首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In this study, we have examined the contribution of endothelium-derived nitric oxide (EDNO) and endothelium-derived hyperpolarizing factor (EDHF) to histamine-induced endothelium-dependent relaxation in the perfused kidney of rats treated with streptozotocin (STZ) to induce diabetes. Histamine-induced vasodilatation in the perfused kidney preparations of both control and diabetic animals, which was not significantly different. Sodium nitroprusside (SNP)-induced relaxation was also not affected in diabetic and control rats. In order to isolate the EDHF component of histamine-induced vasodilator response, L-NAME (10(-4)M) and indomethacin (10(-6)M) were added to the Krebs' solution throughout the experiment. TBA (0.5 mM) produced a significant reduction in histamine-induced maximal vasodilator response in both preparations from control and diabetic animals, indicating the involvement of K+ channels in mediating this response. Charybdotoxin (0.05 microM) but not glibenclamide (0.1 microM) produced significant reduction in histamine-induced vasodilator responses. To test the contribution of EDNO in mediating histamine-induced vasodilatation, the vascular preparations were perfused with 20 mM K+ -Krebs' solution to inhibit the EDHF component of the response. Under this condition, histamine-induced vasodilator response was not significantly different in both preparations from control and diabetic rats. Pre-treatment with L-NAME (10(-4)M) attenuated histamine-induced vasodilatation. There was a more significant attenuation in histamine-induced vasodilatation in the vascular preparations from diabetic rats. The vasodilator effect of calcium ionophore A23187 was investigated in preparations from control and diabetic rats to examine receptor dysfunction associated with diabetes. A23187 produced dose-dependent vasodilator response in the preparations from both control and diabetic rats. In conclusion, our results indicate that histamine-induced vasodilatation in the perfused kidney of the STZ-induced diabetic rats is mediated by the two vasodilator components, namely EDHF and EDNO. The EDHF component was not significantly affected by diabetes. However, histamine-induced vasodilatation mediated by the EDNO component was more significantly reduced in diabetic rats. Results have also indicated that the EDHF component of histamine-induced vasodilatation was mediated through Ca2+ -activated K+ channels in perfused kidney preparations from both control and diabetic rats.  相似文献   

2.
1 In this study, we have investigated the vasodilator response to acetylcholine under diabetes conditions in isolated renal arteries of rabbits. We have also examined the contribution of endothelium-derived nitric oxide (EDNO) and endothelium-derived hyperpolarizing factor (EDHF) to the endothelium-dependent relaxation caused by acetylcholine in the renal arteries of alloxan-induced diabetic rabbits. 2 Acetylcholine (10(-10) - 10(-4) M) produced cumulative concentration-response curve in the renal arteries of both control and diabetic rabbits. The EC50 values and maximal responses to acetylcholine were not significantly different relative to diabetic conditions. In order to isolate the EDHF component of acetylcholine-induced vasodilator response, L-nitro-methyl arginine ester (L-NAME, 10(-4) M) and indomethacin (10(-6) M) were added to the Krebs' solution throughout the experiment. Under these conditions, acetylcholine induced vasodilatation in the isolated renal arteries from both control and diabetic rabbits. The vasodilator response to acetylcholine was not affected under diabetic conditions. 3 Sodium nitroprusside (SNP)-induced relaxation was increased in the diabetic rabbits compared with the control animals. 4 Tetrabutyl ammonium (TBA, 0.5 mM) produced a significant reduction in acetylcholine-induced vasodilatation in both preparations from control and diabetic animals, consistent with involvement of K+ channels in mediating this response. Glibenclamide (1 microM) attenuated acetylcholine-induced vasodilatation in preparations from control animals only, while iberiotoxin (0.05 microM) significantly reduced the vasodilator response to acetylcholine in preparations from both control and diabetic animals. 5 The role of EDNO in mediating acetylcholine-induced vasodilatation was examined. The vascular preparations were incubated with 20 mM K(+)-Krebs' solution to inhibit the EDHF contribution to acetylcholine-induced vasodilatation. Under this condition, acetylcholine induced a vasodilator response in both preparations from control and diabetic rats. Pretreatment with L-NAME (10(-4) M) attenuated acetylcholine-induced vasodilatation in both preparations, indicating an nitric oxide-mediated vasodilator response. 6 Our results indicated that acetylcholine-induced vasodilatation in the isolated renal arteries of alloxan-induced diabetic rabbits was not affected under diabetic conditions. Acetylcholine-induced vasodilatation is mediated by two vasodilator components; namely, EDHF and EDNO. The contribution of EDHF and EDNO to acetylcholine-induced vasodilatation was not affected under diabetic conditions and there was no indication of endothelial dysfunction associated with diabetes. EDHF component was found to act mainly through high conductance Ca(2+)-activated K+ channels under normal and diabetic conditions, while the adenosine triphosphate-dependent K+ channels were involved in mediating acetylcholine vasodilator response in the control preparations only.  相似文献   

