首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的建立了一种高效液相色谱同时分离和测定大气颗粒物PM2.5中16种优控多环芳烃的方法。方法采用二氯甲烷超声提取,浓缩后经乙腈定容,以乙腈和水作为流动相,反相色谱法梯度淋洗分离后,由紫外检测器串联荧光检测器检测。结果 16种PAHs的分离效果较好,线性关系良好(r0.999),平均回收率为77.5%~104.0%,相对标准偏差为1.1%~6.8%,LOD为0.1μg/L~2.3μg/L,LOQ为0.3μg/L~7.5μg/L,均符合方法学的要求。在采样点采集PM2.5样品,并进行定量分析。通过使用16种PAHs毒性当量因子,计算了各自的毒性当量。结论该方法方便、可靠、灵敏度高,可满足PM2.5中多环芳烃的日常检测要求。  相似文献   

2.
目的 探索利用改进PM2.5中16种多环芳烃高效液相色谱法测定合肥市大气细颗粒物PM2.5中多环芳烃含量.方法 取采集空气后滤膜1/4剪碎,乙腈超声提取,高效液相色谱法测定,改用多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)专用柱(4.60 mm×250 mm,5.0 μm),流动相为水和乙腈,流速1.5 mL/min,梯度洗脱,PDA检测器和FLR检测器同时检测.结果 16种PAHs空白加标回收率在72%~ 105%之间,标准曲线线性方程相关系数r>0.999,相对标准差(RSD)0.61%~7.72%,方法检出限为0.004~0.023 ng/m3,定量下限为0.014~0.094 ng/m3(采样量为144 m3).结论 改进过后的方法在检测合肥市大气颗粒物PM2.5中具有简便、快速、灵敏等优点,提高了低环数PAHs回收率和PAHs分离效果,具有较高的应用价值.  相似文献   

3.
目的 建立超高效液相色谱法同时测定细颗粒物(PM2.5)中的16种多环芳烃(PAHs)的高效液相分析方法,并用于城市大气PM2.5中PAHs污染特征分析。方法 采用玻璃纤维滤膜采集大气中的多环芳烃,用陶瓷剪刀将玻璃纤维滤膜剪碎,以乙醚、正己烷作为提取液,超声提取30 min,提取液经高速离心后,上清液用氮气迅速吹干,用乙腈—水(60:40,V/V)溶液定容。采用多环芳烃专用色谱柱(Venusil PAH,4.6 mm×250 mm, 5.0μm)进行分离,以水—乙腈为流动相进行梯度洗脱,采用紫外检测器和荧光检测器对16种多环芳烃进行定性、定量的检测。结果 本方法检测16种多环芳烃在0.10~10.0μg/mL浓度范围内呈良好线性关系,相关系数(r)在0.995~0.999之间,方法的检出限在0.02~0.30 ng/m3之间,相对标准偏差在0.42%~9.37%之间,回收率范围为60.7%~90.4%。结论 该方法操作简单、分离效率高、灵敏度高,结果准确可靠,可用于PM2.5中多环芳烃的检测。  相似文献   

4.
摘要:目的 建立一种前处理简单、灵敏度高、重现性好的空气中16种多环芳烃的检测方法。方法 采用高效液相色谱法,Ultimate PAH(250 mm×4.6 mm,5 μm)液相色谱柱分离,乙腈-水为流动相进行梯度洗脱,紫外检测器,荧光检测器检测,紫外检测波长230 nm,荧光检测波长248~305 nm。结果 测定结果具有良好的线性(R=0.9990~0.9999),保留时间的RSD为0.007%~0.017%(n=9),峰面积的RSD为0.08%~2.41%(n=9),样品加标回收率为63.21%~102.92%,16种多环芳烃同时测定的检出限分别为:萘:0.040 μg/ml、芴:0.020 μg/ml、苊:0.032 μg/ml、菲:0.020 μg/ml、蒽:0.024 μg/ml、荧蒽:0.020 μg/ml、芘:0.032 μg/ml、苯并(a)蒽:0.032 μg/ml、屈:0.008 μg/ml、苯并(b)荧蒽:0.016 μg/ml、苯并(k)荧蒽:0.020 μg/ml、苯并(a)芘:0.008 μg/ml、二苯并(a,h)蒽:0.016 μg/ml、苯并(g,h,i)苝:0.032 μg/ml、茚苯(1,2,3-cd)芘:0.020 μg/ml、苊烯:0.020 μg/ml。结论 该方法具有操作简便、快速、重复性好、灵敏度高等优点,可用于测定空气中的多环芳烃。  相似文献   

