首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prednisone-induced insulin resistance may depend on either reduced sensitivity (receptor defect) or reduced response to insulin (postreceptor defect). To clarify the mechanism of prednisone-induced insulin resistance, a [3H]glucose infusion (1 microCi/min) was performed for 120 min before and during a euglycemic clamp repeated at approximately 100, approximately 1,000, and approximately 10,000 microU/ml steady state plasma insulin concentration in 10 healthy, normal weight subjects, aged 35 +/- 7 yr. Each test was repeated after 7-d administration of placebo or prednisone (15 plus 15 mg/d per subject), in a randomized sequence with an interval of 1 mo between the two tests. Mean fasting blood glucose (89.5 +/- 2.1 vs. 83.7 +/- 1.9 mg/dl) and mean fasting plasma insulin values (17.8 +/- 1.2 vs. 14.3 +/- 0.8 microU/ml) were significantly higher (P less than 0.01) after prednisone. The insulin sensitivity index (glucose metabolic clearance rate in ml/kg per min) was significantly lower (P less than 0.001) after prednisone at all three steady state plasma insulin levels: 2.8 +/- 0.3 vs. 7.4 +/- 1.1 at approximately 100 microU/ml; 6.0 +/- 0.5 vs. 12.2 +/- 1.1 at approximately 1,000 microU/ml; 7.4 +/- 0.6 vs. 14.4 +/- 0.5 at approximately 10,000 microU/ml. Fasting glucose production (in mg/kg per min) was significantly higher after prednisone: 3.7 +/- 0.2 vs. 2.9 +/- 0.2, P less than 0.001. Suppression of glucose production at steady state plasma insulin level of approximately 100 microU/ml was less after prednisone (1.01 +/- 0.35 vs. 0.14 +/- 0.13, NS), and total at approximately 1,000 and approximately 10,000 microU/ml after both prednisone and placebo. The metabolic kinetic parameters of insulin after prednisone were not significantly different from those after placebo. In addition, insulin binding and 3-ortho-methyl-glucose transport were studied in vitro on fat cells from 16 normal-weight surgical candidates aged 40 +/- 8 yr (10 treated with placebo and 6 with prednisone as above). No significant difference was observed with regard to specific insulin binding (tested with 1 ng/ml hormone only), whereas significant transport differences were noted at the basal level (0.40 +/- 0.10 vs. 0.54 +/- 0.12 pmol/10(5) cells, P less than 0.05), and at increasing concentrations up to the maximum stimulation values (5 ng/ml): 0.59 +/- 0.04 vs. 0.92 +/- 0.12 pmol/10(5) cells, P less than 0.005. These results suggest that (a) administration of an anti-inflammatory dose of prednisone for 7 d induces insulin resistance in man; (b) this is more dependent on depressed peripheral glucose utilization than on increased endogenous production; (c) total insulin binding on isolated adipocytes is not significantly affected; (d) insulin resistance is primarily the outcome of postreceptor defect (impaired glucose transport).  相似文献   

2.
The contribution of the sympathetic nervous system to the thermic effect of intravenously infused glucose and insulin was studied in 10 healthy young men before and after beta-adrenergic receptor blockade with propranolol during conditions of normoglycemia (90 mg/dl) at two levels of hyperinsulinemia (approximately 90 microU/ml and approximately 620 microU/ml). During steady state conditions of glucose uptake (0.515 +/- 0.046 and 0.754 +/- 0.056 g/min), significant increases were observed in energy expenditure (0.10 +/- 0.02 kcal/min, P less than 0.001, and 0.21 +/- 0.02 kcal/min, P less than 0.01, respectively). Similarly, glucose oxidation increased from 0.100 +/- 0.015 to 0.266 +/- 0.022 g/min (P less than 0.001) at approximately microU/ml insulin and from 0.082 +/- 0.013 to 0.295 +/- 0.018 g/min (P less than 0.001) at approximately 620 microU/ml insulin. Concomitantly, the rate of nonoxidative glucose disposal or "glucose storage" was 0.249 +/- 0.033 and 0.459 +/- 0.048 g/min, respectively. At this time the thermic effect of infused glucose/insulin was 5.3 +/- 0.9 and 7.5 +/- 0.7%, and the energy cost of "glucose storage" was 0.50 +/- 0.16 kcal/g and 0.47 +/- 0.04 kcal/g at the two different levels of glucose uptake. After beta-adrenergic receptor blockade with propranolol, glucose uptake, oxidation, and "storage" were unchanged in both studies, but significant decreases in energy expenditure were observed (1.41 +/- 0.06-1.36 +/- 0.05 kcal/min, P less than 0.01 at approximately 90 microU/ml insulin, and 1.52 +/- 0.07-1.43 +/- 0.05 kcal/min, P less than 0.005 at approximately 620 microU/ml insulin) causing significant falls in both the estimated thermic effect of infused glucose/insulin and the energy cost of "glucose storage". Regression analysis of the results from both studies indicated a mean energy cost for "glucose storage" of 0.36 kcal/g (r = 0.74, P less than 0.001), which fell significantly (P less than 0.005) to 0.21 kcal/g (r = 0.49, P less than 0.05) during beta-adrenergic receptor blockade with propranolol. The latter is in close agreement with that calculated on theoretical grounds for the metabolic cost of glucose storage as glycogen, i.e., obligatory thermogenesis. It is concluded that beta-adrenergically mediated sympathetic nervous activity is responsible for almost the entire rise in energy expenditure in excess of the obligatory requirements for processing and storing glucose during conditions of normoglycemia and hyperinsulinemia in healthy man, and that the energy cost of "glucose storage" is not different at normal (approximately 90 microU/ml) and supraphysiological (approximately 620 microU/ml) plasma insulin concentrations.  相似文献   

