝色;蛋白多糖及Ⅱ型胶原基因表达:在1,2,3周时各组之间的差异具有统计学意义(P<0.05),共培养组和软骨细胞组3组之间蛋白多糖及Ⅱ型胶原表达水平无显著性差异,且均与BMSCs组之间有显著性差异,具有统计学意义(P<0.05).结论 将BMSCs与软骨细胞体外共培养,可以被有效地诱导为软骨细胞,软骨微环境在BMSCs分化为软骨细胞的过程中起到了很重要的作用.  相似文献   

2.
Osteoarthritis (OA) is a chronic health condition. MicroRNAs (miRs) are critical in chondrocyte apoptosis in OA. We aimed to investigate the mechanism of miR-130b in OA progression. Bone marrow mesenchymal stem cells (BMSCs) and chondrocytes were first extracted. Chondrogenic differentiation of BMSCs was carried out and verified. Chondrocytes were stimulated with interleukin (IL)-1β to imitate OA condition in vitro. The effect of miR-130b on the viability, inflammation, apoptosis, and extracellular matrix of OA chondrocytes was studied. The target gene of miR-130b was predicted and verified. Rescue experiments were performed to further study the underlying downstream mechanism of miR-130b in OA. miR-130b first increased and drastically reduced during chondrogenic differentiation of BMSCs and in OA chondrocytes, respectively, while IL-1β stimulation resulted in increased miR-130b expression in chondrocytes. miR-130b inhibitor promoted chondrogenic differentiation of BMSCs and chondrocyte growth and inhibited the levels of inflammatory factors. miR-130b targeted SOX9. Overexpression of SOX9 facilitated BMSC chondrogenic differentiation and chondrocyte growth, while siRNA-SOX9 contributed to the opposite trends. Silencing of SOX9 significantly attenuated the pro-chondrogenic effects of miR-130b inhibitor on BMSCs. Overall, miR-130b inhibitor induced chondrogenic differentiation of BMSCs and chondrocyte growth by targeting SOX9.  相似文献   

3.
4.
背景:使用体外构建的组织工程软骨治疗软骨损伤是目前的研究热点,材料与支架材料的选择仍有较多问题尚待解决。 目的:观察脂肪基质干细胞-小肠黏膜下层复合物在体外经成软骨诱导培养基诱导分化的效果。 方法:将第3代脂肪基质干细胞接种于复水后的小肠黏膜下层双面,加入成软骨诱导培养基,于体外诱导培养7 d和14 d后,使用实时荧光定量RT-PCR检测Ⅱ型胶原mRNA,免疫组织化学染色检测Ⅱ型胶原蛋白,甲苯胺蓝染色观察细胞外基质,扫描电镜观察体外成软骨诱导14 d后细胞在支架材料上的生长状况。 结果与结论:Ⅱ型胶原mRNA实时荧光定量RT-PCR检测提示,体外成软骨诱导后7,14 d的脂肪基质干细胞-小肠黏膜下层复合物Ⅱ型胶原mRNA的标化值与未诱导的脂肪基质干细胞-小肠黏膜下层复合物差异有显著性意义( < 0.05),诱导  14 d与诱导7 d相比,差异亦有显著性意义(P < 0.05)。脂肪基质干细胞-小肠黏膜下层复合物成软骨诱导后14 d,Ⅱ型胶原免疫组织化学染色为阳性,甲苯胺蓝染色可见基质异染,未诱导的复合物Ⅱ型胶原免疫组织化学染色为阴性。扫描电镜检测显示诱导14 d时,细胞长满支架材料的双面。提示脂肪基质干细胞复合至小肠黏膜下层后,在体外经成软骨诱导培养基成软骨诱导后,能够向成软骨细胞分化。  相似文献   

