首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Rapid targeted movements are subject to special control considerations, since there may be inadequate time available for either visual or somatosensory feedback to be effective. In our experiments, subjects rapidly rotated a knob to align a pointer to one of several targets. We recognized three different types of movement segments: the primary movement, and two types of submovement, which frequently followed. The submovements were initiated either before or after the end of the primary movement. The former, or "overlapping" type of submovement altered the kinematics of the overall movement and was consequently difficult to detect. We used a direct, objective test of movement regularity to detect overlapping submovements, namely, examining the number of jerk and snap zero crossings during the second half of a movement. Any overlapping submovements were parsed from the overall movement by subtracting the velocity profile of the primary movement. The velocity profiles of the extracted submovements had near-symmetric bell shapes, similar to the shapes of both pure primary movements and nonoverlapping submovements. This suggests that the same neural control mechanisms may be responsible for producing all three types of movement segments. Overlapping submovements corrected for errors in the amplitude of the primary movement. Furthermore, they may account for the previously observed, speed-dependent asymmetry of the velocity profile. We used a nonlinear model of the musculoskeletal system to explain most of the kinematic features of these rapid hand movements, including how discrete submovements are superimposed on a primary movement. Finally, we present a plausible scheme for how the central nervous system may generate the commands to control these rapid hand movements.  相似文献   

2.
3.
The major goal of this study was to determine the patterns of convergence of non-labyrinthine inputs from the limbs and viscera onto vestibular nucleus neurons receiving signals from vertical semicircular canals or otolith organs. A secondary aim was to ascertain whether the effects of non-labyrinthine inputs on the activity of vestibular nucleus neurons is affected by bilateral peripheral vestibular lesions. The majority (72%) of vestibular nucleus neurons in labyrinth-intact animals whose firing was modulated by vertical rotations responded to electrical stimulation of limb and/or visceral nerves. The activity of even more vestibular nucleus neurons (93%) was affected by limb or visceral nerve stimulation in chronically labyrinthectomized preparations. Some neurons received non-labyrinthine inputs from a variety of peripheral sources, including antagonist muscles acting at the same joint, whereas others received inputs from more limited sources. There was no apparent relationship between the spatial and dynamic properties of a neuron's responses to tilts in vertical planes and the non-labyrinthine inputs that it received. These data suggest that non-labyrinthine inputs elicited during movement will modulate the processing of information by the central vestibular system, and may contribute to the recovery of spontaneous activity of vestibular nucleus neurons following peripheral vestibular lesions. Furthermore, some vestibular nucleus neurons with non-labyrinthine inputs may be activated only during particular behaviors that elicit a specific combination of limb and visceral inputs.  相似文献   

4.
Labyrinthine nerve-evoked monosynaptic excitatory postsynaptic potentials (EPSPs) in second-order vestibular neurons (2°VN) sum with disynaptic inhibitory postsynaptic potentials (IPSPs) that originate from the thickest afferent fibers of the same nerve branch and are mediated by neurons in the ipsilateral vestibular nucleus. Pharmacological properties of the inhibition and the interaction with the afferent excitation were studied by recording monosynaptic responses of phasic and tonic 2°VN in an isolated frog brain after electrical stimulation of individual semicircular canal nerves. Specific transmitter antagonists revealed glycine and GABAA receptor-mediated IPSPs with a disynaptic onset only in phasic but not in tonic 2°VN. Compared with GABAergic IPSPs, glycinergic responses in phasic 2°VN have larger amplitudes and a longer duration and reduce early and late components of the afferent nerve-evoked subthreshold activation and spike discharge. The difference in profile of the disynaptic glycinergic and GABAergic inhibition is compatible with the larger number of glycinergic as opposed to GABAergic terminal-like structures on 2°VN. The increase in monosynaptic excitation after a block of the disynaptic inhibition in phasic 2°VN is in part mediated by a N-methyl-D-aspartate receptor-activated component. Although inhibitory inputs were superimposed on monosynaptic EPSPs in tonic 2°VN as well, the much longer latency of these IPSPs excludes a control by short-latency inhibitory feed-forward side-loops as observed in phasic 2°VN. The differential synaptic organization of the inhibitory control of labyrinthine afferent signals in phasic and tonic 2°VN is consistent with the different intrinsic signal processing modes of the two neuronal types and suggests a co-adaptation of intrinsic membrane properties and emerging network properties.  相似文献   