3.
Effect of fatty acids on glucose production and utilization in man.   总被引:15,自引:36,他引:15       下载免费PDF全文
Since the initial proposal of the glucose fatty acid cycle, considerable controversy has arisen concerning its physiologic significance in vivo. In the present study, we examined the effect of acute, physiologic elevations of FFA concentrations on glucose production and uptake in normal subjects under three controlled experimental conditions. In group A, plasma insulin levels were raised and maintained at approximately 100 microU/ml above base line by an insulin infusion, while holding plasma glucose at the fasting level by a variable glucose infusion. In group B, plasma glucose concentration was raised by 125 mg/100 ml and plasma insulin was clamped at approximately 50 microU/ml by a combined infusion of somatostatin and insulin. In group C, plasma glucose was raised by 200 mg/100 ml above the fasting level, while insulin secretion was inhibited with somatostatin and peripheral glucagon levels were replaced with a glucagon infusion (1 ng/min X kg). Each protocol was repeated in the same subject in combination with a lipid-heparin infusion designed to raise plasma FFA levels by 1.5-2.0 mumol/ml. With euglycemic hyperinsulinemia (study A), lipid infusion caused a significant inhibition of total glucose uptake (6.3 +/- 1.3 vs. 7.4 +/- 0.6 mg/min X kg, P less than 0.02). Endogenous glucose production (estimated by the [3-3H]glucose technique) was completely suppressed both with and without lipid infusion. With hyperglycemic hyperinsulinemia (study B), lipid infusion also induced a marked impairment in glucose utilization (6.2 +/- 1.1 vs. 9.8 +/- 1.9 mg/min X kg, P less than 0.05); endogenous glucose production was again completely inhibited despite the increase in FFA concentrations. Under both conditions (A and B), the percentage inhibition of glucose uptake by FFA was positively correlated with the total rate of glucose uptake (r = 0.69, P less than 0.01). In contrast, when hyperglycemia was associated with relative insulinopenia and hyperglucagonemia (study C), thus simulating a diabetic state, lipid infusion had no effect on glucose uptake (2.9 +/- 0.2 vs. 2.6 +/- 0.2 mg/min X kg) but markedly stimulated endogenous glucose production (1.4 +/- 0.5 vs. 0.5 +/- 0.4 mg/min X kg, P less than 0.005). Under the same conditions as study C, a glycerol infusion producing plasma glycerol levels similar to those achieved with lipid-heparin, enhanced endogenous glucose production (1.5 +/- 0.5 vs. 0.7 +/- 0.6 mg/min X kg, P less than 0.05). We conclude that, in the well-insulinized state raised FFA levels effectively compete with glucose for uptake by peripheral tissues, regardless of the presence of hyperglycemia. When insulin is deficient, on the other hand, elevated rates of lipolysis may contribute to hyperglycemia not by competition for fuel utilization, but through an enhancement of endogenous glucose output.  相似文献   

4.
In vivo small doses of insulin inhibit lipolysis, lower plasma FFA, and stimulate glucose disposal. Lowering of plasma FFA, either in the absence of a change in insulin or during combined hyperglycemia and hyperinsulinemia, promotes glucose uptake by heart muscle in vivo. In the isolated perfused heart, large doses of insulin directly stimulate heart glucose uptake. To assess the effect of physiological elevations of plasma insulin upon myocardial glucose and FFA uptake in vivo independent of changes in plasma substrate concentration, we measured arterial and coronary sinus concentrations of glucose, lactate, and FFA, and coronary blood flow in conscious dogs during a 30 min basal and a 2 h experimental period employing three protocols: (a) euglycemic hyperinsulinemia (insulin clamp, n = 5), (b) euglycemic hyperinsulinemia with FFA replacement (n = 5), (c) hyperglycemic euinsulinemia (hyperglycemic clamp with somatostatin, n = 5). In group 1, hyperinsulinemia (insulin = 73 +/- 13 microU/ml) stimulated heart glucose uptake (7.3 +/- 4.4 vs. 28.2 +/- 2.8 mumol/min, P less than 0.002), lowered plasma FFA levels by 80% (P less than 0.05), and decreased heart FFA uptake (28.4 +/- 4 vs. 1.5 +/- 0.9, P less than 0.01). When the fall in plasma FFA was prevented by FFA infusion (group 2), hyperinsulinemia (86 +/- 10 microU/ml) provoked a lesser (P less than 0.05) stimulation of glucose uptake (delta = 8.2 +/- 4.2 mumol/min) than in group 1, and there was no significant change in FFA uptake (25.3 +/- 16 vs. 16.5 +/- 4). Hyperglycemia (plasma glucose = 186 +/- 8 mg/100 ml) during somatostatin infusion resulted in only a small rise in plasma insulin (delta = 12 +/- 7 microU/ml), and although plasma FFA tended to decline, heart glucose uptake did not rise significantly (delta = 5.5 +/- 3.2 mumol/min, P = NS). There was no significant change in coronary blood flow during any of the three study protocols. We conclude that, in the dog, insulin at physiologic concentrations: (a) stimulates heart glucose uptake, both directly and by suppressing the plasma FFA concentration, and (b) does not alter coronary blood flow. Hyperglycemia per se has little effect on heart glucose uptake.  相似文献   

