首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
2.
Plasmodium falciparum, the protozoan that causes the most lethal form of human malaria, has been controlled principally by two safe, affordable drugs, chloroquine and sulfadoxine-pyrimethamine (SP). Studies in the laboratory and in the field have demonstrated that resistance to SP depends on non-synonymous point mutations in the dihydrofolate reductase (DHFR), and dihydropteroate synthase (DHPS) coding regions. Parasites that carry dhfr genes with 3 or 4 point mutations (51I/59R/108N triple mutation or 51I/59R/108N/164L quadruple mutation) are resistant to pyrimethamine in vitro and patients infected with these parasites respond poorly to SP treatment. The wide spread of these pyrimethamine-resistant alleles demonstrates the increased fitness over drug-sensitive alleles in the presence of the drug. However, it is not clear whether these alleles might reduce the fitness of parasites in the absence of drug pressure. As a first step, we compared the kinetic properties of the wild type, and three mutant alleles to determine whether the native DHFR-thymidylate synthase form of the mutant proteins showed compromised activity in vitro. The mutant enzymes had K(m) values for their substrate, dihydrofolate that were significantly lower than the wild type, k(cat) values in the same range as the wild type enzyme, and k(cat)/K(m) values higher than wild type. In contrast, the K(m) values for the NADPH cofactor were higher than wild type for the mutant enzymes. These observations suggest that the fitness of these parasites may not be compromised relative to those that carry the wild type allele, even without sustained SP drug pressure.  相似文献   

3.
A simple and effective system has been developed from which a number of Plasmodium falciparum dihydrofolate reductase (pfDHFR) mutants conferring resistance to antifolates were randomly generated and characterized. The system exploited error-prone PCR to generate random mutations in the pfDHFR. Using the synthetic gene encoding for wild-type and quadruple mutant (N51I+C59R+S108N+I164L) pfDHFRs as templates, mutants resistant to pyrimethamine (Pyr), m-Cl analogue of Pyr (SO3) and WR99210 were selected by bacterial complementation system in which the endogenous DHFR activity of bacterial host cells, but not of Plasmodium, is selectively inhibited by trimethoprim (Tmp). Mutants conferring resistance to antimalarial antifolates were selected under the condition that inhibited the growth of the wild-type pfDHFR. All obtained Pyr resistant mutants possessed S108 mutation, in combination with common mutations of N51I, C59R and I164L previously found in the field. New Pyr resistant mutants with novel mutations (K27T, N121D, N144K and V213E) not found in the field were also identified. Exposure of the randomly mutated pfDHFR libraries to WR99210 or SO3 resulted in selection of novel single and multiple mutants including D54N, F58L and a combination of C50R, K181R, T219P and K227E, which exhibited 2- to over 2000-fold increase in resistance against antifolates. Kinetic analysis of these mutants suggested that apart from the active site residues that are crucial for DHFR activity, residues remote from the binding pocket also play essential roles in substrate and inhibitor binding.  相似文献   

4.
The presence of homologous point mutations in the dhfr gene in Plasmodium vivax and Plasmodium falciparum is associated with resistance to antifolate drugs. The spread of antifolate resistance encouraged research for novel antifolate drugs active against both wild-type and dhfr-mutant strains of malaria parasites. Because P. vivax cannot be easily maintained in culture, we transformed a Saccharomyces cerevisiae DHFR-deleted mutant to express wild-type P. vivax dhfr gene and its mutant forms. Twenty-five dicyclic and tricyclic 2,4-diaminopyrimidine derivatives were screened. Six quinazoline compounds showed selective inhibition of yeast transformants expressing P. vivax dhfr genes. The 50% inhibitory concentration (IC(50)) of these six compounds was determined against field isolates of P. falciparum. Our results suggest that a close relationship between the yeast assay based on expression of P. vivax dhfr genes and the in vitro test using P. falciparum parasites in culture is a promising initial step for drug screening.  相似文献   