3.
1. Responses to endothelium-derived nitric oxide (EDNO), indomethacin-sensitive endothelium-derived contracting factor (EDCF) and hyperpolarization by endothelium-derived hyperpolarizing factor (EDHF) and the interaction among these factors in mesenteric arteries from 16-week-old Wistar Kyoto (WKY) rats and age-matched stroke-prone spontaneously hypertensive rats (SHRSP) were studied, observing the time-course of the response to 10-5 mol/L acetylcholine (ACh). 2. The effects of EDNO, EDCF and EDHF were blocked by Nomega-nitro-l-arginine (10-4 mol/L), indomethacin (10-5 mol/L) and a combination of apamin (5 x 10-6 mol/L) and charybdotoxin (10-7 mol/L), respectively. 3. The response to EDNO observed in the absence of EDCF and EDHF was not different between preparations from WKY rats and SHRSP. The response to EDCF observed in the absence of EDNO and EDHF was slightly greater in preparations from SHRSP. The response to EDHF in the absence of EDNO and EDCF was much greater in preparations from WKY rats. 4. Endothelium-derived contracting factor attenuated the relaxation in response to EDNO, the attenuation being greater in preparations from SHRSP. Relaxation in response to EDNO was blocked by EDHF in preparations from WKY rats, but not in preparations from SHRSP. 5. The response to EDCF was augmented by both EDNO and EDHF. The augmentation was greater in preparations from SHRSP. 6. The response to EDHF was attenuated by EDNO in preparations from WKY rats, but not in preparations from SHRSP. The response to EDHF was attenuated by EDCF in preparations from both WKY rats and SHRSP, the attenuation being greater in preparations from SHRSP. 7. These results suggest that there are interactions among these factors in terms of their release or the response to ACh in mesenteric arteries that differ between preparations from WKY rats and SHRSP. In addition, involvement of factors other than these three factors, which also differs between preparations from WKY rats and SHRSP, is suggested.  相似文献   

4.
Experiments were designed to investigate the mechanisms underlying the diabetes-related impairment of the vasodilatations of the perfused mesenteric arterial bed induced by acetylcholine (ACh) and K(+). In streptozotocin (STZ)-diabetic rats, the ACh-induced endothelium-dependent vasodilatation was attenuated. The dose-response curves for ACh in control and diabetic rats were each shifted to the right by N(G)-nitro-L-arginine (L-NOARG) and by isotonic high K(+) (60 mM). The ACh dose-response curves under isotonic high K(+) were not different between control and diabetic rats. We also examined the vasodilatation induced by K(+), which is a putative endothelium-derived hyperpolarizing factor (EDHF). The mesenteric vasodilatation induced by a single administration of K(+) was greatly impaired in STZ-induced diabetic rats. Treatment with charybdotoxin plus apamin abolished the ACh-induced vasodilatation but enhanced the K(+)-induced response in controls and diabetic rats. After pretreatment with ouabain plus BaCl(2), the ACh-induced vasodilatation was significantly impaired and the K(+)-induced relaxation was abolished in both control and diabetic rats. The impairment of the endothelium-dependent vasodilatation of the mesenteric arterial bed seen in STZ-induced diabetic rats may be largely due to a defective vascular response to EDHF. It is further suggested that K(+) is one of the endothelium-derived hyperpolarizing factors and that the vasodilatation response to K(+) is impaired in the mesenteric arterial bed from diabetic rats.  相似文献   