5.
Insulin secretion and insulin sensitivity were evaluated in eight clinically stable cirrhotic patients and in 12 controls. OGTT was normal in cirrhotics but plasma insulin response was increased approximately twofold compared with controls. Subjects received a three-step (0.1, 0.5, 1.0 mU/kg.min) euglycemic insulin clamp with indirect calorimetry, [6-3H]-glucose, and [1-14C]-palmitate. During the two highest insulin infusion steps glucose uptake was impaired (3.33 +/- 0.31 vs. 5.06 +/- 0.40 mg/kg.min, P less than 0.01, and 6.09 +/- 0.50 vs. 7.95 +/- 0.52 mg/kg.min, P less than 0.01). Stimulation of glucose oxidation by insulin was normal; in contrast, nonoxidative glucose disposal (i.e., glycogen synthesis) was markedly reduced. Fasting (r = -0.553, P less than 0.01) and glucose-stimulated (r = -0.592, P less than 0.01) plasma insulin concentration correlated inversely with the severity of insulin resistance. Basal hepatic glucose production was normal in cirrhotics and suppressed normally with insulin. In postabsorptive state, plasma FFA conc (933 +/- 42 vs. 711 +/- 44 mumol/liter, P less than 0.01) and FFA turnover (9.08 +/- 1.20 vs. 6.03 +/- 0.53 mumol/kg.min, P less than 0.01) were elevated in cirrhotics despite basal hyperinsulinemia; basal FFA oxidation was similar in cirrhotic and control subjects. With low-dose insulin infusion, plasma FFA oxidation and turnover failed to suppress normally in cirrhotics. During the two higher insulin infusion steps, all parameters of FFA metabolism suppressed normally. In summary, stable cirrhotic patients with normal glucose tolerance exhibit marked insulin resistance secondary to the impaired nonoxidative glucose disposal. Our results suggest that chronic hyperinsulinism may be responsible for the insulin resistance observed in cirrhosis.  相似文献   

6.
Hyperinsulinemia may contribute to hypertension by increasing sympathetic activity and vascular resistance. We sought to determine if insulin increases central sympathetic neural outflow and vascular resistance in humans. We recorded muscle sympathetic nerve activity (MSNA; microneurography, peroneal nerve), forearm blood flow (plethysmography), heart rate, and blood pressure in 14 normotensive males during 1-h infusions of low (38 mU/m2/min) and high (76 mU/m2/min) doses of insulin while holding blood glucose constant. Plasma insulin rose from 8 +/- 1 microU/ml during control, to 72 +/- 8 and 144 +/- 13 microU/ml during the low and high insulin doses, respectively, and fell to 15 +/- 6 microU/ml 1 h after insulin infusion was stopped. MSNA, which averaged 21.5 +/- 1.5 bursts/min in control, increased significantly (P less than 0.001) during both the low and high doses of insulin (+/- 5.4 and +/- 9.3 bursts/min, respectively) and further increased during 1-h recovery (+15.2 bursts/min). Plasma norepinephrine levels (119 +/- 19 pg/ml during control) rose during both low (258 +/- 25; P less than 0.02) and high (285 +/- 95; P less than 0.01) doses of insulin and recovery (316 +/- 23; P less than 0.01). Plasma epinephrine levels did not change during insulin infusion. Despite the increased MSNA and plasma norepinephrine, there were significant (P less than 0.001) increases in forearm blood flow and decreases in forearm vascular resistance during both doses of insulin. Systolic pressure did not change significantly during infusion of insulin and diastolic pressure fell approximately 4-5 mmHg (P less than 0.01). This study suggests that acute increases in plasma insulin within the physiological range elevate sympathetic neural outflow but produce forearm vasodilation and do not elevate arterial pressure in normal humans.  相似文献   

7.
In order to assess whether patients with noninsulin-dependent diabetes mellitus (NIDDM) possess normal insulin secretory capacity, maximal B cell responsiveness to the potentiating effects of glucose was estimated in eight untreated patients with NIDDM and in eight nondiabetic controls. The acute insulin response to 5 g intravenous arginine was measured at five matched plasma glucose levels that ranged from approximately 100-615 mg/dl. The upper asymptote approached by acute insulin responses (AIRmax) and the plasma glucose concentration at half-maximal responsiveness (PG50) were estimated using nonlinear regression to fit a modification of the Michaelis-Menten equation. In addition, glucagon responses to arginine were measured at these same glucose levels to compare maximal A cell suppression by hyperglycemia in diabetics and controls. Insulin responses to arginine were lower in diabetics than in controls at all matched glucose levels (P less than 0.001 at all levels). In addition, estimated AIRmax was much lower in diabetics than in controls (83 +/- 21 vs. 450 +/- 93 microU/ml, P less than 0.01). In contrast, PG50 was similar in diabetics and controls (234 +/- 28 vs. 197 +/- 20 mg/dl, P equals NS) and insulin responses in both groups approached or attained maxima at a glucose level of approximately 460 mg/dl. Acute glucagon responses to arginine in patients with NIDDM were significantly higher than responses in controls at all glucose levels. In addition, although glucagon responses in control subjects reached a minimum at a glucose level of approximately 460 mg/dl, responses in diabetics declined continuously throughout the glucose range and did not reach a minimum. Thus, A cell sensitivity to changes in glucose level may be diminished in patients with NIDDM. In summary, patients with NIDDM possess markedly decreased maximal insulin responsiveness to the potentiating effects of glucose. Such a defect indicates the presence of a reduced B cell secretory capacity and suggests a marked generalized impairment of B cell function in patients with NIDDM.  相似文献   