5.
The current study was designed to observe chondrogenic differentiation of adipose derived stem cells (ASCs) on fibrous polyglycolic acid (PGA) scaffold stabilized with polylactic acid (PLA), and to further explore the feasibility of using the resulting cell/scaffold constructs to repair full thickness articular cartilage defects in non-weight bearing area in porcine model within a follow-up of 6 months. Autologous ASCs isolated from subcutaneous fat were expanded and seeded on the scaffold to fabricate ASCs/PGA constructs. Chondrogenic differentiation of ASCs in the constructs under chondrogenic induction was monitored with time by measuring the expression of collagen type II (COL II) and glycosaminoglycan (GAG). The constructs after being in vitro induced for 2 weeks were implanted to repair full thickness articular cartilage defects (8 mm in diameter, deep to subchondral bone) in femur trochlea (the experimental group), while scaffold alone was implanted to serve as the control. Histologically, the generated neo-cartilage integrated well with its surrounding normal cartilage and subchondral bone in the defects of experimental group at 3 months post-implantation, whereas only fibrous tissue was filled in the defects of control group. Immunohistochemical and toluidine blue staining confirmed the similar distribution of COL II and GAG in the regenerated cartilage as the normal one. A vivid remolding process with post-operation time was also witnessed in the neo-cartilage as its compressive moduli increased significantly from 50.55% of the normal cartilage at 3 months to 88.05% at 6 months. The successful repair thus substantiates the potentiality of using chondrogenic induced ASCs and PGA/PLA scaffold for cartilage regeneration.  相似文献   

6.
Xue JX  Gong YY  Zhou GD  Liu W  Cao Y  Zhang WJ 《Biomaterials》2012,33(24):5832-5840
Acellular cartilage sheets (ACSs) have been used as scaffolds for engineering cartilage with mature chondrocytes. In this study we investigated whether ACSs possess a chondrogenic induction activity that may benefit cartilage engineering with multipotent stem cells. Bone marrow-derived mesenchymal stem cells (BMSCs) isolated from newborn pigs were expanded in vitro and seeded on ACSs that were then stacked layer-by-layer to form BMSC-ACS constructs. Cells seeded on polyglycolic acid/polylactic acid (PGA/PLA) scaffolds served as a control. After 4 weeks of culture with or without additional chondrogenic factors, constructs were subcutaneously implanted into nude mice for another 4 weeks. Cartilage-like tissues were formed after 4 weeks of culture. However, formation of cartilage with a typical lacunar structure was only observed in induced groups. RT-PCR showed that aggrecan, COMP, type II collagen and Sox9 were expressed in all groups except the non-induced BMSC-PGA/PLA group. At 4 weeks post-implantation, cartilage formation was achieved in the induced BMSC-ACS group and partial cartilage formation was achieved in the non-induced BMSC-ACS group, confirmed by safranin O staining, toluidine blue staining and type II collagen immunostaining. In addition, enzyme-linked immunosorbent assay demonstrated the presence of transforming growth factor-β1, insulin-like growth factor-1 and bone morphogenic protein-2 in ACSs. These results indicate that ACSs possess a chondrogenic induction activity that promotes BMSC differentiation.  相似文献   

7.
PurposeOur previous work demonstrated that miRNA-495 targets SOX9 to inhibit chondrogenesis of mesenchymal stem cells. In this study, we aimed to investigate whether miRNA-495-mediated SOX9 regulation could be a novel therapeutic target for osteoarthritis (OA) using an in vitro cell culture model.Materials and MethodsAn in vitro model mimicking the OA environment was established using TC28a2 normal human chondrocyte cells. Interleukin-1β (IL-1β, 10 ng/mL) was utilized to induce inflammation-related changes in TC28a2 cells. Safranin O staining and glycosaminoglycan assay were used to detect changes in proteoglycans among TC28a2 cells. Expression levels of COX-2, ADAMTS5, MMP13, SOX9, CCL4, and COL2A1 were examined by qRT-PCR and/or Western blotting. Immunohistochemistry was performed to detect SOX9 and CCL4 proteins in human cartilage tissues obtained from patients with OA.ResultsmiRNA-495 was upregulated in IL-1β-treated TC28a2 cells and chondrocytes from damaged cartilage tissues of patients with OA. Anti-miR-495 abolished the effect of IL-1β in TC28a2 cells and rescued the protein levels of SOX9 and COL2A1, which were reduced by IL-1β. SOX9 was downregulated in the damaged cartilage tissues of patients with OA, and knockdown of SOX9 abolished the effect of anti-miR-495 on IL-1β-treated TC28a2 cells.ConclusionWe demonstrated that inhibition of miRNA-495 alleviates IL-1β-induced inflammatory responses in chondrocytes by rescuing SOX9 expression. Accordingly, miRNA-495 could be a potential novel target for OA therapy, and the application of anti-miR-495 to chondrocytes could be a therapeutic strategy for treating OA.  相似文献   