5.
Convergence between posterior canal (PC) and saccular (SAC) inputs in single vestibular nuclei neurons was investigated in decerebrated cats. Postsynaptic potentials were recorded intracellularly after selective stimulation of the SAC and PC nerves. Stimulation of either the SAC or PC nerve orthodromically activated 143 vestibular nuclei neurons. Of these, 61 (43%) were antidromically activated by stimulation of the C1-C2 junction, 14 (10%) were antidromically activated by stimulation of the oculomotor or trochlear nucleus, and 14 (10%) were antidromically activated by stimulation of both the oculomotor or trochlear nucleus and the spinal cord. Fifty-four (38%) neurons were not activated by stimulation of either or both. We named these neurons vestibulospinal (VS), vestibulo-ocular (VO), vestibulooculo-spinal (VOS) and vestibular (V) neurons, respectively. Both PC and SAC inputs converged in 47 vestibular nuclei neurons (26 VS, 2 VO, 6 VOS and 13 V neurons). Of these, 19 received monosynaptic excitatory inputs from both nerves. This input pattern was frequently seen in VS neurons. Approximately half of the convergent VS neurons descended to the spinal cord through the lateral vestibulospinal tract. The remaining half and all the convergent VOS neurons descended to the spinal cord through the medial vestibulospinal tract. Most of the convergent neurons were located in the lateral nucleus or descending nucleus.  相似文献   

6.
The convergence of the posterior semicircular canal (PC) and utricular (UT) inputs in single vestibular nuclei neurons was studied intracellularly in decerebrate cats. A total of 160 vestibular neurons were orthodromically activated by selective stimulation of the PC and the UT nerve and classified according to whether or not they were antidromically activated from the spinal cord and oculomotor nuclei into vestibulospinal (VS), vestibulooculospinal (VOS), vestibuloocular (VO), and unidentified vestibular neurons. Fifty-three (33%) of 160 vestibular neurons received convergent inputs from both the PC and UT nerves. Seventy-nine (49%) vestibular neurons responded to PC inputs alone, and 28 (18%) neurons received inputs only from the UT nerve. Of 53 convergent neurons, 8 (15%) were monosynaptically excited from both nerves. Thirty-five (66%) received monosynaptic excitatory inputs from the PC nerve and polysynaptic excitatory or inhibitory inputs from the UT nerve, or vice versa. Approximately one-third of VS and VOS neurons received convergent inputs. A majority of the VS neurons descended to the spinal cord through the lateral vestibulospinal tract, while almost all the VOS neurons descended to the spinal cord through the medial vestibulospinal tract. The convergent neurons were found in all vestibular nuclei but more in the lateral nucleus and descending nucleus. The VS neurons were more numerous than VO neurons or VOS neurons.  相似文献   

7.
Summary The behavior of single vestibular nerve fibers from the lateral semicircular canal was recorded during sinusoidal oscillations of the head, during optokinetic stimulation with the head stationary, and during spontaneous oculomotor behavior in the alert monkey. The response of similar fibers to adequate vestibular stimulation was also studied in some of the animals under deeply anesthetized conditions. In the alert animals all units were spontaneously active and their discharge was modulated only by adequate vestibular stimulation. Ipsilateral horizontal rotations of the head were excitatory for all units. No modification of this basic vestibular response by visual stimulation including full-field striped drum rotation was observed. Furthermore no correlation of unit activity with oculomotor function including voluntary saccadic and pursuit eye movements was found in any of the units. The regularity of spontaneous discharge was the most consistent characteristic that differentiated the unit response into types. Most units were very regular in discharge, but a few were very irregular. The averaging of unit discharge over several cycles of oscillatory head rotation showed that the irregular type units were also consistently modulated by adequate vestibular stimulation. Both regular and irregular type units were found in the anesthetized animals. Unimodal distributions of the quantitative values for unit resting discharge rate, sensitivity, and phase relationship were found. The distributions for these three parameters were similar in the units recorded in the anesthetized animals. Thus at least these characteristics of semicircular canal response seem not to be affected by the vestibular efferent system which should be altered or eliminated in the case of the anesthetized animals.Research supported by NIH Grant EY0995-04.  相似文献   