8.
To characterize glucose counterregulatory mechanisms in patients with noninsulin-dependent diabetes mellitus (NIDDM) and to test the hypothesis that the increase in glucagon secretion during hypoglycemia occurs primarily via a paracrine islet A-B cell interaction, we examined the effects of a subcutaneously injected therapeutic dose of insulin (0.15 U/kg) on plasma glucose kinetics, rates of glucose production and utilization, and their relationships to changes in the circulating concentrations of neuroendocrine glucoregulatory factors (glucagon, epinephrine, norepinephrine, growth hormone, and cortisol), as well as to changes in endogenous insulin secretion in 13 nonobese NIDDM patients with no clinical evidence of autonomic neuropathy. Compared with 11 age-weight matched nondiabetic volunteers in whom euglycemia was restored primarily by a compensatory increase in glucose production, in the diabetics there was no compensatory increase in glucose production (basal 2.08 +/- 0.04----1.79 +/- 0.07 mg/kg per min at 21/2 h in diabetics vs. basal 2.06 +/- 0.04----2.32 +/- 0.11 mg/kg per min at 21/2 h in nondiabetics, P less than 0.01) despite the fact that plasma insulin concentrations were similar in both groups (peak values 22 +/- 2 vs. 23 +/- 2 microU/ml in diabetics and nondiabetics, respectively). This abnormality in glucose production was nearly completely compensated for by a paradoxical decrease in glucose utilization after injection of insulin (basal 2.11 +/- 0.03----1.86 +/- 0.06 mg/kg per min at 21/2 h in diabetics vs. basal 2.08 +/- 0.04----2.39 +/- 0.11 mg/kg per min at 21/2 h nondiabetics, P less than 0.01), which could not be accounted for by differences in plasma glucose concentrations; the net result was a modest prolongation of hypoglycemia. Plasma glucagon (area under the curve [AUC] above base line, 12 +/- 3 vs. 23 +/- 3 mg/ml X 12 h in nondiabetics, P less than 0.05), cortisol (AUC 2.2 +/- 0.5 vs. 4.0 +/- 0.7 mg/dl X 12 h in nondiabetics, P less than 0.05), and growth hormone (AUC 1.6 +/- 0.4 vs. 2.9 +/- 0.4 micrograms/ml X 12 h in nondiabetics, P less than 0.05) responses in the diabetics were decreased 50% while their plasma norepinephrine responses (AUC 49 +/- 12 vs. 21 +/- 5 ng/ml X 12 h in nondiabetics, P less than 0.05) were increased twofold (P less than 0.05) and their plasma epinephrine responses were similar to those of the nondiabetics (AUC 106 +/- 17 vs. 112 +/- 10 ng/ml X 12 h in nondiabetics). In both groups of subjects, increases in plasma glucagon were inversely correlated with plasma glucose concentrations (r = -0.80 in both groups, P less than 0.01) and suppression of endogenous insulin secretion (r = -0.57 in nondiabe  相似文献   

9.
To determine whether a resistance to insulin in type 1, insulin-dependent diabetes mellitus (IDDM) is extended to both glucose and amino acid metabolism, six normal subjects and five patients with IDDM, maintained in euglycemia with intravenous insulin administration, were infused with L-[4,5-3H]leucine (Leu) and [1-14C]alpha ketoisocaproate (KIC). Steady-state rates of leucine-carbon appearance derived from protein breakdown (Leu + KIC Ra) and KIC (approximately leucine) oxidation were determined at basal and during sequential euglycemic, hyperinsulinemic (approximately 40, approximately 90 and approximately 1,300 microU/ml) clamps. In the euglycemic postabsorptive diabetic patients, despite basal hyperinsulinemia (24 +/- 6 microU/ml vs. 9 +/- 1 microU/ml in normals, P less than 0.05), Leu + KIC Ra (2.90 +/- 0.18 mumol/kg X min), and KIC oxidation (0.22 +/- 0.03 mumol/kg X min) were similar to normal values (Leu + KIC Ra = 2.74 +/- 0.25 mumol/kg X min) (oxidation = 0.20 +/- 0.02 mumol/kg X min). During stepwise hyperinsulinemia, Leu + KIC Ra in normals decreased to 2.08 +/- 0.19, to 2.00 +/- 0.17, and to 1.81 +/- 0.16 mumol/kg X min, but only to 2.77 +/- 0.16, to 2.63 +/- 0.16, and to 2.39 +/- 0.08 mumol/kg X min in the diabetic patients (P less than 0.05 or less vs. normals at each clamp step). KIC oxidation decreased in normal subjects to a larger extent than in the diabetic subjects. Glucose disposal was reduced at all insulin levels in the patients. In summary, in IDDM: (a) Peripheral hyperinsulinemia is required to normalize both fasting leucine metabolism and blood glucose concentrations. (b) At euglycemic hyperinsulinemic clamps, lower glucose disposal rates and a defective suppression of leucine-carbon appearance and oxidation were observed. We conclude that in type 1 diabetes a resistance to the metabolic effects of insulin on both glucose and amino acid metabolism is present.  相似文献   