8.
Lee JM  Im GI 《Biomaterials》2012,33(7):2016-2024
The aim of this study was to test the hypotheses that retroviral gene transfer of SOX trio enhances the in vitro chondrogenic differentiation of ASCs, and that SOX trio-co-transduced ASCs in fibrin gel promote the healing of osteochondral defects, and arrest the progression of surgically-induced osteoarthritis in a rat model. ASCs isolated from inguinal fat in rats were transduced with SOX trio genes using retrovirus, and further cultured in vitro in pellets for 21 days, then analyzed for gene and protein expression of SOX trio and chondrogenic markers. SOX trio-co-transduced ASCs in fibrin gel were implanted on the osteochondral defect created in the patellar groove of the distal femur, and also injected into the knee joints of rats with surgically-induced osteoarthritis. Rats were sacrificed after 8 weeks, and analyzed grossly and microscopically. After 21 days, ASCs transduced with SOX-5, -6, or -9 had hundreds-fold greater gene expression of each gene compared with the control with the SOX protein expression matching gene expression. SOX trio-co-transduction significantly increased GAG contents as well as type II collagen gene and protein expression. ASCs co-transduced with SOX trio significantly promoted the in vivo cartilage healing in osteochondral defect model, and prevented the progression of degenerative changes in surgically-induced osteoarthritis.  相似文献   

9.
Previously, we had addressed the issues of shape control/maintenance of in vitro engineered human-ear-shaped cartilage. Thus, lack of applicable cell source had become a major concern that blocks clinical translation of this technology. Autologous microtia chondrocytes (MCs) and bone marrow stromal cells (BMSCs) were both promising chondrogenic cells that did not involve obvious donor site morbidity. However, limited cell availability of MCs and ectopic ossification of chondrogenically induced BMSCs in subcutaneous environment greatly restricted their applications in external ear reconstruction. The current study demonstrated that MCs possessed strong proliferation ability but accompanied with rapid loss of chondrogenic ability during passage, indicating a poor feasibility to engineer the entire ear using expanded MCs. Fortunately, the co-transplantation results of MCs and BMSCs (25% MCs and 75% BMSCs) demonstrated a strong chondroinductive ability of MCs to promote stable ectopic chondrogenesis of BMSCs in subcutaneous environment. Moreover, cell labeling demonstrated that BMSCs could transform into chondrocyte-like cells under the chondrogenic niche provided by co-cultured MCs. Most importantly, a human-ear-shaped cartilaginous tissue with delicate structure and proper elasticity was successfully constructed by seeding the mixed cells (MCs and BMSCs) into the pre-shaped biodegradable ear-scaffold followed by 12 weeks of subcutaneous implantation in nude mouse. These results may provide a promising strategy to construct stable ectopic cartilage with MCs and stem cells (BMSCs) for autologous external ear reconstruction.  相似文献   

10.
Cao L  Yang F  Liu G  Yu D  Li H  Fan Q  Gan Y  Tang T  Dai K 《Biomaterials》2011,32(16):3910-3920
Although Sox9 is essential for chondrogenic differentiation and matrix production, its application in cartilage tissue engineering has been rarely reported. In this study, the chondrogenic effect of Sox9 on bone marrow mesenchymal stem cells (BMSCs) in vitro and its application in articular cartilage repair in vivo were evaluated. Rabbit BMSCs were transduced with adenoviral vector containing Sox9. Toluidine blue, safranin O staining and real-time PCR were performed to check chondrogenic differentiation. The results showed that Sox9 could induce chondrogenesis of BMSCs both in monolayer and on PGA scaffold effectively. The rabbit model with full-thickness cartilage defects was established and then repaired by PGA scaffold and rabbit BMSCs with or without Sox9 transduction. HE, safranin O staining and immunohistochemistry were used to assess the repair of defects by the complex. Better repair, including more newly-formed cartilage tissue and hyaline cartilage-specific extracellular matrix and greater expression of several chondrogenesis marker genes were observed in PGA scaffold and BMSCs with Sox9 transduction, compared to that without transduction. Our findings defined the important role of Sox9 in the repair of cartilage defects in vivo and provided evidence that Sox9 had the potential and advantage in the application of tissue engineering.  相似文献   