8.
Extracellular recordings were obtained in decerebrate cats from neurons located in the inhibitory area of the medullary reticular formation, namely in the medial aspects of the nucleus reticularis gigantocellularis, magnocellularis and ventralis. Of 127 medullary reticular units examined, 77 were reticulospinal neurons antidromically identified following stimulation of the spinal cord at T12-L1; the remaining 50 neurons were not activated antidromically. Unit firing rate was analyzed under separate stimulation of macular vestibular, neck, or combined receptors by using sinusoidal rotations about the longitudinal axis at 0.026 Hz, 10 peak amplitude. Among the 127 reticular units, 84 (66.1%) responded with a periodic modulation of their firing rate to roll tilt of the animal and 93 (73.2%) responded to neck rotation. Convergence of macular and neck inputs was found in 71/127 (55.9%) reticular neurons; in these units, the gain as well as the sensitivity of the first harmonic of response corresponded on the average to 0.49 +/- 0.41, SD imp/s/deg and 5.10 +/- 4.27, SD %/deg for the neck responses and to 0.40 +/- 0.39, SD imp/s/deg and 3.90 +/- 3.80, SD %/deg for the macular responses, respectively. Most of the convergent reticular units were maximally excited by the direction of stimulus orientation, the first hormonic or responses showing an average phase lead of about +42.7 with respect to neck position and +24.9 with respect to animal position. Two populations of convergent neurons were observed. The first group of units (58/71, i.e. 81.7%) showed reciprocal ("out of phase") responses to the two inputs in that they were mainly excited during side-down neck rotation, but inhibited during side-down animal tilt. The remaining group of units (13/71, i.e. 18.3%) showed parallel ("in phase") responses to the two inputs and they were mainly excited by side-down neck rotation and animal tilt. The response characteristics of medullary reticular neurons to the combined neck and macular inputs, elicited during head rotation, closely corresponded to those predicted by a vectorial summation of the individual neck and macular responses. In particular, "out of phase" units displayed small amplitudes and large phase leads of the responses with respect to head position, when both types of receptors were costimulated. In contrast, "in phase" units displayed large amplitude and small phase leads during head rotation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The convergence between the anterior semicircular canal (AC) and utricular (UT) inputs, as well as the convergence between the AC and saccular (SAC) inputs in single vestibular neurons of decerebrated cats were investigated. Postsynaptic potentials were recorded intracellularly after selective stimulation of each pair of vestibular nerves AC/UT or AC/SAC. Neurons were recorded from the central parts of the vestibular nuclei, where the otolith afferents mainly terminate. Of a total of 105 neurons that were activated after stimulation of the AC and UT nerves, 42 received convergent inputs. Thirty-eight of these neurons received excitatory inputs from both afferents. Convergent neurons were further classified into vestibulospinal (n=28) and vestibulooculospinal (n=6) neurons by antidromic activation from the border between the C1 and C2 spinal cord and the oculomotor or trochlear nucleus. Eight neurons that were not antidromically activated from either site were classified as vestibular neurons. Forty three percent of the convergent vestibulospinal neurons and most of the convergent vestibulooculospinal neurons projected to the spinal cord through the medial vestibulospinal tract. The remaining vestibulospinal and vestibulooculospinal neurons descended through the ipsilateral lateral vestibulospinal tract. Of a total of 118 neurons that were activated after stimulation of the AC and/or SAC nerves, 51 received convergent inputs (27 vestibulospinal, 4 vestibulooculospinal, 5 vestibuloocular and 15 vestibular neurons). Forty-two of the convergent neurons received excitatory inputs from both afferents. Thirty seven percent of the convergent vestibulospinal neurons and all of the convergent vestibulooculospinal neurons projected to the spinal cord through the medial vestibulospinal tract. The remaining vestibulospinal and vestibulooculospinal neurons descended through the ipsilateral lateral vestibulospinal tract. Electronic Publication  相似文献   