5.
1. The effects of ascorbate were assessed on vasodilatation mediated by endothelium-derived hyperpolarizing factor (EDHF) in the ciliary vascular bed of the bovine isolated perfused eye and in the rat isolated perfused mesenteric arterial bed. 2. In the bovine eye, EDHF-mediated vasodilator responses induced by acetylcholine or bradykinin were powerfully blocked when ascorbate (50 microM) was included in the perfusion medium for at least 120 min; with acetylcholine a normally-masked muscarinic vasoconstrictor response was also uncovered. 3. The blockade of EDHF-mediated vasodilatation by ascorbate was time-dependent (maximum blockade at 120 min) and concentration-dependent (10 - 150 microM). 4. Ascorbate (50 microM) also blocked acetylcholine-induced, EDHF-mediated vasodilator responses in the rat mesenteric arterial bed in a time-dependent manner (maximum blockade at 180 min). 5. The ability of ascorbate to block EDHF-mediated vasodilatation is likely to result from its reducing properties, since this action was mimicked in the bovine eye by two other reducing agents, namely, N-acetyl-L-cysteine (1 mM) and dithiothreitol (100 microM), but not by the redox-inactive analogue, dehydroascorbate (50 microM). 6. In conclusion, concentrations of ascorbate present in normal plasma block EDHF-mediated vasodilator responses in the bovine eye and rat mesentery. The mechanism and physiological consequences of this blockade remain to be determined.  相似文献   

6.
BACKGROUND AND PURPOSE: The vascular endothelium regulates vascular tone by releasing various endothelium-derived vasoactive substances to counteract excess vascular response. We investigated whether the vascular endothelium regulates vasodilatation via released endothelium-derived contracting factors (EDCFs), by examining the effect of endothelium removal on responses to periarterial nerve stimulation (PNS) and various vasodilator agents. EXPERIMENTAL APPROACH: The rat mesenteric vascular bed was perfused with Krebs solution. Vasodilator responses to PNS and 5 min perfusion of vasodilator agents in preparations with endothelium were compared with those in the same preparations without endothelium. The endothelium was removed by 30 s perfusion with sodium deoxycholate. KEY RESULTS: Endothelium removal significantly augmented vasodilator responses to PNS and calcitonin gene-related peptide (CGRP), isoprenaline (beta-adrenoceptor agonist), SNP and 8-bromo-cGMP (8-Br-cGMP; cGMP analogue) but not BAY41-2272 (soluble guanylate cyclase activator). The augmentation of SNP-induced vasodilatation after denudation was much greater than that of CGRP- or isoprenaline-induced vasodilatation. In the preparations with an intact endothelium, L-NAME (nitric oxide synthase inhibitor) significantly augmented vasodilator responses to PNS and CGRP, isoprenaline, SNP and 8-Br-cGMP, but not BAY41-2272. Indomethacin (cyclooxygenase inhibitor) and seratrodast (thromboxane A(2) receptor antagonist), but not phosphoramidon (endothelin-1-converting enzyme inhibitor) or BQ-123 (selective endothelin type A receptor antagonists), significantly augmented vasodilator responses to PNS and CGRP, isoprenaline, SNP and BAY41-2272. CONCLUSION AND IMPLICATION: These results suggest that the endothelium in rat mesenteric arteries regulates and maintains vascular tone via counteracting not only vasoconstriction through releasing endothelium-derived relaxing factors, but also vasodilatation, in part by releasing an EDCF, thromboxane A(2).  相似文献   

7.
In this study, we have investigated the vasodilator response to acetylcholine under diabetic conditions in isolated renal arteries of Wistar rats. The effect of nitric oxide synthase (NOS) inhibition on acetylcholine-induced vasodilator response was investigated. We have also examined the effects of two endothelium-dependent agonists which induce receptor-dependent and receptor-independent vasodilator responses.Acetylcholine (10(-10) to 10(-4)M) produced a cumulative concentration-response curve in the renal arteries of both control and diabetic rats. The EC(50) values and maximal responses to acetylcholine were reduced relative to diabetic conditions. The vasodilator response to sodium nitroprusside (SNP) (10(-10) to 10(-5)M) was also investigated. SNP produced a cumulative concentration-dependent vasodilator response, which was not affected under diabetic conditions.To confirm the nitric oxide component of acetylcholine-induced vasodilator response, L-nitro-methyl arginine ester (L-NAME) (10(-4)M) was added to the Krebs' solution. The maximal vasodilator response to acetylcholine was reduced in the presence of L-NAME (10(-4)M) in both control and diabetic renal preparations, with greater attenuation in the diabetic conditions.In order to examine the possible contribution of receptor dysfunction in diabetes, the vasodilator response to ADP (receptor-dependent agonist) and the calcium ionophore A23187 (receptor-independent agonist) were investigated. ADP (10(-10) to 10(-5)M) produced a concentration-dependent vasodilator response in preparations from both control and diabetic rats. The maximal vasodilator response to ADP was significantly reduced in the renal arteries from diabetic animals. However, A23187 (10(-10) to 10(-5)M); the receptor-independent agonist, produced a concentration-dependent vasodilator response in both control and diabetic rat preparations. There was no significant change in the EC(50) values or maximal vasodilator responses to A23187 under diabetic conditions.In conclusion, our results indicated that acetylcholine-induced vasodilatation in the isolated renal arteries of streptozotocin (STZ)-induced diabetic rats was attenuated under diabetic conditions. The reduction in acetylcholine-induced vasodilatation may be attributed to acetylcholine receptor dysfunction. This is based on the results from this study in which the vasodilator response to the receptor-independent agonist A23187 were maintained, while that of the receptor-dependent agonist ADP was attenuated under diabetic conditions.  相似文献   

