首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
ATP-dependent transport of biliary constituents, such as bile acids, reduced glutathione, and bilirubin glucuronosides across the hepatocyte canalicular membrane into bile represents the decisive driving force for the formation of biliary fluid. Functional characterization, cloning, and localization of hepatocellular transporter proteins has provided a molecular understanding of the mechanisms underlying bile flow and intrahepatic cholestasis. Genetic variants in humans and genetic knockout in rodents, or transporter inhibition have indicated that both the conjugate export pump MRP2 (multidrug resistance protein 2; ABCC2) and the bile salt export pump BSEP (ABCB11) are major contributors to bile acid-independent and bile acid-dependent bile flow, respectively. In humans, genetic variants of BSEP, leading to an impaired transport activity or localization of the protein in the canalicular membrane, are associated with severe intrahepatic cholestasis. Efflux pumps of the basolateral hepatocyte membrane, particularly MRP3 (multidrug resistance protein 3; ABCC3) and MRP4 (multidrug resistance protein 4; ABCC4) pump substances from hepatocytes into sinusoidal blood. These efflux pumps have been recognized in recent years to play an important compensatory role in cholestasis and to contribute to the balance between uptake and efflux of substances during the vectorial transport from sinusoidal blood into bile. This sinusoidal efflux not only enables subsequent renal elimination, but also re-uptake of substances into neighboring and more centrally located hepatocytes in the sinusoid.  相似文献   

5.
Conjugate export pumps of the multidrug resistance protein (MRP) family mediate the ATP-dependent secretion of anionic conjugates across the canalicular and the basolateral hepatocyte membrane into bile and sinusoidal blood, respectively. Xenobiotic and endogenous lipophilic substances may be conjugated with glutathione, glucuronate, sulfate, or other negatively charged groups and thus become substrates for export pumps of the MRP family. The apical isoform, MRP2 (gene symbol ABCC2), has been localized to the apical membrane of several polarized epithelia and particularly to the canalicular membrane of hepatocytes. Absence of functionally active MRP2 glycoprotein from this membrane domain prevents the secretion of many anionic conjugates into bile. Prototypic endogenous substrates of high affinity for recombinant human MRP2 include bisglucuronosyl bilirubin, monoglucuronosyl bilirubin, and the glutathione S-conjugate leukotriene C4. Several mutations in the human MRP2 gene have been identified that lead to the absence of MRP2 from the canalicular membrane and to the conjugated hyperbilirubinemia of Dubin-Johnson syndrome. MRP2-mediated conjugate export represents a decisive final step in the detoxification of drugs, toxins, and endogenous substances. The basolateral isoform, MRP3 (gene symbol ABCC3), is upregulated in MRP2 deficiency and in extrahepatic cholestasis. MRP3 mediates the ATP-dependent transport of anionic conjugates, particularly of glucuronides and sulfoconjugates, across the basolateral hepatocyte membrane into sinusoidal blood. The inverse regulation of MRP3 and MRP2 expression under many conditions is consistent with their distinct localization and with a compensatory role of MRP3 in the hepatic secretion of anionic conjugates during impaired transport into bile.  相似文献   

6.
Jedlitschky G  Greinacher A  Kroemer HK 《Blood》2012,119(15):3394-3402
Platelets store signaling molecules (eg, serotonin and ADP) within their granules. Transporters mediate accumulation of these molecules in platelet granules and, on platelet activation, their translocation across the plasma membrane. The balance between transporter-mediated uptake and elimination of signaling molecules and drugs in platelets determines their intracellular concentrations and effects. Several members of the 2 major transporter families, ATP-binding cassette (ABC) transporters and solute carriers (SLCs), have been identified in platelets. An example of an ABC transporter is MRP4 (ABCC4), which facilitates ADP accumulation in dense granules. MRP4 is a versatile transporter, and various additional functions have been proposed, notably lipid mediator release and a role in aspirin resistance. Several other ABC proteins have been detected in platelets with functions in glutathione and lipid homeostasis. The serotonin transporter (SERT, SLC6A4) in the platelet plasma membrane represents a well-characterized example of the SLC family. Moreover, recent experiments indicate expression of OATP2B1 (SLCO2B1), a high affinity transporter for certain statins, in platelets. Changes in transporter localization and expression can affect platelet function and drug sensitivity. This review summarizes available data on the physiologic and pharmacologic role of transporters in platelets.  相似文献   