10.
Insulin resistance in uremia.   总被引:11,自引:7,他引:11  
Tissue sensitivity to insulin was examined with the euglycemic insulin clamp technique in 17 chronically uremic and 36 control subjects. The plasma insulin concentration was raised by approximately 100 microU/ml and the plasma glucose concentration was maintained at the basal level with a variable glucose infusion. Under these steady-state conditions of euglycemia, the glucose infusion rate is a measure of the amount of glucose taken up by the entire body. In uremic subjects insulin-mediated glucose metabolism was reduced by 47% compared with controls (3.71 +/- 0.20 vs. 7.38 +/- 0.26 mg/kg . min; P less than 0.001). Basal hepatic glucose production (measured with [3H]-3-glucose) was normal in uremic subjects (2.17 +/- 0.04 mg/kg . min) and suppressed normally by 94 +/- 2% following insulin administration. In six uremic and six control subjects, net splanchnic glucose balance was also measured directly by the hepatic venous catheterization technique. In the postabsorptive state splanchnic glucose production was similar in uremics (1.57 +/- 0.03 mg/kg . min) and controls (1.79 +/- 0.20 mg/kg . min). After 90 min of sustained hyperinsulinemia, splanchnic glucose balance reverted to a net uptake which was similar in uremics (0.42 +/- 0.11 mg/kg . min) and controls (0.53 +/- 0.12 mg/kg . min). In contrast, glucose uptake by the leg was reduced by 60% in the uremic group (21 +/- 1 vs. 52 +/- 8 mumol/min . kg of leg wt; P less than 0.005) and this decrease closely paralleled the decrease in total glucose metabolism by the entire body. These results indicate that: (a) suppression of hepatic glucose production by physiologic hyperinsulinemia is not impaired by uremia, (b) insulin-mediated glucose uptake by the liver is normal in uremic subjects, and (c) tissue insensitivity to insulin is the primary cause of insulin resistance in uremia.  相似文献   

11.
Studies were done to determine whether the minimal model approach and the glucose clamp measure equivalent indices of insulin action. Euglycemic glucose clamps (glucose, G: 85 mg/dl) were performed at two rates of insulin (I) infusion (15 and 40 mU/min per m2) in 10 subjects (body mass index, BMI, from 21 to 41 kg/m2). Insulin sensitivity index (SI) from clamps varied from 0.15 to 3.15 (mean: 1.87 +/- 0.36 X 10(-2) dl/[min per m2] per microU/ml), and declined linearly with increasing adiposity (versus BMI: r = -0.97; P less than 0.001). SI from modeling the modified frequently sampled intravenous tolerance test varied from 0.66 to 7.34 X 10(-4) min-1 per microU/ml, and was strongly correlated with SIP(clamp) (r = 0.89; P less than 0.001). SI and SIP(clamp) were similar (0.046 +/- 0.008 vs. 0.037 +/- 0.007 dl/min per microU/ml, P greater than 0.35); the relation had a slope not different from unity (1.05 P greater than 0.70) and passed through the origin (P greater than 0.40). However, on a period basis, SI exceeded SIP(clamp) slightly, due to inhibition of hepatic glucose output during the FSIGT, not included in SIP(clamp). These methods are equivalent for assessment of overall insulin sensitivity in normal and insulin-resistant nondiabetic subjects.  相似文献   

12.
In vivo effects of insulin on plasma leucine and alanine kinetics were determined in healthy postabsorptive young men (n = 5) employing 360-min primed, constant infusions of L-[1-13C]leucine and L-[15N]alanine during separate single rate euglycemic insulin infusions. Serum insulin concentrations of 16.4 +/- 0.8, 29.1 +/- 2.7, 75.3 +/- 5.0, and 2,407 +/- 56 microU/ml were achieved. Changes in plasma 3-methyl-histidine (3-MeHis) were obtained as an independent qualitative indicator of insulin-mediated reduction in proteolysis. Hepatic glucose output was evaluated at the lowest insulin level using D-[6,6-2H2]glucose. The data demonstrate a dose-response effect of insulin to reduce leucine flux, from basal values of 77 +/- 1 to 70 +/- 2, 64 +/- 3, 57 +/- 3, and 52 +/- 4 mumol(kg X h)-1 at the 16, 29, 75, and 2,407 microU/ml insulin levels, respectively (P less than 0.01). A parallel, progressive reduction in 3-MeHis from 5.8 +/- 0.3 to 4.3 +/- 0.3 microM was revealed. Leucine oxidation estimated from the 13C-enrichment of expired CO2 and plasma leucine (12 +/- 1 mumol[kg X h]-1) and from the 13C-enrichment of CO2 and plasma alpha-ketoisocaproate (19 +/- 2 mumol[kg X h]-1) increased at the 16 microU/ml insulin level to 16 +/- 1 and 24 +/- 2 mumol(kg X h)-1, respectively (P less than 0.05 for each), but did not increase at higher insulin levels. Alanine flux (206 +/- 13 mumol(kg X h)-1) did not increase during the clamp, but alanine de novo synthesis increased in all studies from basal rates of 150 +/- 13 to 168 +/- 23, 185 +/- 21, 213 +/- 29, and 187 +/- 15 mumol(kg X h)-1 at 16, 29, 75, and 2,407 microU/ml insulin levels, respectively (P less than 0.05). These data indicate the presence of insulin-dependent suppression of leucine entry into the plasma compartment in man secondary to a reduction in proteolysis and the stimulation of alanine synthesis during euglycemic hyperinsulinemia.  相似文献   