8.
BACKGROUND AND PURPOSE: Since the vasorelaxant potency of the endocannabinoid anandamide is enhanced in perfused mesenteric vascular beds from rats made hypertensive by chronic inhibition of NO synthase (L-NAME in drinking water), we hypothesized that in vivo, anandamide-induced vasodilatation would be similarly enhanced in L-NAME-treated animals. EXPERIMENTAL APPROACH: Male Sprague-Dawley rats were given L-NAME in drinking water (7.5 mg kg(-1) day(-1)) for 4 weeks. Relaxant effects of anandamide were measured in perfused mesenteric vascular beds and in isolated small mesenteric arteries. Renal, mesenteric and hindquarters haemodynamic responses to anandamide, methanandamide, the synthetic cannabinoid agonist WIN-55212-2 and the cannabinoid receptor antagonist AM251 were assessed in conscious, chronically-instrumented rats. KEY RESULTS: Vasorelaxant responses to anandamide were enhanced in the perfused mesentery but not in isolated mesenteric resistance vessels. In vivo, anandamide caused vasodilatation only in the hindquarters vascular bed and only in control rats. Methanandamide caused a late-onset (40 min after administration) tachycardia, mesenteric and hindquarters vasoconstriction, and renal vasodilatation, which did not differ between control and L-NAME-treated rats. AM251 had no effect on resting blood pressure in control or L-NAME-treated rats and WIN55212-2 caused pressor and renal and mesenteric vasoconstrictor responses, with hindquarters vasodilatation in both groups of animals. CONCLUSIONS AND IMPLICATIONS: The results provide no in vivo evidence for enhanced vasodilator responses to cannabinoids, or up-regulation of endocannabinoids or their receptor activity, following chronic NO synthase inhibition.  相似文献   

9.
Acrolein is generated endogenously during lipid peroxidation and inflammation and is an environmental pollutant. Protein adducts of acrolein are detected in atherosclerotic plaques and neurons of patients with Alzheimer's disease. To understand vascular effects of acrolein exposure, we studied acrolein vasoreactivity in perfused rodent mesenteric bed. Acrolein induced endothelium-dependent vasodilatation that was more robust and more sensitive than dilation induced by 4-hydroxy-trans-2-nonenal, trans-2-hexenal, or propionaldehyde. Acrolein-induced vasodilatation was mediated by K(+)-sensitive components, e.g., it was abolished in 0 [K(+)](o) buffer or in 3 mM tetrabutylammonium, inhibited 75% in 50 microM ouabain, and inhibited 64% in 20 mM K(+) buffer. Moreover, combined treatment with the Ca(2+)-activated K(+) channel inhibitors 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34, 100 nM) and apamin (5 microM) significantly reduced vasodilatation without altering sensitivity to acrolein. However, acrolein-induced % dilation was unaffected by l-NAME or indomethacin pretreatment indicating mechanistic independence of NO and prostaglandins. Moreover, acrolein induced vasodilatation in cirazoline-precontracted mesenteric bed of eNOS-null mice confirming eNOS independence. Pretreatment with 6-(2-propargyloxyphenyl) hexanoic acid (PPOH 50 microM), an epoxygenase inhibitor, or the superoxide dismutase mimetic Tempol (100 microM) significantly attenuated acrolein-induced vasodilatation. Collectively, these data indicate that acrolein stimulates mesenteric bed vasodilatation due to endothelium-derived signal(s) that is K(+)-, ouabain-, PPOH-, and Tempol-sensitive, and thus, a likely endothelium-derived hyperpolarizing factor (EDHF). These data indicate that low level acrolein exposure associated with vascular oxidative stress or inflammation stimulates vasodilatation via EDHF release in medium-sized arteries--a novel function.  相似文献   