7.
This article describes the uses of immunostaining in the diagnosis of cholestasis. To immunostain for bile salt export pump (BSEP) and multidrug resistance protein 3 in severe hepatobiliary disease manifest early in life can rapidly identify whether sequencing of ABCB11 or ABCB4 is likely to yield a genetic diagnosis. To immunostain for canalicular ectoenzymes as well as transporters, with transmission electron microscopy, can suggest whether sequencing of ATP8B1 is likely to yield a genetic diagnosis. Demonstrating BSEP expression can direct attention to bile acid synthesis disorders. Immunostaining for multidrug resistance-associated protein 2 serves principally as a control for adequacy of processing.  相似文献   

8.
9.
10.
Interindividual variability in hepatic canalicular transporter expression might predispose to the development of hepatic disorders such as acquired forms of intrahepatic cholestasis. We therefore investigated expression patterns of bile salt export pump (BSEP, ABCB11), multidrug resistance protein 3 (MDR3, ABCB4), multidrug resistance associated protein 2 (MRP2, ABCC2) and multidrug resistance protein 1 (MDR1, ABCB1) in healthy liver tissue of a white population. Protein expression levels were correlated with specific single nucleotide polymorphisms (SNPs) in the corresponding transporter genes. Hepatic protein expression levels from 110 individuals undergoing liver resection were assessed by Western blot analysis of liver plasma membranes enriched in canalicular marker enzymes. Each individual was genotyped for the following synonymous (s) and nonsynonymous (ns) SNPs: ABCB11: (ns:1457T>C and 2155A>G), ABCB4: (ns:3826A>G) and ABCC2 (ns:1286G>A,3600T>A and 4581G>A) and ABCB1 (ns:2677G>T/A and s:3435C>T). Transporter expression followed unimodal distribution. However, of all tested individuals 30% exhibited a high expression and 32% a low or very low expression phenotype for at least one of the four investigated transport proteins. Transporter expression levels did not correlate with age, sex, underlying liver disease, or presurgery medication. However, low BSEP expression was associated with the 1457C-allele in ABCB11 (P = .167) and high MRP2 expression was significantly correlated with the 3600A and 4581A ABCC2 variants (P = .006). In conclusion, the results demonstrate a considerable interindividual variability of canalicular transporter expression in normal liver. Furthermore, data suggest a polymorphic transporter expression pattern, which might constitute a risk factor for the development of acquired forms of cholestatic liver diseases.  相似文献   

11.
12.
ABC of oral bioavailability: transporters as gatekeepers in the gut   总被引:21,自引:0,他引:21  
Dietrich CG  Geier A  Oude Elferink RP 《Gut》2003,52(12):1788-1795
MDR1 (ABCB1), MRP2 (ABCC2), and BCRP (ABCG2) are members of the family of ATP binding cassette (ABC) transporters. These are plasma membrane transporters that are expressed in various organs. The role of MDR1 and MRP2 in the hepatobiliary system is well defined; both contribute to bile formation by transport of drugs, toxins, and waste products across the canalicular membrane. As they transport exogenous and endogenous substances, they reduce the body load of potentially harmful compounds. The role of ABCG2, which is also expressed in the canalicular membrane of hepatocytes, has not yet been fully characterised. All three proteins are also expressed in the apical membrane of enterocytes where they probably control oral availability of many substances. This important "gatekeeper" function of ABC transporters has been recognised recently and is currently under further investigation. Expression and activity of these transporters in the gut may differ between individuals, due to genetic polymorphisms or pathological conditions. This will lead to individual differences in bioavailability of different drugs, toxins, and (food derived) carcinogens. Recent information on substrates, transport mechanisms, function, and regulation of expression of MDR1, MRP2, and BCRP in different species is summarised in this review.  相似文献   