11.
Kang N  Liu X  Guan Y  Wang J  Gong F  Yang X  Yan L  Wang Q  Fu X  Cao Y  Xiao R 《Biomaterials》2012,33(18):4535-4544
Co-culture of BMSCs and chondrocytes is considered as a promising strategy to generate tissue engineered cartilage as chondrocytes induce the chondrogenesis of BMSCs and inhibit the hypertrophy of engineered cartilage. Because the tissue specific stem/progenitor cells have been isolated from mature tissues including auricular cartilage, we hypothesized that adding stem cells to auricular chondrocytes in co-culture would also enhance the quality of engineered cartilage. In the present study, using the histological assay, biomechanical evaluation, and quantitative analysis of gene expression, we compared different strategies of auricular chondrocytes, BMSCs induction, and co-culture at different ratios on PGA/PLA scaffolds to construct tissue engineered elastic cartilage in vitro and in vivo. The up-regulation of RUNX2 and down-regulation of SOX9 were found in BMSCs chondrogenic induction group, which might imply a regulatory mechanism for the hypertrophy and potential osteogenic differentiation. Engineered cartilage in co-culture 5:5 group showed the densest elastic fibers and the highest Young's modulus, which were consistent with the expression profile of cartilage matrix-related genes including DCN and LOXL2 genes. Moreover, the better proliferative and chondrogenic potentials of engineered cartilage in co-culture 5:5 group were demonstrated by the stronger expression of Ki67 and Dlk1.  相似文献   

12.
背景:研究表明,软骨中的主要成分Ⅱ型胶原的基因-Col2a1在软骨细胞中的表达与SOX9 的浓度呈剂量依赖正相关关系。 目的:通过成骨、成软骨、成脂肪诱导干细胞分化,分析3种分化过程及不同时期的SOX9与Ⅱ型胶原 mRNA含量的变化,探讨SOX9在不同时空分布的表达规律及与Ⅱ型胶原的相关关系。 方法:取4周龄昆明小鼠骨髓间充质细胞,体外培养得到间充质干细胞并传达至第3代,对间充质干细胞进行流式细胞仪鉴定细胞表型,共分3组每组设3个时间段,通过成骨、成软骨、成脂肪3种诱导培养液对3组细胞进行诱导,另设不进行诱导的细胞作为对照组。分别在诱导3,7,14 d后收集提取细胞的总RNA,通过RT-PCR进行SOX9与Ⅱ型胶原的mRNA定量检测,同时对诱导后的细胞进行染色、免疫荧光染色,观察其分化状态及相关统计分析。 结果与结论:第3代骨髓间充质干细胞生长良好,流式细胞仪鉴定细胞表型证实为干细胞,对诱导后细胞进行染色、免疫荧光染色结果证实细胞分化为骨、软骨、脂肪细胞。经RT-PCR检测,在3组诱导分化细胞中SOX9 mRNA含量由高到低分别是成软骨、成骨、成脂肪,Ⅱ型胶原 mRNA含量由高到低分别是成软骨、成脂肪、成骨。在成软骨分化中SOX9在3,7 d表达不断升高,14 d呈下降趋势。Ⅱ型胶原在3,7,14 d均逐渐升高。在成骨分化中SOX9 mRNA含量随着时间推移而增加,而Ⅱ型胶原则随着时间推移而不断降低。在成脂肪分化中SOX9 mRNA表达与对照组比较差异无显著性意义(P > 0.05);而Ⅱ型胶原的表达没有规律可循,时间点的延伸及检测未观察到。结果提示,SOX9在软骨分化中作用优于成骨、成脂肪组,且软骨分化中SOX9与Ⅱ型胶原存在相关性,可能在软骨分化的早期Ⅱ型胶原随着SOX9的变化而变化;且软骨分化和成骨分化过程中SOX9可能起到了一个互相协调促进平衡的关键作用。  相似文献   