5.
丁昌明  郑磊  林少彬 《卫生研究》2012,41(5):850-853
目的建立固相萃取—高效液相色谱同时测定血清中蒽、荧蒽、芘、苯并[a]蒽、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、苯并[a,h]蒽和苯并[g,h,i]芘9种多环芳烃的高效液相色谱测定方法。方法样品经过C18固相萃取小柱富集、净化,以甲醇洗脱后,采用Waters Symmetry C18色谱柱,以乙腈为流动相A,高纯水为流动相B梯度淋洗,流速为1.0 ml/min,荧光检测器测定,检测波长为Ex=340nm,Em=425nm。结果在给定浓度范围内各多环芳烃的峰面积与浓度具有良好的线性关系。其线性范围为0.10~3.00ng/ml;相关系数为0.9941~0.9999;回收率为87.1%~113.4%;相对标准偏差为2.56%~12.7%;检出限为0.05~0.10ng/ml。结论该方法可用于血清中9种多环芳烃的同时测定。  相似文献   

6.
目的使用高效液相色谱法测定谷物中15种多环芳烃。方法样品加入乙腈振荡、超声提取、离心,转移上清液用氮气吹干,用乙腈溶解残渣后,过0. 45μm微孔滤膜,以乙腈—水作为流动相梯度洗脱,以Waters-PHAs专用柱分离,通过荧光检测器检测其中多环芳烃。结果该方法线性关系良好,RSD 0. 80%~7. 22%,样品加标回收率90. 0%~110%。结论该方法前处理简单、准确、灵敏度高、重现性好、成本低,可以用于谷物中15种多环芳烃的检测。  相似文献   

7.
郁倩  张娟  安可  吴越 《中国校医》2019,33(12):884
目的 调查徐州市大气颗粒物中的细颗粒物(PM2.5)中多环芳烃(PAHs)的污染水平并对人群进行健康风险评估。方法 采用大气中流量采样器在徐州市泉山区采集PM2.5样品,用液相色谱法定量分析2016年徐州市PM2.5中16种PAHs的质量浓度,并对人群健康风险进行评估。结果 2016年徐州市大气PM2.5中PAHs月平均总质量浓度(∑16PAHs)范围为0.85~94.8 ng/m3,16种致癌性PAHs的等效致癌浓度(BEQ)范围为0.00011~6.81 ng/m3;儿童、成年男性、成年女性PAHs的致癌超额危险度年平均值分别为1.10×10-6、1.67×10-6、1.59×10-6。结论 徐州市区大气PM2.5中多环芳烃污染较为严重,但致癌风险处于可接受水平。  相似文献   

8.
目的建立采用超高效液相色谱(UPLC)-荧光检测器(FLR)同时快速检测植物油中15种多环芳烃的方法。方法采用乙腈∶丙酮(1∶1)混合溶剂提取,先后使用Waters的Oasis HLB和Sep-Pak Florsil小柱净化,Waters PAH C18色谱柱(4.6mm×50 mm,3μm)分离,甲醇、乙腈和水进行梯度洗脱,柱温35℃,流速0.80 ml/min,进样量10μl;荧光检测器采用程序定时控制荧光检测波长变化,外标法定量。结果 15种多环芳烃9 min内完全分离,在2.0~200.0μg/L范围内,峰面积和质量浓度的线性关系良好(r≥0.9990),以高、中、低浓度(10、50和100μg/kg)作为不同的添加水平,平均加标回收率为75.8%~96.4%,RSD为3.42%~8.03%(n=5),检出限为0.025~0.8μg/kg,定量限为0.08,3.0μg/kg。结论该方法操作方便、分离效果好、线性范围宽,能满足植物油中15种多环芳烃的检测要求。  相似文献   