13.
Aim: Cholestasis has been associated with the endocytic retrieval of multidrug resistance protein 2 (Mrp2), but its mechanism is still unclear. Recent studies have indicated that radixin, a cross-linker between the actin filaments and membrane proteins, may be activated by phosphorylation and may be required for the canalicular localization of Mrp2. Methods: We investigated the role of radixin in the altered localization of Mrp2 in rat models of intrahepatic (ethinyl estradiol treatment) and extrahepatic (bile duct ligation) cholestasis using immunofluorescence microscopy. The changes in localization and expression were analyzed using Scion Image for Windows. Results: In both models, Mrp2 was localized outside as well as inside the ZO-1 staining, indicating partial dislocation from the canalicular membrane. In contrast to the steep elevation of the immunostaining intensity curves for Mrp2 in the controls, the corresponding curves in both models were broadened and flattened, confirming endocytic retrieval into the hepatocytes. Mrp2 and radixin were colocalized at the canalicular domain in the controls, whereas in both cholestatic rats they were dissociated at some canaliculi, indicating the disturbed colocalization of Mrp2 and radixin in cholestasis. The fluorescence of phosphorylated radixin, an active form of radixin, markedly decreased in both cholestatic models, which was supported by the reduced peak fluorescence intensities. Conclusion: The disturbed colocalization of Mrp2 and radixin may contribute to the endocytic retrieval of Mrp2 in cholestasis due to the failure to anchor Mrp2 in the canalicular membrane, in which the phosphorylated radixin may play a major role.  相似文献   

14.
Recent studies have elucidated the mechanism and regulation of hepatic transport of bile acids and organic anions. Bile acids are taken up into hepatocytes by basolateral transporters, Na+‐dependently by Na+/taurocholate cotransporting polypeptide (NTCP) and Na+‐independently by organic anion transporting polypeptide (OATP) families. Organic anions are taken up into hepatocytes by OATP families. These compounds are then transported in hepatocytes bound to cytosolic binders, and subjected to transport by ATP binding cassette (ABC) transporters at the canalicular membrane. Amidated bile acids are excreted into bile by bile salt export pump (BSEP), and organic anions and bile acid sulfates and glucuronides are excreted by multidrug resistance protein 2 (MRP2). Hepatic transporters are downregulated under cholestasis in rats and humans, except for MRP3, a basolateral ABC transporter, which is upregulated and may have a role in removing bile acids and organic anions from hepatocytes to the blood under cholestatic conditions. Nuclear receptors, which bind bile acids, have been shown to regulate the expression of hepatic transporters. Farnesoid X receptor (FXR), which downregulates CYP7A1, the rate‐limiting enzyme of bile acid biosynthesis, upregulates BSEP and downregulates NTCP. MRP2 is upregulated by both FXR and pregnane X receptor (PXR), which upregulates CYP3A.  相似文献   

15.
OBJECTIVES: Percutaneous transhepatic biliary drainage (PTBD) has been believed to reduce hyperbilirubinemia in patients with obstructive cholestasis and to lessen liver injury through bile acid retention. The efficacy may be closely related to the capability of cholestatic liver to produce and secrete bile, which in turn depends on the expressions and functional activities of plasma membrane transporters in the liver. The aim of the present study was to determine the expression levels of these transporters in the cholestatic liver of patients undergoing PTBD. METHODS: A total of 24 patients who had experienced obstructive cholestasis and had undergone preoperative PTBD were included in the study. Liver biopsy specimens were analyzed to determine the expression levels of the multidrug resistance-associated proteins (MRP) MRP2 and MRP3 and the canalicular bile salt export pump BSEP in the liver. RESULTS: The messenger RNA (mRNA) levels of MRP2, the canalicular bilirubin conjugate export pump, and bile salt export pump (BSEP) were unchanged in liver specimens from the 14 patients well drained by PTBD but were reduced in specimens from the 10 patients poorly drained, compared to the levels of control subjects. Immunostainings of MRP2 and BSEP outlined the canalicular membrane domain but seemed fuzzy to varying degrees in specimens obtained from cholestatic liver, especially in specimens from liver that had been poorly drained, in contrast to the linear and intense localization in the liver of control subjects, correlating with the impaired bilirubin conjugate and bile acid secretion. The mRNA of MRP3, functioning as an inducible export pump for bilirubin conjugate and bile acid, was expressed not only in the cholestatic liver but also in the liver of control subjects, and the mRNA level was increased in specimens from both the cholestatic liver that had been well drained and from the liver that had been poorly drained. Immunostaining of MRP3 was observed in the epithelia of intrahepatic bile ducts in the liver of both control subjects and cholestatic patients, and in the epithelia of proliferated bile ductules and the hepatocytes surrounding the portal tracts in the cholestatic liver. CONCLUSIONS: From the results of the present study, it is concluded that 1) the mRNA and immunohistochemical expression levels of MRP2 and BSEP may be altered in the cholestatic liver of patients undergoing PTBD; 2) both the decreased mRNA levels and the diminished canalicular membrane localization may be associated with the impairment of bile formation and secretion, i.e., the efficacy of PTBD; and 3) upregulated MRP3 in the cholangiocytes and hepatocytes may play a significant role in bile acid transport in the cholestatic hepatobiliary system.  相似文献   