13.
Effects of morphine on glucose homeostasis in the conscious dog.   总被引:1,自引:0,他引:1       下载免费PDF全文
This study was designed to assess the effects of morphine sulfate on glucose kinetics and on glucoregulatory hormones in conscious overnight fasted dogs. One group of experiments established a dose-response range. We studied the mechanisms of morphine-induced hyperglycemia in a second group. We also examined the effect of low dose morphine on glucose kinetics independent of changes in the endocrine pancreas by the use of somatostatin plus intraportal replacement of basal insulin and glucagon. In the dose-response group, morphine at 2 mg/h did not change plasma glucose, while morphine at 8 and 16 mg/h caused a hyperglycemic response. In the second group of experiments, morphine (16 mg/h) caused an increase in plasma glucose from a basal 99 +/- 3 to 154 +/- 13 mg/dl (P less than 0.05). Glucose production peaked at 3.9 +/- 0.7 vs. 2.5 +/- 0.2 mg/kg per min basally, while glucose clearance declined to 1.7 +/- 0.2 from 2.5 +/- 0.1 ml/kg per min (both P less than 0.05). Morphine increased epinephrine (1400 +/- 300 vs. 62 +/- 8 pg/ml), norepinephrine (335 +/- 66 vs. 113 +/- 10 pg/ml), glucagon (242 +/- 53 vs. 74 +/- 14 pg/ml), insulin (30 +/- 9 vs. 10 +/- 2 microU/ml), cortisol (11.1 +/- 3.3 vs. 0.9 +/- 0.2 micrograms/dl), and plasma beta-endorphin (88 +/- 27 vs. 23 +/- 6 pg/ml); all values P less than 0.05 compared with basal. These results show that morphine-induced hyperglycemia results from both stimulation of glucose production as well as inhibition of glucose clearance. These changes can be explained by rises in epinephrine, glucagon, and cortisol. These in turn are part of a widespread catabolic response initiated by high dose morphine that involves activation of the sympathetic nervous system, the endocrine pancreas, and the pituitary-adrenal axis. Also, we report the effect of a 2 mg/h infusion of morphine on glucose kinetics when the endocrine pancreas is clamped at basal levels. Under these conditions, morphine exerts a hypoglycemic effect (25% fall in plasma glucose, P less than 0.05) that is due to inhibition of glucose production (by 25-43%, P less than 0.05). The hypoglycemia was independent of detectable changes in insulin, glucagon, epinephrine and cortisol, and was not reversed by concurrent infusion of a slight molar excess of naloxone. Therefore, we postulate that the hypoglycemic effect of morphine results from the interaction of the opiate with non-mu receptors either in the liver or the central nervous system.  相似文献   

14.
Evidence that the brain of the conscious dog is insulin sensitive.   总被引:1,自引:0,他引:1       下载免费PDF全文
The aim of this study was to determine whether a selective increase in the level of insulin in the blood perfusing the brain is a determinant of the counterregulatory response to hypoglycemia. Experiments were carried out on 15 conscious 18-h-fasted dogs. Insulin was infused (2 mU/kg per min) in separate, randomized studies into a peripheral vein (n = 7) or both carotid and vertebral arteries (n = 8). This resulted in equivalent systemic insulinemia (84 +/- 6 vs. 86 +/- 6 microU/ml) but differing insulin levels in the head (84 +/- 6 vs. 195 +/- 5 microU/ml, respectively). Glucose was infused during peripheral insulin infusion to maintain the glucose level (56 +/- 2 mg/dl) at a value similar to that seen during head insulin infusion (58 +/- 2 mg/dl). Despite equivalent peripheral insulin levels and similar hypoglycemia; steady state plasma epinephrine (792 +/- 198 vs. 2394 +/- 312 pg/ml), norepinephrine (404 +/- 33 vs. 778 +/- 93 pg/ml), cortisol (6.8 +/- 1.8 vs. 9.8 +/- 1.6 micrograms/dl) and pancreatic polypeptide (722 +/- 273 vs. 1061 +/- 255 pg/ml) levels were all increased to a greater extent during head insulin infusion (P < 0.05). Hepatic glucose production, measured with [3-3H]glucose, rose from 2.6 +/- 0.2 to 4.3 +/- 0.4 mg/kg per min (P < 0.01) in response to head insulin infusion but remained unchanged (2.6 +/- 0.5 mg/kg per min) during peripheral insulin infusion. Similarly, gluconeogenesis, lipolysis, and ketogenesis were increased twofold (P < 0.001) during head compared with peripheral insulin infusion. Cardiovascular parameters were also significantly higher (P < 0.05) during head compared with peripheral insulin infusion. We conclude that during hypoglycemia in the conscious dog (a) the brain is directly responsive to physiologic elevations of insulin and (b) the response includes a profound stimulation of the autonomic nervous system with accompanying metabolic and cardiovascular changes.  相似文献   