13.
背景:实验证实鹿茸多肽可以促进体外培养软骨细胞的增殖和细胞外基质糖胺多糖、Ⅱ型胶原、Aggrecan蛋白的表达。 目的:通过对体外培养的兔骨髓间充质干细胞在特定培养液作用下向软骨细胞表型分化的研究,探讨鹿茸多肽对其软骨分化的影响。 方法:将第3代兔骨髓间充质干细胞随机分为空白对照组、诱导组、鹿茸多肽组,分别采用普通培养液、诱导培养液、含10 mg/L鹿茸多肽的诱导培养液于离心管内进行培养;并取兔的关节软骨细胞作为关节软骨组。分别于1,2,3周后取材,通过组织学、生物化学和RT-PCR技术,对离心管内构建的软骨组织进行形态学和细胞功能状态的观察。 结果与结论:空白对照组培养2周后,细胞团块逐渐崩解,无法进行苏木精-伊红染色。诱导组、鹿茸多肽组细胞团块除有轻度收缩外,呈白色半透明状;苏木精-伊红染色发现部分细胞为圆形或卵圆形,表层细胞密度大;诱导组、鹿茸多肽组糖胺多糖含量及Ⅱ型胶原mRNA表达随培养时间延长而增多,各时间点诱导组、鹿茸多肽组含量均高于空白对照组(P < 0.05);各时间点鹿茸多肽组糖胺多糖含量及Ⅱ型胶原mRNA表达均高于诱导组,但低于关节软骨组 (P< 0.05)。提示骨髓间充质干细胞在特定培养条件下能向软骨细胞表型分化,且鹿茸多肽对其定向软骨分化有明显促进作用。虽然在体外可以构建出软骨组织,但其与关节软骨质量相比仍有很大差距。  相似文献   

14.
背景:透明质酸是关节腔滑液最主要的成分,对细胞的形态发生起着非常重要的作用,但其用于软骨缺损修复时对骨髓间充质干细胞的影响如何呢? 目的:通过分析外源性透明质酸对兔骨髓间充质干细胞体外增殖及定向分化为软骨细胞的影响,探讨关节腔内环境对骨髓间充质干细胞的作用。 方法:全骨髓法+贴壁培养法分离培养兔骨髓间充质干细胞,取第4代细胞用于实验,实验组细胞加入透明质酸诱导液,以转化生长因子β3诱导组作为阳性对照,阴性对照组加入常规培养液。分别于诱导后第7,14,21 d行甲苯胺蓝染色检测蛋白聚糖表达,免疫组化染色及RT-PCR检测细胞Ⅱ型胶原表达。 结果与结论:经透明质酸诱导后,细胞增殖速度减慢,由长梭形变为多角形、椭圆形,细胞外基质呈甲苯胺蓝异染性和Ⅱ型胶原免疫组化阳性,RT-PCR检测示Ⅱ型胶原mRNA表达阳性,表现出软骨细胞的分化特点,但表达均比阳性对照组弱。结果提示,外源性透明质酸具有诱导兔骨髓间充质干细胞向软骨细胞分化的能力,但比转化生长因子β3的诱导能力弱,关节腔内环境对骨髓间充质干细胞向软骨细胞分化有正性促进作用,支持透明质酸作为软骨组织工程基质使用。  相似文献   

15.
For the application of bone marrow stromal cells (BMSCs) in cartilage tissue engineering, it is imperative to develop efficient strategies for their chondrogenic differentiation. In this study, the conditioned media derived from chondrocyte/scaffold constructs were used to direct chondrogenic differentiation of BMSCs. The porcine articular chondrocytes were seeded on the PGA/PLA scaffolds to form chondrocyte/scaffold constructs and were cultured to form engineered cartilage in vitro. The culture media were collected as conditioned media and used for chondrogenic induction of BMSC pellets (experimental group, Exp.). The chondrocyte pellets and BMSC pellets were cultured routinely as positive control (PC) and negative control (NC), respectively. After 4 weeks, the wet weight and GAG content in Exp. group and PC group were significantly higher than that in NC group. Histological and immunohistochemical analysis showed that cartilaginous tissue was formed with typical cartilage lacuna structure and positive staining of collagen Type II (Col II) in the peripheral area of the BMSC pellets in Exp. group. Gene expression of Sox9, Col II, and COMP in Exp. group and PC group were significantly higher than that in NC group. The growth factors in the conditioned media derived from human costal chondrocytes‐scaffold constructs were tested by protein microassay. The conditioned media contained low levels of TGF‐β1,2,3, IGF‐1 and high levels of IGF‐2, FGF‐4, and IGFBP4,6, and so forth. The soluble factors derived from the engineered cartilage can induce chondrogenic differentiation of BMSCs independently. Many cytokines may function in chondrogenesis in a coordinated way. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
背景:内源性诱导软骨分为就是通过一定的载体将目的基因整合入干细胞内,使其自行分泌诱导因子诱导自身进行分化。 目的:观察将转化生长因子β3通过腺相关病毒载体转染诱导兔骨髓间充质干细胞向软骨表型转化的能力。 方法:取体外培养的第3代骨髓间充质干细胞进行重组腺相关病毒转染,将转染后3,6,9,12 d细胞裂解提取蛋白进行酶联免疫检测目的蛋白转化生长因子β3的体外表达。RT-PCR,免疫印迹western blot分别从基因和蛋白水平上检测1,2周Ⅱ型胶原的表达,甲苯胺蓝染色检测1,2周蛋白多糖的表达。 结果与结论:重组腺相关病毒转染后,骨髓间充质干细胞可以较稳定的表达目的蛋白转化生长因子β3,并且转染成功的骨髓间充质干细胞较阴性对照组能够更好的向软骨表型转化。证实转化生长因子β3可以腺相关病毒为载体转染骨髓间充质干细胞并诱导其向软骨表型分化。  相似文献   