16.
BACKGROUND: Despite their strong binding to albumin while circulating in blood, many organic anions, such as bilirubin and fatty acids, are removed efficiently by the liver. The uptake transporters of human hepatocytes, OATP2 (symbol, SLC21A6) and OATP8 (SLC21A8), play important roles in the hepatic uptake of endogenous substances and drugs. The two transporters show different affinities for the organic anion sulfobromophthalein (BSP), which binds with high affinity to albumin in blood. METHODS: In this study, we investigated whether a direct interaction of albumin with OATP2 or OATP8 occurs during the uptake of BSP. The uptake of BSP, at varying concentrations of human serum albumin (HSA), into transfected HEK293 cells expressing recombinant human OATP2 or OATP8 was measured. The influence of other organic anions on the uptake of albumin-bound BSP by OATP2 or OATP8 was also studied. RESULTS: OATP8-mediated transport was affected more strongly by HSA than OATP2-mediated transport. Albumin affected both transporters in the manner of a noncompetitive inhibitor. Uptake studies using OATP2-transfected MDCKII cells indicated that a direct interaction between albumin and OATP2 is not necessary for uptake, a finding that was further confirmed by the effects of bilirubin and palmitate on the binding of BSP to albumin and on the uptake of BSP by OATP2 or OATP8. CONCLUSIONS: Our results indicated that uptake of albumin-bound BSP occurs only from the pool of unbound ligand.  相似文献   

17.
Abstract: Background/Aims: In chronic cholestatic liver diseases, biliary excretion of organic anions from blood into bile is impaired. The aim of this study was to identify the underlying mechanism. Methods: Expression of the basolateral organic anion transporting polypeptide OATP‐C (SLC21A6) and the canalicular multidrug resistance protein 2 (MRP2) was studied in patients with primary sclerosing cholangitis (PSC) (n=4), a chronic cholestatic liver disease, and in non‐cholestatic controls (n=4) (two with chronic hepatitis C, one with idiopathic liver cirrhosis and one with fatty liver). Total RNA was isolated from liver tissue, reverse transcribed and subjected to polymerase chain reaction (PCR) amplification using primers specific for OATP‐C, MRP2 and β‐actin. PCR products were quantified densitometrically. Results: When normalized for β‐actin expression, the level of OATP‐C mRNA in liver tissue of patients with PSC was 49% of controls (OATP‐C/β‐actin 1.60±0.25 vs. 3.24±0.69; p<0.05) and the level of MRP2 mRNA was 27% of controls (MRP2/β‐actin 0.70±0.36 vs. 2.54±0.56; p<0.01). Conclusions: Both OATP‐C and MRP2 are decreased as measured by mRNA level in PSC. Downregulation of OATP‐C might be the consequence of impaired canalicular secretion of organic anions and could serve to reduce the organic anion load of cholestatic hepatocytes.  相似文献   