9.
目的 建立居室积尘中多环芳烃的高效液相色谱检测方法,为居室积尘中多环芳烃污染的预防控制提供技术支持。方法 采用超声萃取法(正己烷-丙酮)对样品中的多环芳烃进行提取,经硅胶层析柱净化和氮吹浓缩后,利用高效液相色谱法-荧光检测器/紫外检测器检测。结果 16种多环芳烃线性相关系数在0.9994~0.9999之间,检出限范围为0.005~0.120 ng/g,平均回收率为78.70%~104.4%,相对标准偏差均小于7.50%(除BbF和BaP外)。∑16PAHs含量在石家庄(78.58μg/g)、西安(56.12μg/g)和深圳(49.56μg/g)较高;在无锡(13.96μg/g)、宁波(9.01μg/g)和盘锦(8.50μg/g)较低。苯并[a]芘毒性当量浓度在石家庄(2.53μg/g)、深圳(1.69μg/g)和西安(1.50μg/g)较高;在盘锦(0.35μg/g)、无锡(0.19μg/g)和宁波(0.18μg/g)较低。结论 本方法具有较高的准确度、精密度和灵敏度,且重复性和稳定性良好,适用于居室积尘多环芳烃的检测。居室积尘中多环芳烃含量处于较高水平,因此应采...  相似文献   

10.
目的:建立水中痕量16种美国环保署纳入"优先监测列表"的多环芳烃同时测定的方法。方法:水样中待测组分采用OASIS固相萃取柱富集,二氯甲烷洗脱,吹氮浓缩至近干并置换溶剂为乙腈,高效液相色谱分离,二极管阵列检测器与荧光检测器串联检测。结果:以乙腈-水为梯度流动相,PAH C18分离柱能有效分离16种多环芳烃组分,定量线性关系良好,加标回收率53.60%~91.05%,变异系数5.81%~10.77%,15种组分的最低检出限为0.15~5.38 ng/L,苊烯为33.37 ng/L。结论:本法具有非常高的选择性、灵敏度和准确度,完全能满足水中痕量多环芳烃的高灵敏分析。  相似文献   

11.
用XAD-2树脂吸附浓缩水中PAHS,二氯甲烷—丙酮(2:1)洗脱,洗脱液浓缩至干,甲醇定容,用具有紫外检测器的HPLC测定。通过实验确定萘、蒽、萤蒽、芘、苝和苯并(α)芘等6种化合物的最佳色谱分离条件。6种代表性PAHS在不同浓度下的平均回收率为67.5~102%。如取1L水样,6种化合物的最低检测浓度为0.005~0.11μg/L。适合于水中痕量PAHS的分析。  相似文献   

12.
目的建立基于搅拌棒吸附萃取(SBSE)结合高效液相色谱-荧光检测(HPLC-FLD)测定红茶中15种多环芳烃的简便方法。方法研究甲醇和NaCl添加量、提取时间、解吸步骤以及基质效应对样品富集效率的影响,并在优化参数下将搅拌棒置于10 ml红茶样品中以750 r/min转速室温下提取120 min,萃取完成后以160μl乙腈-水解析后上机。结果在优化的实验条件下,15种多环芳烃在1 ng/L~1 200 ng/L浓度内呈良好线性关系,相关系数(r)> 0.998,检出限(S/N=3)为0.1 ng/L~8.7 ng/L,定量限为0.4 ng/L~27.5 ng/L,平均回收率在24.9%~88.7%。结论该方法简便、准确、环保、灵敏度高、选择性好,可满足红茶样品中多组分痕量多环芳烃的测定要求,为多环芳烃的残留分析提供了新的技术平台。  相似文献   

13.
目的建立高效液相色谱法测定大气细微颗粒(PM2.5)中16种常见多环芳烃(PAHs)的最佳分离测定条件。方法空气中多环芳烃经滤膜收集,超声提取,乙腈和水为流动相,高效液相色谱梯度淋洗分离,二极管阵列检测器检测。结果 16种多环芳烃化合物在35 min内得到了很好的分离,在0.10~5.00μg/m L范围内线性关系良好,测定的相对标准偏差为1.29%~5.08%,加标回收率为81.44%~98.02%。结论该方法测定空气中多环芳烃化合物快速简便、灵敏、重现性好。  相似文献   

14.
目的 调查熏烤油炸食品中多环芳烃的含量和分布,研究对油炸熏烤食品中多环芳烃的测量方法.方法 采用高效液相色谱荧光检测器法对油炸熏烤食品中的15种多环芳烃进行检测.为了得到更好的分离效果,本文采用乙腈+水(6+4)的浓度进行梯度洗脱,探讨流速的选择,对多环芳烃的检验进行了进一步的优化处理;同时也做了准确度的测定.结果 1...  相似文献   