5.
6.
7.
8.
Dihydrofolate reductase (5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) was partially purified from a cloned strain of pyrimethamine-sensitive Plasmodium chabaudi and a drug-resistant clone derived from it. A molecular weight of approximately 120 000 was estimated by gel filtration for enzyme from both pyrimethamine-sensitive and resistant parasites. The specific activities of the crude enzyme at pH 7.4 were 2.7 ± 0.8 and 1.4 ± 0.6 nmol min−1 mg−1 protein for sensitive and resistant strains, respectively. Methotrexate titration (pH 7.4, 37°C) indicated that the apparent turnover number of the enzyme from the sensitive parasites was 1229 ± 322 mol min−1 mol−1 compared with 1238 ± 179 mol min−1 mol−1 for the enzyme from the resistant parasites. There was therefore no significant difference in the amounts of the enzyme from both sources. The Km value for dihydrofolate (9.3 μM) of the enzyme from the drug-sensitive parasites at pH 7.4 was lower than that from the resistant parasites by a factor of approximately 4. The Km values for NADPH of the enzyme from both sources were similar. Inhibition by pyrimethamine of the enzyme from the sensitive parasites was competitive with dihydrofolate, with Ki of 0.26 nM. By contrast, noncompetitive inhibition was observed for the enzyme from the resistant parasites, with Kis of 50 nM and Kii of 33 nM. The enzyme from drug-sensitive and drug-resistant parasites had different activity profiles with respect to pH and temperature. Moreover, the former was more sensitive to heat denaturation than the latter. From these results, it was concluded that the major basis for drug resistance is not an increase in enzyme content, but a large decrease in drug binding with the structurally different enzyme.  相似文献   

9.
We have developed a recombinant system that directs the functional expression from Escherichia coli of both dihydrofolate reductase-thymidylate synthetase (DHFR-TS) and the isolated DHFR domain from Plasmodium falciparum. Both products are inhibitory to a number of E. coli cell lines to the extent that cell growth ceases immediately upon induction. This dramatic inhibition is not seen in strain AB1899, in which amounts of plasmodial protein of up to 100 times the basal E. coli TS level can be accumulated. However, as well as the full-length DHFR-TS molecule, smaller proteins carrying an intact TS substrate-binding site are produced. These represent ca. 60-75% of the total plasmodial protein expressed and are observed in every E. coli strain examined. We show that they are not derived by degradation of the parent DHFR-TS molecule, but can be correlated with the sizes of proteins expected to be produced if erroneous initiation of translation were occurring at 3 internal methionine residues.  相似文献   

10.
Thymidylate synthase of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) functions as a dimeric enzyme with extensive contact between the two TS domains. Structural data of PfDHFR-TS shows that the formation of the two TS active sites involves contribution of the amino acid residues from both TS domains. Arg-470 donated from the adjoining domain is shown to hydrogen-bond to dUMP, while Cys-490 is a key nucleophile for TS catalysis by attacking C-6 of dUMP. However, mutants of the two series could complement one another, giving rise to active enzyme. By means of subunit complementation assay using Arg-470 and Cys-490 mutants, it is shown that co-transformants of both TS-inactive Arg-470 and Cys-490 mutants can complement the growth of thymidine auxotroph chi2913RecA(DE3) by formation of a functional TS heterodimer contributing from both Arg-470 and Cys-490 mutant subunits. 6-[3H]-FdUMP thymidylate synthase activity assay further elaborate the essence of restoration of TS activity. The TS k(cat) value of the R470D+C490A heterodimer is decreased by half from that of the wild-type PfDHFR-TS. However, the Km values for dUMP and CH2H4folate of the R470D+C490A heterodimer are similar to those of wild-type enzyme, indicating that the catalytic efficiency of the functional TS from the R470D+C490A heterodimer is similar to the wild-type TS enzyme in P. falciparum DHFR-TS.  相似文献   