17.
目的观察SOX6和SOX9基因转染对原发性OA关节软骨MPCs的促增殖、分化作用,为通过调控关节软骨MPCs以防治原发性OA提供理论依据。方法分别以pAdTrack-CMV-SOX6、SOX9腺病毒穿梭质粒构建SOX6、SOX9基因,并感染原发性OA关节软骨MPCs,比较基因感染组和未感染组成软骨诱导分化后TB、Ⅱ型胶原以及Ⅱ型胶原mRNA表达的变化。结果SOX6和SOX9能够分别稳定感染OA关节软骨MPCs;经二者分别感染的关节软骨MPCs成软骨诱导分化后,其TB染色、Ⅱ型胶原染色呈强阳性表达,未基因感染细胞为弱阳性着色;SOX6基因感染原发性OA关节软骨MPCs的Ⅱ型胶原mRNA表达量为未基因感染细胞的3.8倍(P0.01),SOX9基因为未感染细胞的5.15倍(P0.01)。结论构建的SOX6、SOX9基因序列与基因库报道序列完全一致;SOX6和SOX9能稳定感染原发性OA关节软骨MPCs,并显著促进感染细胞成软骨分化;提示通过适宜浓度的bFGF、TGF-β1对原发性OA关节软骨MPCs的作用及SOX6和SOX9基因感染,可能具有促进原发性OA关节软骨损伤修复的作用。  相似文献   

18.
Im GI  Kim HJ  Lee JH 《Biomaterials》2011,32(19):4385-4392
We developed a chondrogenic scaffold system in which plasmid DNA (pDNA) containing SOX trio (SOX-5, -6, and -9) genes was incorporated into a PLGA scaffold and slowly released to transfect adipose stem cells (ASCs) seeded in the scaffold. The purpose of this study was to test the in vitro and in vivo efficacy of the system to induce chondrogenic differentiation of ASCs. The pDNA/PEI-PEG complex-incorporated PLGA/Pluronic F127 porous scaffolds were fabricated by a precipitation/particulate leaching method. The following five kinds of pDNA were incorporated into the scaffolds: 1) pECFP-C1 vector without an interposed gene (control group); 2) SOX-5 plasmids; 3) SOX-6 plasmids; 4) SOX-9 plasmids; and 5) one-third doses of each plasmid (SOX-5, -6, and -9). ASCs were seeded on pDNA-incorporated PLGA scaffolds and cultured in chondrogenic media for 21 days. ASCs were also isolated from rabbits, seeded in pDNA-incorporated PLGA scaffolds, and then implanted in the osteochondral defect created on the patellar groove. The rabbits were sacrificed and analyzed grossly and microscopically 8 weeks after implantation. The percentage of transfected cells was highest on day 14, around 70%. After 21 days, PLGA scaffolds incorporated with each gene showed markedly increased expression of the corresponding gene and protein. Glycosaminoglycan (GAG) assay and Safranin-O staining showed an increased proteoglycan production in SOX trio pDNA-incorporated scaffolds. The COL2A1 gene and protein were notably increased in SOX trio pDNA-incorporated scaffolds than in the control, while COL10A1 protein expression decreased. Gross and histological findings from the in vivo study showed enhanced cartilage regeneration in ASCs/SOX trio pDNA-incorporated PLGA scaffolds.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号