10.
1. The effect of long-term antagonism of P1-purinoceptors on vascular function was examined in the perfused mesenteric arterial bed isolated from rats which had received constant infusion of either the non-selective P1-purinoceptor antagonist, 1-3-dipropyl-8-sulphophenylxanthine (DPSPX, 30 micrograms kg-1 h-1, i.p.) or saline for seven days. Sympathetic and sensory-motor neurotransmission, smooth muscle and endothelial function were assessed. 2. Basal tone was similar in mesenteric arterial preparations from control and DPSPX-treated rats. Continuous perfusion with methoxamine (7-70 microM) induced similar increases in tone in control and DPSPX-treated preparations. In the presence of guanethidine (5 microM), electrical field stimulation (EFS; 1-12 Hz, 60V, 0.1 ms, 30 s) elicited frequency-dependent vasodilatation due to activation of sensory-motor nerves. In tissues from DPSPX-treated rats the nerve-mediated vasodilator responses were markedly augmented at all frequencies. Maximal relaxation at 8 Hz was 38.34 +/- 4.76% (n = 5) in controls and 65.92 +/- 3.68% (n = 5) after DPSPX-treatment (P < 0.01). Adenosine (3 microM) inhibited the frequency-dependent sensory-motor neurotransmission similar in preparations from controls and DPSPX-treated rats. 3. In raised-tone preparations calcitonin gene-related peptide (CGRP; 5,15 and 50 pmol), the principal vasodilator transmitter of sensory-motor nerves in rat mesenteric arteries, produced similar relaxations in control and DPSPX-treated preparations. Vasodilator responses to the sensory neurotoxin capsaicin (50 and 500 pmol) were also similar between the groups. 4. Assay of tissue CGRP levels of the superior mesenteric artery by enzyme-linked immunosorbent assay showed no significant difference in tissue levels of CGRP in controls, 120.25 +/- 26.34 pmol g-1 tissue (n = 6) and with DPSPX-treatment, 82.12 +/- 24.42 pmol g-1 tissue (n = 6). 5. In raised-tone preparations dose-dependent endothelium-dependent vasodilatation to acetylcholine and ATP, and endothelium-independent vasodilatation to sodium nitroprusside were similar in control and DPSPX-treated preparations. 6. EFS (4-32 Hz, 90V, 1 ms, 30 s) elicited frequency-dependent vasoconstriction due to activation of sympathetic nerves which was similar in controls and in DPSPX-treated preparations. Adenosine (10 and 30 microM) inhibited sympathetic neurotransmission similarly in control and DPSPX-treated preparations. Dose-dependent vasoconstriction to noradrenaline (NA) and ATP, and to KCI (0.15 mmol) was similar between the groups. 7. High performance liquid chromatographic analysis of tissue NA showed no significant difference in NA content of the superior mesenteric artery from DPSPX-treated (1.38 +/- 0.09 ng mg-1, n = 6) and control rats (1.46 +/- 0.17 ng mg-1, n = 6). 8. In conclusion, in rats with hypertension due to 7 days treatment with the P1-purinoceptor antagonist, DPSPX, there is an increase in sensory-motor vasodilatation of the mesenteric arterial bed. There is no change in sympathetic nerve, endothelial or smooth muscle function. Augmented sensory-motor neurotransmission, which does not involve a change in postjunctional responsiveness to CGRP or in the CGRP content of sensory-motor nerves, could be a compensatory change in response to the DPSPX- induced hypertension.  相似文献   