11.
A pyrosequencing protocol was developed as a rapid and reliable method to identify the mutations of the dhfr and dhps genes of Plasmodium falciparum that are associated with antifolate resistance. The accuracy and specificity of this method were tested using six laboratory-cultured P. falciparum isolates harboring known single nucleotide polymorphisms (SNPs) in the genes dhfr (codons 50, 51, 59, 108, and 164) and dhps (codons 436, 437, 540, 581, and 613). The lowest threshold for detection of all the SNPs tested by pyrosequencing was the equivalent of two to four parasite genomes. Also, this method was highly specific for P. falciparum, as it did not amplify any DNA products from the other species of human malaria parasites. We also mixed wild-type and mutant-type parasite DNAs in various proportions to determine how pyrosequencing, restriction fragment length polymorphism (RFLP), and direct conventional sequencing (for dhfr) compared with each other in detecting different SNPs in the mixture. In general, pyrosequencing and RFLP showed comparable sensitivities in detecting most of the SNPs in dhfr except for the 164L mutation, which required at least twice the amount of DNA for pyroseqencing as for RFLP. For detecting SNPs in dhps, pyrosequencing was slightly more sensitive than RFLP and direct sequencing. Overall, pyrosequencing was faster and less expensive than either RFLP or direct sequencing. Thus, pyrosequencing is a practical alternative method that can be used in a high-throughput format for molecular surveillance of antimalarial-drug resistance.  相似文献   

12.
The state of activation of human peripheral blood monocytes was examined by using a rosette assay that detects changes in Fc receptor expression. Monocytes from patients with uncomplicated Plasmodium falciparum malaria showed a significant increase in the number of rosettes relative to healthy controls. In addition, the monocytes from these patients were tested for their ability to phagocytose Candida albicans, but this ability did not differ from that of normal individuals. Finally, the monocytes from patients with cerebral malaria were also tested for Fc receptor expression. In contrast to the results from uncomplicated cases, the activity of the monocytes from these patients was no different from that of controls. We concluded that uncomplicated P. falciparum malaria caused an increase in monocyte Fc receptor expression which did not occur in cerebral malaria and that this difference in activation may be important in the pathogenesis of cerebral malaria.  相似文献   

13.
Inhibitors of dihydrofolate reductase (DHFR) have been a mainstay of chemotherapy of falciparum malaria for >50 years. Unfortunately, point mutations in DHFR are the major cause of resistance to drugs of this class and mutations have rapidly diminished the clinical effectiveness of these drugs. We designed a simple yeast-based system to produce and analyze point mutations in the Plasmodium falciparum DHFR domain of the DHFR-thymidylate synthase gene that confers resistance to pyrimethamine (PM), the major antifolate currently used in malaria treatment, or to WR99210, an experimental antifolate. We used PCR mutagenesis, screened >1000 DHFR alleles that encoded functional enzymes and studied approximately 100 that were more resistant than a naturally occurring resistant allele (N51I and S108N). The IC(50) values for both drugs were determined for a subset of 44 alleles that carried only a single new mutation. Mutations that increased resistance to PM 10-100 fold (to >10(-4) M) were identified in three regions of the DHFR domain - around amino acids 50, 188 and 213. In contrast, mutations that caused WR-resistance were far less common and only conferred approximately 10-fold resistance (to approximately 10(-7) M). Even more interesting, only the mutations at 188 increased resistance to WR and mutations in the 213 and other regions either had no effect or actually increased sensitivity to WR. This collateral hypersensitivity raises the possibility that opposing selection for resistance/sensitivity to PM and WR might be used to slow selection of populations of P. falciparum resistant to antifolate treatment.  相似文献   

14.
In total, 129 Plasmodium vivax isolates from different geographical areas in India were analysed for point mutations in the P. vivax dihydrofolate reductase gene that were associated with pyrimethamine resistance. A gradual increase in the frequency of mutant genotypes was observed from north to south (p <0.0001). In the northern region (Delhi, Panna and Nadiad), the wild-type genotype was most prevalent, while the mutant genotype predominated in the coastal regions of southern India (Navi Mumbai, Goa and Chennai). Isolates from the Car-Nicobar islands showed only mutant genotypes. The differential geographical pattern of mutations may be associated with the transmission pattern.  相似文献   