15.
目的建立一种用高效液相色谱法同时测定大气中16种多环芳烃化合物的方法。方法用粉尘采样器、聚四氟乙烯滤膜和高分子多孔微球管采集大气中多环芳烃化合物,滤膜用乙腈:甲醇(60∶40)为溶剂,超声波提取多环芳烃化合物;吸收管用乙腈:甲醇(60∶40)、二氯甲烷洗脱,洗脱液经真空干燥后用乙腈:甲醇(60∶40)定容。用乙腈和水作为流动相,进行反相高效液相色谱梯度淋洗分离,程序波长荧光检测器检测。结果16种多环芳烃化合物测定的相对标准偏差为1.1%~5.6%,方法检测限为2.14×10~(-4)~4.3233×10~(-2)μg/ml,回收率为83.6%~98%,均符合方法学要求。结论该方法具有快速简便、准确灵敏、重现性好等优点,能全面真实地反映大气中多环芳烃化合物浓度。  相似文献   

16.
目的建立采用超高效液相色谱(UPLC)-荧光检测器(FLR)同时快速检测植物油中15种多环芳烃的方法。方法采用乙腈:丙酮(1:1)混合溶剂提取,先后使用Waters的OasisHLB和Sep-PakFlorsil小柱净化,WatersPAHC18色谱柱(4.6mm×50mill,3恤m)分离,甲醇、乙腈和水进行梯度洗脱,柱温35℃,流速0.80ml/min,进样量10μ1;荧光检测器采用程序定时控制荧光检测波长变化,外标法定量。结果15种多环芳烃9min内完全分离,在2.0~200.0μg/L范围内,峰面积和质量浓度的线性关系良好(r≥0.9990),以高、中、低浓度(10、50和100μg/kg)作为不同的添加水平,平均加标回收率为75.8%~96.4%,RSD为3.42%~8.03%(12=5),检出限为0.025~0.8μg/kg,定量限为0.08,3.0μg/kg。结论该方法操作方便、分离效果好、线性范围宽,能满足植物油中15种多环芳烃的检测要求。  相似文献   

17.
目的 建立高灵敏度的超高效液相色谱串联荧光检测器检测人体血清中16种痕量多环芳烃的分析方法。方法 200μl血清样品,加入400μl正己烷,涡旋振荡后高速离心分离,取上层有机相,重复萃取2次,合并萃取液,氮吹至近干,再复溶于100μl乙腈中。经PAH C18色谱柱(5μm, 4.6 mm×150 mm),在甲醇-水为流动相下梯度洗脱,超高效液相色谱串联荧光检测器测定。结果 血清中的16种多环芳烃在0.20μg/L~5.00μg/L浓度内呈良好的线性关系,线性相关系数均>0.998。该方法,检出限为0.1μg/L;加标回收率为60.5%~96.0%,RSD为1.5%~7.6%。结论 该方法操作简便、生物样本用量少、检出限低,适用于人群中多种多环芳烃的监测。  相似文献   

18.
王钟  邢燕  何漪  王敏  王勤 《现代预防医学》2019,(8):1464-1467
目的 采用高效液相色谱-荧光检测技术,建立大气细颗粒物(PM2.5)中15种欧盟优控多环芳烃(EU - PAHs)的同时测定方法。方法 利用超声波辅助乙腈提取PM2.5样品中的EU - PAHs,经0.45 μm滤膜过滤,用Waters PAH色谱柱分离,用乙腈 - 水作流动相梯度洗脱,荧光检测器检测,峰面积标准曲线法定量。结果 方法线性范围为 0.30~84 ng/m3,相关系数均大于0.999,方法精密度为4.6%~10.2%,回收率83.2%~95.6%。结论 该方法灵敏度高,准确度高,线性范围宽,适用于大气PM2.5中15种欧盟优控多环芳烃的同时检测。  相似文献   

19.
20.
目的建立大气颗粒物PM_(2.5)中16种多环芳烃(PAHs)的超高效液相色谱-二极管阵列检测器测定法。方法空气样品滤膜经乙腈密封超声提取,以乙腈-水为流动相进行梯度洗脱,过Waters ACQUITY UPLC~BEH Shield RP18色谱柱(2.1 mm×150 mm,1.7μm),超高效液相色谱法测定,反相色谱法梯度淋洗分离后,二极管阵列检测器检测。结果在10~1 000μg/L的范围内,所得16种PAHs的回归方程均呈良好的线性关系良好(r0.999 9)。方法的检出限为0.5~6.0μg/L,平均回收率为88.9%~119.4%,RSD为0.3%~4.9%。结论该方法操作简单,灵敏高,分析速度快,适用于空气中16种PAHs的监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号