10.
11.
Superior salivatory nucleus (SSN) neurons were identified by antidromic spike responses to stimulation of the chorda tympani nerve, and were tested to stimulation of the ipsilateral chorda tympani, glossopharyngeal, vagus and lingual nerves in urethane-chloralose anesthetized cats. In 48 SSN neurons identified, 33 (69%) responded with spikes to stimulation of at least one of these nerves, and 24 (50%) were excited with inputs from more than one stimulated nerve. The mean latencies of the reflex responses to stimulation of the chorda tympani, glossopharyngeal, vagus or lingual nerve were 13.2, 18.9, 24.6 or 11.4 ms, respectively.  相似文献   

12.
Single units of the adrenal sympathetic nerve (n = 46) were dissected and characterized with respect to tonic discharge and response to cutaneous and baroreceptor stimulation. The frequency of tonic discharge averaged 1.6 Hz and cardiovascular rhythmic modulation was observed in 53% of the units. The stimuli employed in the present study included phenylephrine-induced increases in blood pressure and pinching or brushing of lower chest skin. Mean unit activity increased 27% on lower chest pinching stimulation, decreased 12% on lower chest brushing stimulation and decreased 62% on phenylephrine-induced baroreceptor stimulation. Although there was a tendency for units with higher tonic firing frequency to have a greater response to stimulation, this relationship was not significant for pinching or brushing of lower chest skin. The close correlation between tonic activity and response to phenylephrine was explicable on the basis of a near total depression of many units, which resulted in a larger decrease in firing frequency for units with initially high spontaneous discharge rates. As might be expected, units with cardiovascular rhythmicity manifested greater responses to baroreceptor activation. This correlation was independent of tonic rate of discharge since rhythmic and non-rhythmic units did not significantly differ in tonic activity. While a majority of units responded in a typical fashion to all three stimuli (i.e. with increases to pinching and decreases to brushing and phenylephrine administration), there was little correlation between the response magnitude of individual units to any two of the stimuli employed. We conclude, therefore, that most adrenal sympathetic units receive convergent reflex input from cutaneous noxious and non-noxious afferents as well as from baroreceptor afferents, although for any individual unit the quantitative significance of each input varies.  相似文献   

13.
Extracellular recordings were obtained in precollicular decerebrate cats from 90 neurons located in the noradrenergic area of the dorsal pontine tegmentum, namely in the dorsal (LCd,n=24) and the ventral part (LC,n=40) of the locus coeruleus (LC) as well as in the locus subcoeruleus (SC,n=26). Among these units of the LC complex, 13 were coerulospinal (CS) neurons antidromically identified following stimulation of the spinal cord at T12-L1. Some of these neurons showed the main physiological characteristics of the norepinephrine (NE)-containing LC neurons, i.e., a slow and regular resting discharge and a typical biphasic response to fore- and hindpaw compression consisting of a short burst of excitation followed by a period of quiescence, due, in part at least, to recurrent and/or lateral inhibition. Unit firing rate was analyzed under separate stimulation of macular vestibular, neck, or combined receptors by using sinusoidal rotation about the longitudinal axis at 0.15 Hz, ±10° peak amplitude.Among the 90 LC-complex neurons, 60 (66.7%) responded with a periodic modulation of their firing rate to roll tilt of the animal and 67 (74.4%) responded to neck rotation. Convergence of macular and neck inputs was found in 52/90 (57.8%) LC-complex neurons; in these units, the gain and the sensitivity of the first harmonic of the response corresponded on the average to 0.34±0.45, SD, impulsed·s–1·deg–1 and 3.55±2.82, SD, %/deg for the neck responses and to 0.23±0.29, SD, impulses·s–1·deg–1 and 3.13±3.04, SD, %/deg for the macular responses. In addition to these convergent units, 8/90 (8.9%) and 15/90 (16.7%) LC-complex units responded to selective stimulation either of macular or of neck receptors only. These units displayed a significantly lower response gain and sensitivity to animal tilt and neck rotation with respect to those obtained from convergent units. Most of the convergent LC-complex units were maximally excited by the direction of stimulus orientation, the first harmonic of responses showing an average phase lead of about +31.0° with respect to neck position and +17.6° with respect to animal position. Two populations of convergent neurons were observed. The first group of units (43/52, i.e., 82.7%) showed reciprocal (out of phase) responses to the two inputs; moreover, most of these units were excited during side-down neck rotation, but inhibited during side-down animal tilt. The second group of units (9/52, i.e., 17.3%) showed parallel (in phase) responses to the two inputs and they were excited by side-down or side-up neck rotation and animal tilt. The response characteristics of LC-complex neurons to combined neck and macular inputs, elicited during head rotation, corresponded to those predicted by a vectorial summation of the individual neck and macular responses. In particular, out of phase units displayed small amplitudes and large phase shifts of their responses with respect to those obtained during individual neck or macular stimulation. In contrast, in phase units displayed large responses during head rotation. Some nonlinearities of the responses to combined stimulation of neck and macular receptors, however, were observed. The possibility that the CS neurons contributed, with the vestibulospinal (VS) neurons, to the postural adjustments of the limb musculature during labyrinth and neck reflexes was discussed.  相似文献   