15.
Only limited but contrasting reports are available on microsatellites based population structure of Plasmodium vivax. Further, there is complete lack of information on microsatellites in the flanking regions of the P. vivax drug resistance genes to trace the origin and spread of the drug resistant vivax malaria. Therefore, we scanned +/-300 kb flanking sequences of the P. vivax dihydrofolate reductase (pvdhfr) gene for di-nucleotide microsatellite repeats with minimum of 8 unit array length. Only 13 such repeats were detected in this region as compared to 738 di-nucleotide repeats present in +/-300 kb flanking region of P. falciparumdhfr gene. We have analyzed here the nucleotide sequence of 110 Indian P. vivax isolates for four of these di-nucleotide microsatellites (two in the nearest regions at -38.83 kb and +6.15 kb, and two in the farthest regions at -230.54 kb and +283.28 kb). All the four microsatellites were found to be highly polymorphic in the population where number of alleles varied from 4 to 10 with the median values of 9-11 at these loci. The expected heterozygosity (He) at these loci ranged from 0.50 to 0.82. We did not find any association between pvdhfr mutations and the flanking microsatellite alleles. There was a regional variation in the microsatellites polymorphism which was not associated with the reported prevalent rates of drug resistance or malaria transmission. In conclusion, the level of microsatellite polymorphism in P. vivax is as high as in P. falciparum. These results will be valuable in understanding the evolutionary history of the pvdhfr alleles as well as for designing the malaria control strategies.  相似文献   

16.
The catalytic activity and ability to confer resistance to antifolates of Plasmodium falciparum dihydrofolate reductase (pfDHFR) through single and double mutations at Asp-54 and Phe-223 were investigated. A single Asp54Glu (D54E) mutation in the pfDHFR domain greatly decreased the catalytic activity of the enzyme and affected both the K(m) values for the substrate dihydrofolate and the K(i) values for pyrimethamine, cycloguanil and WR99210. The Phe223Ser (F223S) single mutant had unperturbed kinetics but had very poor affinity with the first two antifolates. The ability to confer high resistance to the antifolates of F223S enzyme was, however, abolished in the D54E+F223S double mutant enzyme. When D54E mutation was present together with the A16V+S108T double mutation, the effects on the K(m) values for the substrate dihydrofolate and the binding affinity of antifolates were much more pronounced. The severely impaired kinetics and poor activity observed in A16V+S108T+D54E enzyme could, however, be restored when F223S was introduced, while the binding affinities to the antifolates remained poor. The experimental findings can be explained with a model for substrate and inhibitor binding. Our data not only indicate the importance of Asp-54 of pfDHFR in catalysis and inhibitor binding, but also provide evidence that infer the potentially crucial function of the C-terminal portion of pfDHFR domain.  相似文献   

17.
The genes encoding the wild-type and six (five single and one double) mutant dihydrofolate reductase (DHFR) domains of the human malaria parasite, Plasmodium vivax (Pv), were cloned and expressed in Escherichia coli. The catalytic activities and the kinetic parameters of the purified recombinant wild-type and the mutant PvDHFRs were determined. Generally, all the PvDHFR mutants yielded enzymes with poorer catalytic activities when compared to the wild type enzyme. The widely used antifolates, pyrimethamine and cycloguanil, were effective inhibitors of the wild-type PvDHFR, but were approximately 60 to >4000 times less active against the mutant enzymes. In contrast to the analogous S108N mutation of Plasmodium falciparum DHFR (PfDHFR), the single S117N mutation in PvDHFR conferred approximately 4000- and approximately 1600-fold increased resistance to pyrimethamine and cycloguanil, respectively, compared to the wild-type PvDHFR. The S58R+S117N double mutant PvDHFR was 10- to 25-fold less resistant than the S117N mutant to the inhibitors, but also exhibited higher kcat/Km value than the single mutant. The antifolate WR99210 was equally effective against both the wild-type and SP21 (S58R+S117N) mutant DHFRs, but was much less effective against some of the single mutants. Data on kinetic parameters and inhibitory constant suggest that the wild-type P. vivax is susceptible to antimalarial antifolates and that point mutations in the DHFR domain of P. vivax are responsible for antifolate resistance.  相似文献   