11.
1. The roles of the endothelium-derived nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor (EDHF) in mediating vasodilator responses to acetylcholine and bradykinin were assessed in the ciliary vascular bed of the bovine isolated perfused eye preparation. 2. Vasodilatation to acetylcholine or bradykinin was unaffected by the nitric oxide synthase inhibitor, L-NAME (100 microM), or the cyclo-oxygenase inhibitor, flurbiprofen (30 microM), but was virtually abolished following treatment with a high concentration of KCl (30 mM), or by damaging the endothelium with the detergent, CHAPS (0.3%, 2 min). 3. Acetylcholine-induced vasodilatation was unaffected by glibenclamide (10 microM), an inhibitor of ATP-sensitive K(+) channels (K(+)(ATP)), but was significantly attenuated by TEA (10 mM), a non-selective inhibitor of K(+) channels. 4. The small conductance calcium-sensitive K(+) channel (SK(+)(Ca)) inhibitor, apamin (100 nM), and the large conductance calcium-sensitive K(+) channel (BK(+)(Ca)) inhibitor, iberiotoxin (50 nM), had no significant effect on acetylcholine-induced vasodilatation. In contrast, the intermediate (IK(+)(Ca))/large conductance calcium-sensitive K(+) channel inhibitor, charybdotoxin (50 nM), powerfully blocked these vasodilator responses, and uncovered a vasoconstrictor response. 5. The combination of apamin (100 nM) with a sub-threshold concentration of charybdotoxin (10 nM) significantly attenuated acetylcholine-induced vasodilatation, but the combination of apamin (100 nM) with iberiotoxin (50 nM) had no effect. 6. In conclusion, blockade by a high concentration of KCl, by charybdotoxin, or by the combination of apamin with a sub-threshold concentration of charybdotoxin, strongly suggests that vasodilatation in the bovine isolated perfused eye is mediated by an EDHF.  相似文献   

12.
In order to characterize the roles of tyrosine kinases (TKs) and epidermal growth factor receptor (EGFR) in diabetes-induced vascular dysfunction, we investigated the ability of a chronic administration of genistein, a broad-spectrum inhibitor of TKs and AG1478, a specific inhibitor of EGFR TK activity to modulate the altered vasoreactivity of the perfused mesenteric bed to common vasoconstrictors and vasodilators in streptozotocin (STZ)-induced diabetes in rats. The vasoconstrictor responses induced by norepinephrine (NE), endothelin-1 (ET-1) and angiotensin II (Ang II), were significantly increased, whereas vasodilator responses to carbachol and histamine were significantly reduced in the perfused mesenteric bed of STZ-induced diabetic rats in comparison with healthy rats. Treatment of diabetic animals with genistein or AG1478 produced a significant normalization of the altered agonist-induced vasoconstrictor and vasodilator responses without affecting blood glucose levels. In contrast, neither inhibitor had any effect on the vascular responsiveness of control (nondiabetic) animals. Treatment of diabetic animals with diadzein, an inactive analogue of genistein, did not affect the vasoconstrictor and vasodilator responses in control or diabetic animals. Phosphorylated EGFR levels were markedly raised in the mesenteric bed from diabetic animals and were normalized upon treatment with AG1478 or genistein. These data suggest that activation of TK-mediated pathways, including EGFR TK signalling are involved in the development of diabetic vascular dysfunction.  相似文献   

13.
Ascorbate blocks agonist-induced, endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation in the bovine perfused ciliary artery and this is associated with a rise in perfusion pressure. We now report the origins of this ascorbate-induced rise in perfusion pressure. In segments of ciliary artery perfused at 2.5 ml/min, the addition of ascorbate (10-150 microM) enhanced U46619-induced perfusion pressure. Ascorbate produced no enhancement in the absence of U46619, suggesting that its effects resulted not from a constrictor action but through removal of a tonic vasodilator influence. Experiments revealed the endothelial source of this vasodilator influence, and EDHF, but not nitric oxide or prostanoids, appeared to be involved. The ascorbate-induced enhancement of vasoconstrictor tone was not seen in a static myograph or in segments perfused at low rates of flow, but was seen at flow rates of 2.5 ml(-1) and above. We conclude that ascorbate augments vasoconstrictor tone through inhibition of flow-induced EDHF activity.  相似文献   

14.
1. The ability of ascorbate to inhibit endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation was compared in the bovine perfused ciliary vascular bed and isolated rings of coronary artery. 2. Acetylcholine-induced, EDHF-mediated vasodilatation of the ciliary circulation was blocked following inclusion of ascorbate (50 micro M, 120 min) in the perfusion fluid. The blockade was highly selective since ascorbate had no effect on the vasodilator actions of the K(ATP) channel opener, levcromakalim, nor on the tonic vasodepressor action of basally released nitric oxide. 3. The possibility that concentration of ascorbate by the ciliary body was a prerequisite for blockade to occur was ruled out, since EDHF was still blocked when the anterior and posterior chambers were continuously flushed with Krebs solution or when both the aqueous and vitreous humour were drained. 4. Ascorbate at 50 micro M failed to affect bradykinin- or acetylcholine-induced, EDHF-mediated vasodilatation in rings of bovine coronary artery. Raising the concentration to 3 mM did produce blockade of EDHF, but this was nonselective, since vasodilator responses to endothelium-derived nitric oxide were also inhibited. 5. Thus, ascorbate (50 micro M) is not a universal blocker of EDHF. Whether its ability to block in the bovine ciliary circulation, but not in the coronary artery, is due to differences in the nature of EDHF at the two sites, differences in vessel size (resistance arterioles versus conduit artery), the presence or absence of flow, or to some other factor remains to be determined.  相似文献   