18.
Bilirubin is taken up from blood into hepatocytes by sinosuidal membrane transporters and then excreted into bile through the bile canalicular membrane mainly as bilirubin glucuronides. (1) Mechanism of bilirubin uptake into hepatocytes: many organic anions are incorporated into hepatocytes by organic anion transporting polypeptides (rat, oatp 1, oatp2, oatp3; human, OATP), liver-specific transporter (rlst/HLST), and/or by organic anion transporters (OAT2, OAT3). Oatp1 and HLST transport bilirubin monoglucuronide. However, a transporter of unconjugated bilirubin in the sinusoidal membrane has not as yet been identified. Unconjugated bilirubin may also go across the hepatocyte sinusoidal membrane by a diffusion process. (2) Intrahepatic transport and conjugation of bilirubin: ligandin carries bilirubin to the endoplasmic reticulum (ER) of hepatocytes. In the ER, bilirubin is conjugated by bilirubin uridine diphosphate (UDP)-glycosyltransferase (bilirubin UGT; UGT1A1) to form mono- and diglucuronides of bilirubin. (3) Transport mechanism of bilirubin glucuronides across the hepatocyte canalicular membrane: at the canalicular membrane, bilirubin glucuronides are excreted into bile by multidrug resistance-associated protein 2 (MRP2), a member of the ATP-binding cassette transporter family. (4) Regurgitation of bilirubin glucuronides into blood: MRP3, which is located in the lateral membrane, transports bilirubin glucuronides into blood under conditions of impaired biliary bilirubin excretion. Received: March 10, 2000 / Accepted: May 26, 2000  相似文献   

19.
BACKGROUND/AIMS: The hepatic clearance of drugs and cholephilic organic anions is stimulated by phenobarbital (PB). Our aim was to analyze the effects of PB on the expression of hepatocellular bile salt and organic anion transporters. METHODS: Male Sprague-Dawley rats were treated intraperitoneally with PB (80 mg/kg/d) or saline for 5 days. Transporter expression was quantified by northern and western blot analysis and initial uptake rates of bromosulphophthalein (BSP) and digoxin were measured in isolated hepatocytes. RESULTS: Compared to control rats, PB treatment increased expression of the organic anion transporting polypeptide 2 (Oatp2; Slc21aS) more than 2-fold on the RNA (P < 0.05) and protein (P < 0.001) levels. Expression of Oatpl (Slc21al), Oatp4 (Slc21a6) and the Na+-taurocholate cotransporting polypeptide (Ntcp; Slc10a1) was unaltered. At the canalicular pole, expression of the bile salt export pump (Bsep; ABCB11) and of the multidrug resistance proteins 2 (Mrp2; ABCC2) and 6 (Mrp6; ABCC6) was not significantly changed. Whereas hepatocellular BSP uptake was unaffected by PB, digoxin uptake was stimulated 4-fold. CONCLUSIONS: The induction of digoxin uptake by PB correlates with Oatp2 expression. In contrast, the lack of increase of Oatpl and Oatp4 expression is in accordance with unchanged BSP uptake. These data challenge the previously held view that PB induces hepatocellular BSP uptake systems.  相似文献   

20.
Role of ABCC1 in export of sphingosine-1-phosphate from mast cells   总被引:6,自引:0,他引:6  
Mast cells play a pivotal role in inflammatory and immediate-type allergic reactions by secreting a variety of potent inflammatory mediators, including sphingosine-1-phosphate (S1P). However, it is not known how S1P is released from cells. Here, we report that S1P is exported from mast cells independently of their degranulation and demonstrate that it is mediated by ATP binding cassette (ABC) transporters. Constitutive and antigen-stimulated S1P release was inhibited by MK571, an inhibitor of ABCC1 (MRP1), but not by inhibitors of ABCB1 (MDR-1, P-glycoprotein). Moreover, down-regulation of ABCC1 with small interfering RNA, which decreased its cell surface expression, markedly reduced S1P export from both rat RBL-2H3 and human LAD2 mast cells. Transport of S1P by ABCC1 influenced migration of mast cells toward antigen but not degranulation. These findings have important implications for S1P functions in mast cell-mediated immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号