18.
Folate metabolism in the human malaria parasite Plasmodium falciparum is an essential activity for cell growth and replication, and the target of an important class of therapeutic agents in widespread use. However, resistance to antifolate drugs is a major health problem in the developing world. To date, only two activities in this complex pathway have been targeted by antimalarials. To more fully understand the mechanisms of antifolate resistance and to identify promising targets for new chemotherapies, we have cloned genes encoding as yet uncharacterised enzymes in this pathway. By means of complementation experiments using 1-carbon metabolism mutants of both Escherichia coli and Saccharomyces cerevisiae, we demonstrate here that one of these parasite genes encodes both dihydrofolate synthetase (DHFS) and folylpolyglutamate synthetase (FPGS) activities, which catalyse the synthesis and polyglutamation of folate derivatives, respectively. The malaria parasite is the first known example of a eukaryote encoding both DHFS and FPGS activities in a single gene. DNA sequencing of this gene in antifolate-resistant strains of P. falciparum, as well as drug-inhibition assays performed on yeast and bacteria expressing PfDHFS--FPGS, indicate that current antifolate regimes do not target this enzyme. As PfDHFS--FPGS harbours two activities critical to folate metabolism, one of which has no human counterpart, this gene product offers a novel chemotherapeutic target with the potential to deliver a powerful blockage to parasite growth.  相似文献   

19.
Dihydrofolate reductase (DHFR; EC1.5.1.3) is a known target enzyme for antifolate agents, which are used as alternative chemotherapeutics for chloroquine-resistant malaria. Mutations in the dhfr gene of Plasmodium vivax are thought to be associated with resistance to the antifolate drugs. In this study, we have analyzed genetic variations in the dhfr genes of clinical isolates of P. vivax (n=21) in Myanmar, to monitor antifolate resistance in this country. Sequence variations within the entire dhfr gene were highly restricted to codons from 57 to 117, and the GGDN tandem repeat region. Double (S58R and S117N/T) or quadruple mutations (F57L/I, S58R, T61M, and S117N/T), which may be closely related to the drug resistance, were recognized in most of the isolates (20/21 cases). Our results suggest that antifolate-resistant P. vivax is becoming widespread in Myanmar, as it also is in the neighboring countries in Southeast Asia. It appears that the drug resistance situation may be worsening in the country.Byoung-Kuk Na and Hyeong-Woo Lee have contributed equally to the work.  相似文献   

20.
Antifolate drugs inhibit malarial dihydrofolate reductase (DHFR). In Plasmodium falciparum, antifolate resistance has been associated with point mutations in the gene encoding DHFR. Recently, mutations at homologous positions have been observed in the P. vivax gene. Since P. vivax cannot be propagated in a continuous in vitro culture for drug sensitivity assays, the kinetic properties of DHFR were studied by expression of the DHFR domain in Escherichia coli. Induced expression yielded a protein product that precipitated as an inclusion body in E. coli. The soluble, active DHFR recovered after denaturation and renaturation was purified to homogeneity by affinity chromatography. Kinetic properties of the recombinant P. vivax DHFR showed that the wild-type DHFR (Ser-58 and Ser-117) and double mutant DHFR (Arg-58 and Asn-117) have similar K(m) values for dihydrofolate and NADPH. Antifolate drugs (pyrimethamine, cycloguanil, trimethoprim, and methotrexate), but not proguanil (parent compound of cycloguanil) inhibit DHFR activity, as expected. The kinetics of enzyme inhibition indicated that point mutations (Ser58Arg and Ser117Asn) are associated with lower affinity between the mutant enzyme and pyrimethamine and cycloguanil, which may be the origin of antifolate resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号