15.
Arginase activity has been identified in the prostate, and may be important in the synthesis of polyamines in accessory sex glands in the male. Polyamines in turn may mediate the action of androgens. Diabetic patients have disordered androgen synthesis. The purpose of this work was to evaluate the effect of -arginine on arginase activity in accessory sex glands of male rats under normal and diabetic conditions (alloxan 120 mg/kg, i.p.). Normal and diabetic male rats were untreated or were treated with insulin or -arginine for 96 h, and sacrificed. Arginase activity was measured in serum and in accessory sex glands. Arginase activity in accessory glands did not change significantly with induction of diabetes. Arginase activity was increased in diabetic insulin-treated rats, but there was no arginase response to -arginine administration in diabetic animals. These findings stand in contrast to beneficial effects of -arginine previously observed when this amino acid was administered for a long time (at least 10 days). We suspect that altered arginase activity in accessory sex glands may play a role in the reproductive dysfunction caused by diabetes, inasmuch as arginase activity can be increased in experimentally diabetic rats by the administration of insulin.  相似文献   

16.
1. The role of endothelium-derived relaxing factor (EDRF) in the action of vasodilator (acetylcholine, histamine, nitroprusside) and vasoconstrictor (noradrenaline, vasopressin) drugs on vascular resistance in the isolated perfused kidney and mesentery of the rat was studied. 2. Acetylcholine (EC50 = 0.18 +/- 0.05 nmol and 3.1 +/- 0.06 nmol, n = 8) and histamine (EC50 = 31.2 +/- 4.9 nmol and 46.2 +/- 3.9 nmol, n = 8) produced dose-related vasodilatation in noradrenaline-preconstricted (i.e. 'high tone') rat renal and mesenteric blood vessels. The response to both vasodilators (but not nitroprusside) was abolished by infusion of CHAPS (4.7 mg ml-1, 30 s). By use of an immunocytochemical staining procedure CHAPS was demonstrated to remove vascular endothelial cells lining intrarenal blood vessels. 3. Gossypol (3 microM), metyrapone (10 microM) and nordihydroguaiaretic acid, (NDGA, 30 microM), presumed inhibitors of EDRF biosynthesis, reduced or abolished the response to acetylcholine and histamine in perfused kidney and mesentery of the rat without affecting vasodilatation due to nitroprusside. Mepacrine (10 microM) similarly abolished the response to acetylcholine and histamine but in addition, reduced the response to nitroprusside in both preparations. 4. Methylene blue (100 microM), a presumed antagonist of the effect of EDRF, abolished vasodilatation due to acetylcholine and histamine and reduced the response to nitroprusside in perfused rat kidney and mesentery. Superoxide dismutase, SOD (15 u ml-1), was without effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. Calcium/calmodulin-dependent protein kinase II (CaMKII) has an important function in mediating insulin release but its role in the development of diabetes-induced cardiovascular complications is not known. 2. We investigated the ability of a chronic administration of KN-93 (5 mg kg(-1) alt diem for 4 weeks), an inhibitor of CaMKII, to modulate the altered vasoreactivity of the perfused mesenteric bed to common vasoconstrictors and vasodilators in streptozotocin (STZ)-induced diabetes. 3. The vasoconstrictor responses induced by noradrenaline (NE), endothelin-1 (ET-1), and angiotensin II (Ang II), were significantly increased whereas, vasodilator responses to carbachol and histamine were significantly reduced in the perfused mesenteric bed of the STZ-diabetic rats as compared with non-diabetic controls. 4. Inhibition of CaMKII by KN-93 treatment did not affect blood glucose levels but produced a significant normalization of the altered agonist-induced vasoconstrictor and vasodilator responses. KN-93 did not affect agonist-induced responses in control animals. In addition, KN-93 significantly reduced weight loss in diabetic rats. 5. The present data suggest that CaMKII is an essential mediator in the development of diabetic vascular dysfunction and may also play an important role in signalling pathways leading to weight loss during diabetes.  相似文献   