15.
Evidence has accumulated suggesting that the state of secondary hyperparathyroidism and the elevated blood levels of parathyroid hormone (PTH) in uremia participate in the genesis of many uremic manifestations. The present study examined the role of PTH in glucose intolerance of chronic renal failure (CRF). Intravenous glucose tolerance tests (IVGTT) and euglycemic and hyperglycemic clamp studies were performed in dogs with CRF with (NPX) and without parathyroid glands (NPX-PTX). There were no significant differences among the plasma concentrations of electrolytes, degree of CRF, and its duration. The serum levels of PTH were elevated in NPX and undetectable in NPX-PTX. The NPX dogs displayed glucose intolerance after CRF and blood glucose concentrations during IVGTT were significantly (P less than 0.01) higher than corresponding values before CRF. In contrast, blood glucose levels after IVGTT in NPX-PTX before and after CRF were not different. K-g rate fell after CRF from 2.86 +/- 0.48 to 1.23 +/- 0.18%/min (P less than 0.01) in NPX but remained unchanged in NPX-PTX (from 2.41 +/- 0.43 to 2.86 +/- 0.86%/min) dogs. Blood insulin levels after IVGTT in NPX-PTX were more than twice higher than in NPX animals (P less than 0.01) and for any given level of blood glucose concentration, the insulin levels were higher in NPX-PTX than NPX dogs. Clamp studies showed that the total amount of glucose utilized was significantly lower (P less than 0.025) in NPX (6.64 +/- 1.13 mg/kg X min) than in NPX-PTX (10.74 +/- 1.1 mg/kg X min) dogs. The early, late, and total insulin responses were significantly (P less than 0.025) greater in the NPX-PTX than NPX animals. The values for the total response were 143 +/- 28 vs. 71 +/- 10 microU/ml, P less than 0.01. There was no significant difference in the ratio of glucose metabolized to the total insulin response, a measure of tissue sensitivity to insulin, between the two groups. The glucose metabolized to total insulin response ratio in NPX (5.12 +/- 0.76 mg/kg X min per microU/ml) and NPX-PTX (5.18 +/- 0.57 mg/kg X min per microU/ml) dogs was not different but significantly (P less than 0.01) lower than in normal animals (9.98 +/- 1.26 mg/kg X min per microU/ml). The metabolic clearance rate of insulin was significantly (P less than 0.02) reduced in both NPX (12.1 +/- 0.7 ml/kg X min) and NPX-PTX (12.1 +/- 0.9 ml/kg X min) dogs, as compared with normal animals (17.4 +/- 1.8 ml/kg X min). The basal hepatic glucose production was similar in both groups of animals and nor different from normal dogs; both the time course and the magnitude of suppression of hepatic glucose production by insulin were similar in both in groups. There were no differences in the binding affinity, binding sites concentration, and binding capacity of monocytes to insulin among NPX, NPX-PTX, and normal dogs. The data show that (a) glucose intolerance does not develop with CRF in the absence of PTH, (b) PTH does not affect metabolic clearance of insulin or tissue resistance to insulin in CRF, and (c) the normalization of metabolism in CRF in the absence of PTH is due to increased insulin secretion. The results indicate that excess PTH in CRF interferes with the ability of the beta-cells to augment insulin secretion appropriately in response to the insulin-resistant state.  相似文献   

16.
The mechanism(s) and site(s) of the insulin resistance were examined in nine normal-weight noninsulin-dependent diabetic (NIDD) subjects. The euglycemic insulin clamp technique (insulin concentration approximately 100 microU/ml) was employed in combination with hepatic and femoral venous catheterization and measurement of endogenous glucose production using infusion of tritiated glucose. Total body glucose metabolism in the NIDD subjects (4.37 +/- 0.45 mg/kg per min) was 38% (P less than 0.01) lower than in controls (7.04 +/- 0.63 mg/kg per min). Quantitatively, the most important site of the insulin resistance was found to be in peripheral tissues. Leg glucose uptake in the diabetic group was reduced by 45% as compared with that in controls (6.0 +/- 0.2 vs. 11.0 +/- 0.1 mg/kg leg wt per min; P less than 0.01). A strong positive correlation was observed between leg and total body glucose uptake (r = 0.70, P less than 0.001). Assuming that muscle is the primary leg tissue responsible for glucose uptake, it could be estimated that 90 and 87% of the infused glucose was disposed of by peripheral tissues in the control and NIDD subjects, respectively. Net splanchnic glucose balance during insulin stimulation was slightly more positive in the control than in the diabetic subjects (0.31 +/- 0.10 vs. 0.05 +/- 0.19 mg/kg per min; P less than 0.07). The difference (0.26 mg/kg per min) in net splanchnic glucose balance in NIDD represented only 10% of the reduction (2.67 mg/kg per min) in total body glucose uptake in the NIDD group and thus contributed very little to the insulin resistance. The results emphasize the importance of the peripheral tissues in the disposal of infused glucose and indicate that muscle is the most important site of the insulin resistance in NIDD.  相似文献   

17.
A case of insulin resistance associated with acanthosis nigricans   总被引:1,自引:0,他引:1  
We described here a 12-year-old male patient with the syndrome of insulin resistance and acanthosis nigricans type A. Insulin levels at fasting state and after glucose loading were 149 +/- 63 microU/ml (mean +/- S.D.) and over 1,000 microU/ml respectively, while the fasting level of blood glucose was 77.7 +/- 8.9 mg/ml (mean +/- S.D.). A marked resistance to exogenous insulin was observed. Circulating levels of insulin antagonists such as growth hormone, cortisol and glucagon were within the normal range. Proinsulin was less than 5% of the radioimmunoassayable insulin. No insulin antibody or antireceptor antibody was detected. Insulin binding to mononuclear cells was decreased to about 50% of the controls. Analysis of membrane receptors demonstrated the normal average affinity, dissociation kinetics and negative cooperativity with a decreased number of receptors. After two days fasting, plasma IRI levels decreased to 27 microU/ml, while insulin binding kinetics were not affected; which suggests that the receptor decrease was not secondary to hyperinsulinemia. These findings indicate that the decreased number of receptors was one of the causes for insulin resistance in this patient.  相似文献   