14.
After unilateral peripheral vestibular lesions, the brain plasticity underlying early recovery from the static symptoms is not fully understood. Principal cells of the chick tangential nucleus offer a subset of morphologically defined vestibular nuclei neurons to study functional changes after vestibular lesions. Chickens show posture and balance deficits immediately after unilateral vestibular ganglionectomy (UVG), but by 3 days most subjects begin to recover, although some remain uncompensated. With the use of whole cell voltage-clamp, spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) and miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were recorded from principal cells in brain slices 1 and 3 days after UVG. One day after UVG, sEPSC frequency increased on the lesion side and remained elevated at 3 days in uncompensated chickens only. Also by 3 days, sIPSC frequency increased on the lesion side in all operated chickens due to major increases in GABAergic events. Significant change also occurred in decay time of the events. To determine whether fluctuations in frequency and kinetics influenced overall excitatory or inhibitory synaptic drive, synaptic charge transfer was calculated. Principal cells showed significant increase in excitatory synaptic charge transfer only on the lesion side of uncompensated chickens. Thus compensation continues when synaptic charge transfer is in balance bilaterally. Furthermore, excessive excitatory drive in principal cells on the lesion side may prevent vestibular compensation. Altogether, this work is important for it defines the time course and excitatory and inhibitory nature of changing spontaneous synaptic inputs to a morphologically defined subset of vestibular nuclei neurons during critical early stages of recovery after UVG.  相似文献   

15.
The axonal projections of 62 posterior canal (PC)-activated excitatory and inhibitory secondary vestibular neurons were studied electrophysiologically in cats. PC-related neurons were identified by monosynaptic activation elicited by electrical stimulation of the vestibular nerve and activation following nose-up rotation of the animal's head. Single excitatory and inhibitory neurons were identified by antidromic activation following electrical stimulation of the contralateral and ipsilateral medial longitudinal fasciculus, respectively. The oculomotor projections of identified neurons were confirmed with a spike-triggered averaging technique. The axonal projections of the identified neurons were then studied by systematic, antidromic stimulation of the mesodiencephalon. Excitatory neurons showed two main types of axonal projections. In one type, axonal branches were issued to the interstitial nucleus of Cajal, central gray, and thalamus including the ventral posterolateral, ventral posteromedial, ventral lateral, ventral medial, centromedian, central lateral, lateral posterior, and ventral lateral geniculate nuclei. The other type was more frequently observed, giving off axon collaterals to the above-mentioned regions and to Forel's field H as well. Inhibitory neurons issued axonal branches to limited areas which included the central gray, interstitial nucleus of Cajal, its adjacent reticular formation and caudalmost part of Forel's field H, but not the rostral part of the Forel's field H and the thalamus. These results suggest that PC-related excitatory neurons participate in the genesis of vertical eye movements and in the perception of the vestibular sensation, and that PC-related inhibitory neurons seem to take part only in the genesis of vertical eye movements.Deceased  相似文献   