18.
The mechanisms that subserve ghrelin-evoked vasodilatation have not been elucidated in previous studies. Changes in perfusion pressure evoked by ghrelin and its N-terminal fragments were examined ex vivo in phenylephrine-constricted perfused mesenteric vascular beds of male Sprague Dawley rats maintained at a constant flow rate. Both ghrelin (maximum effect [E(max)] 45%) and des-acyl ghrelin (E(max) 43%) evoked vasodilatation at concentrations between 10 pM and 1 nM, compared to acetylcholine (median effective concentration [EC(50)] 3 nM; E(max) 93%). Those responses were abolished in endothelium-denuded preparations, and in endothelium-intact preparations exposed to either calcium-activated potassium channel, or a depolarizing stimulus, or in the presence of a combination of either apamin and 1,2-chlorophenyl diphenylmethyl-1 H-pyrazole (triarylmethane-34 [TRAM-34]), or ouabain and barium. ATP-activated potassium channel blockade, or a combination of nitric oxide synthase and cyclooxygenase inhibition had no effect. The classical growth hormone secretagogue antagonist, [d-Lys(3)]-growth hormone-releasing peptide (10 nM), or several N-terminal fragments of des-acyl ghrelin, including the tripeptide glycine-serine-serine (G-S-S [1 nM]), showed endothelium-dependent vasodilatation like des-acyl ghrelin, while responses to glycine-serine or serine-serine were relatively lower. A higher concentration (100 muM) of l-serine, but not glycine, evoked vasodilatation of similar magnitude. The serine dense N-terminal sequence of des-acyl ghrelin mediates endothelium-dependent vasodilatation via activation of apamin+TRAM-34 sensitive small- and intermediate-conductance calcium-activated potassium channels present on the mesenteric endothelium. Thus, the vasodilator response to ghrelins in the perfused rat mesenteric vascular bed is not mediated by the classical growth hormone secretagogue receptor type 1a.  相似文献   

19.
We previously reported that ascorbate inhibits endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation in the bovine perfused ciliary circulation and rat perfused mesentery, but not in rings of bovine or porcine coronary artery. In this study, we have compared the ability of ascorbate to inhibit EDHF-mediated vasodilatation in a single vessel, the bovine long posterior ciliary artery, when perfused and when mounted as rings in a myograph. Both in segments perfused at a flow rate of 2.5 ml min(-1) and in rings mounted in a myograph, bradykinin and acetylcholine each induced vasodilator responses that were mediated jointly by EDHF and nitric oxide, as revealed by their respective blocking agents, apamin/charybdotoxin, and L-NAME. Ascorbate (50 and 150 microm) induced a time (max at 2-3 h)-dependent inhibition of the EDHF-mediated component of vasodilatation to bradykinin or acetylcholine in perfused segments, but not in rings. Ascorbate (50 microm) failed to inhibit bradykinin-induced vasodilatation at a flow rate of 1.25 ml min(-1) or below, but produced graded blockade at the higher flow rates of 2.5 and 5 ml min(-1). Furthermore, using a pressure myograph where pressure and flow were independently controlled, it was confirmed that the inhibitory action of ascorbate (150 microm) was directly related to flow per se and not any associated changes in pressure. Thus, we have shown in the bovine ciliary artery that ascorbate inhibits EDHF-mediated vasodilatation under conditions of flow but not in a static myograph. The mechanism by which flow renders EDHF susceptible to inhibition by ascorbate remains to be determined.  相似文献   

20.
The effects of NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of the synthesis of the endothelium-derived relaxing factor nitric oxide, were studied in two isolated perfused vascular beds: the rat mesenteric arterial bed and the hepatic arterial bed of the rabbit liver. The tone of both preparations was raised with noradrenaline (10 and 30 microM for rabbit and rat preparations, respectively). In both preparations, L-NAME (30 microM) significantly attenuated vasodilator responses to the endothelium-dependent vasodilator acetylcholine, but enhanced responses to sodium nitroprusside (a direct smooth muscle dilator). The evidence supports the view, previously established from work carried out in isolated vessels, that in addition to acting as an inhibitor of nitric oxide, L-NAME enhances the responsiveness of smooth muscle to direct relaxation by nitrovasodilators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号