18.
To assess the effects of aging on glucose-mediated glucose disposal and glucose transport, glucose disposal rates were measured in 10 nonelderly (32 +/- 4 yr) and 11 elderly (64 +/- 4 yr) subjects at five different plasma glucose concentrations. Glucose disposal was decreased by 30-35% in the elderly at each level of glycemia (100-350 mg/dl) in the presence of similar levels of hyperinsulinemia (approximately 100 microU/ml), and the 50% effective concentration (EC50) was similar in both the nonelderly (100 +/- 9) and elderly (103 +/- 5 mg/dl). The Michaelis constant (Km) of 3-O-methyl glucose transport in adipocytes was unchanged with aging (3.8 +/- 0.5 vs. 3.2 +/- 0.2 mM) while the maximum velocity of insulin stimulated transport was reduced by 34% in the elderly (8.3 +/- 1.3 vs. 12.6 +/- 1.5 pmol/5 X 10(4) cells per s, P less than 0.05). The insulin resistance of aging is therefore due to a reduction in the capacity of the glucose uptake system, while the affinity of glucose utilization (EC50 and Km) is unchanged. This supports the hypothesis that a reduction in the number of glucose transport and metabolic units occurs with aging, but that each unit functions normally.  相似文献   

19.
We used a dual-isotope method (oral [1-14C]glucose and intravenous [6-3H]glucose) to examine whether the oral glucose intolerance of cirrhosis is due to (a) a greater input of glucose into the systemic circulation (owing to a lower first-pass hepatic uptake of ingested glucose, or to impaired inhibition of hepatic glucose output), (b) a lower rate of glucose removal, or (c) a combination of these mechanisms. Indirect calorimetry was used to measure oxidative and nonoxidative metabolism. Basal plasma glucose levels (cirrhotics, 5.6 +/- 0.4[SE], controls, 5.1 +/- 0.2 mmol/liter), and rates of glucose appearance (Ra) and disappearance (Rd) were similar in the two groups. After 75 g of oral glucose, plasma glucose levels were higher in cirrhotics than controls, the curves diverging for 80 min despite markedly higher insulin levels in cirrhotics. During the first 20 min, there was very little change in glucose Rd and the greater initial increase in plasma glucose in cirrhotics resulted from a higher Ra of ingested [1-14C]glucose into the systemic circulation, suggesting a reduced first-pass hepatic uptake of portal venous glucose. The continuing divergence of the plasma glucose curves was due to a lower glucose Rd between 30 and 80 min (cirrhotics 236 +/- 17 mg/kg in 50 min, controls 280 +/- 17 mg/kg in 50 min, P < 0.05, one-tailed test). Glucose metabolic clearance rate rose more slowly in cirrhotics and was significantly lower than in controls during the first 2 h after glucose ingestion (2.24 +/- 0.17 vs 3.30 +/- 0.23 ml/kg per min, P < 0.005), in keeping with their known insulin insensitivity. Despite the higher initial glucose Ra in cirrhotics, during the entire 4-h period the quantity of total glucose and of ingested glucose (cirrhotics 54 +/- 2 g [72% of oral load], controls 54 +/- 3 g) appearing in the systemic circulation were similar. Overall glucose Rd (cirrhotics 72.5 +/- 3.8 g/4 h, controls 77.2 +/- 2.2 g/4h) and percent suppression of hepatic glucose output over 4 h (cirrhotics, 53 +/- 10%, controls 49 +/- 8%) were also similar. After glucose ingestion much of the extra glucose utilized was oxidized to provide energy that in the basal state was derived from lipid fuels. Glucose oxidation after glucose ingestion was similar in both groups and accounted for approximately two-thirds of glucose Rd. The reduction in overall nonoxidative glucose disposal did not reach significance (21 +/- 5 vs. 29 +/- 3 g/4 h, 0.05 < P < 0.1). Although our data would be compatible with an impairment of tissue glycogen deposition after oral glucose, glucose storage as glycogen probably plays a small part part in overall glucose disposal. Our results suggest that the higher glucose levels seen in cirrhotics after oral glucose are due initially to an increase in the amount of ingested glucose appearing in the systemic circulation, and subsequently to an impairment in glucose uptake by tissues due to insulin insensitivity. Impaired suppression of hepatic glucose output does not contribute to oral glucose intolerance.  相似文献   

20.
The effect of insulin on motilin release was investigated by use of the euglycemic glucose clamp technique. By use of this technique plasma glucose concentration was maintained constant at 80-90 mg/100 ml, and plasma insulin immunoreactivity (IRI) was increased from 15 +/- 6 microU/ml to 171 +/- 22 microU/ml in 10 min, and remained at this level for 2 hr. Plasma motilin like immunoreactivity (MLI) concentration decreased within 10 min from 199 +/- 36 pg/ml to 120 +/- 28 pg/ml and remained low during the course of study. A significant negative correlation between MLI and IRI concentrations (r = -0.72, p less than 0.01) was observed. The present results indicate that the suppressive effect of insulin on motilin release is a direct action of insulin and is not mediated by glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号