16.
 The discharge of neurons in the vestibular nuclei was recorded in alert squirrel monkeys while they were being sinusoidally rotated at 2 Hz. Type I position-vestibular-pause (PVP I) and vestibular-only (V I) neurons, as well as a smaller number of other type I and type II eye-plus-vestibular neurons were studied. Many of the neurons were monosynaptically related to the ipsilateral vestibular nerve. Eye-position and vestibular components of the rotation response were separated by multiple regression. Anodal currents, simultaneously delivered to both ears, were used to eliminate the head-rotation signals of irregularly discharging (I) vestibular-nerve afferents, presumably without affecting the corresponding signals of regularly discharging (R) afferents. R and I inputs to individual central neurons were determined by comparing rotation responses with and without the anodal currents. The bilateral currents, while reducing the background discharge of all types of neurons, did not affect the mean vestibular gain or phase calculated from a population of PVP I neurons or from a mixed population consisting of all type I units. From this result, it is concluded that I inputs are canceled at the level of secondary neurons. The cancellation may explain why the ablating currents do not affect the gain and phase of the vestibulo-ocular reflex. While cancellation was nearly perfect on a population basis, it was less so in individual neurons. For some neurons, the ablating currents decreased vestibular gain, while for other neurons the vestibular gain was increased. The former neurons are interpreted as receiving a net excitatory (I-EXC) I input, the latter neurons, a net inhibitory (I-INH) input. When compared with the corresponding R inputs, the I inputs were usually small and phase advanced. Phase advances were larger for I-EXC than for I-INH inputs. The sign and magnitude of the I inputs were unrelated to other discharge properties of individual neurons, including discharge regularity and the phase of vestibular responses measured in the absence of the ablating currents. Unilateral currents were used to assess the efficacy of ipsilateral and contralateral pathways. Ipsilateral pathways were responsible for almost all of the effects seen with bilateral currents. The results suggest that the vestibular signals carried by central neurons, even by those neurons receiving a monosynaptic vestibular-nerve input, are modified by polysynaptic pathways. Received: 22 July 1996 / Accepted: 25 October 1996  相似文献   

17.
The second-order relay neurons of the slowly-adapting pulmonary stretch receptors (SARs) are called pump neurons (P cells) and are located in the nucleus tractus solitarii (NTS). We have shown recently that P cells do not act merely as simple relay neurons of SAR afferents but also receive rhythmic inputs from the central respiratory system. This study aimed to analyze two aspects of the respiratory inputs to P cells: (1) suppression of P cell firing at early inspiration (eI suppression) and (2) facilitation of P cell firing at around the period from late inspiration to early expiration (IE facilitation). This study employed extracellular recordings combined with iontophoretic applications of neuroactive drugs to single P cells, in Nembutal-anesthetized, paralyzed, and artificially ventilated rats. The results showed that several excitatory and inhibitory neurotransmitters were involved in these synaptic events. First, the glycine antagonist strychnine and the GABAA antagonist bicuculline were applied to identify the neurotransmitters acting in eI suppression. Strychnine greatly diminished eI suppression, but bicuculline had little effect. This suggested that eI suppression was elicited by inspiratory neurons that were glycinergic and had a decrementing firing pattern. Second, on the other hand bicuculline markedly enhanced IE facilitation as well as the baseline frequency of P cell firing. The enhancement of IE facilitation was distinctive even when the effects of increased baseline firing on this enhancement were taken into account. Third, IE facilitation was diminished by applications of the NMDA glutamate receptor antagonists D-2-amino-5-phosphonovaleric acid (APV) and dizocilpine (MK-801). These results suggested that glutamatergic synapses on P cells from some unidentified respiratory neurons form excitatory inputs for IE facilitation and GABAA receptor-mediated processes control the strength of IE facilitation, possibly at the presynaptic level. Finally, iontophoretic application of the non-NMDA glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2, 3-dione disodium (CNQX), almost completely abolished P cell firing in response to both lung inflation and electrical stimulation of the vagus nerve. This confirmed the previous report that glutamate is the primary neurotransmitter at the synapses between SAR afferents and P cells. We concluded that complicated synaptic inputs involving glycinergic and GABAergic inhibitions, and non-NMDA and NMDA glutamate receptor-mediated excitations form the basic pattern of P cell firing. Received: 31 March 1999 / Accepted: 8 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号