首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ErbB2 activation of ESX gene expression   总被引:4,自引:0,他引:4  
Neve RM  Ylstra B  Chang CH  Albertson DG  Benz CC 《Oncogene》2002,21(24):3934-3938
  相似文献   

2.
Dysregulation of ErbB receptor tyrosine kinases is thought to promote mammary tumor progression by stimulating tumor cell growth and invasion. Overexpression and aberrant activation of ErbB2/HER2 confer aggressive and malignant characteristics to breast cancer cells, and patients displaying ErbB2-amplified breast cancer face a worsened prognosis. Recent studies have established that ErbB2 and ErbB3 are commonly co-overexpressed in breast tumor cell lines and in patient samples. ErbB2 heterodimerizes with and activates the ErbB3 receptor, and the two receptors synergize in promoting growth factor-induced cell proliferation, transformation, and invasiveness. Our previous studies have shown that the neuregulin receptor degradation protein-1 (Nrdp1) E3 ubiquitin ligase specifically suppresses cellular ErbB3 levels by marking the receptor for proteolytic degradation. Here, we show that overexpression of Nrdp1 in human breast cancer cells results in the suppression of ErbB3 levels, accompanied by the inhibition of cell growth and motility and the attenuation of signal transduction pathways. In contrast, either Nrdp1 knockdown or the overexpression of a dominant-negative form enhances ErbB3 levels and cellular proliferation. Additionally, Nrdp1 expression levels inversely correlate with ErbB3 levels in primary human breast cancer tissue and in a mouse model of ErbB2 mammary tumorigenesis. Our observations suggest that Nrdp1-mediated ErbB3 degradation suppresses cellular growth and motility, and that Nrdp1 loss in breast tumors may promote tumor progression by augmenting ErbB2/ErbB3 signaling.  相似文献   

3.
A variety of receptor-mediated signaling pathways are controlled by both positive and negative extracellular regulators. In this study, we demonstrate that a naturally occurring secreted form of the human ErbB3 receptor, p85-soluble ErbB3 (sErbB3), is a potent negative regulator of heregulin (HRG)-stimulated ErbB2, ErbB3, and ErbB4 activation. We show that p85-sErbB3 binds to HRG with an affinity comparable to that of full-length ErbB3 and competitively inhibits high affinity HRG binding to ErbB2/ErbB3 heterodimers on the cell surface of breast carcinoma cells with an IC(50) of 0.5 nM. p85-sErbB3 inhibits HRG-induced phosphorylation of ErbB2, ErbB3, and ErbB4 in breast carcinoma-derived cell lines and can also block HRG-stimulated activation of mitogen-activated protein kinase, Akt, and association of ErbB3 with the phosphatidylinositol 3'-kinase p85 regulatory subunit. Cell growth assays show that exogenous addition of a 100-fold molar excess of p85-sErbB3 inhibits HRG-stimulated cell growth by as much as 90%. Whereas several potential mechanisms of p85-sErbB3 inhibition of ErbB receptor activation exist, our results suggest that at least one means of inhibition is competition for HRG binding. The IC(50) for both p85-sErbB3- and 2C4 (a monoclonal antibody specific for ErbB2)-mediated inhibition of HRG binding is approximately 0.5 nM, although the mechanism of inhibition by these two proteins is distinct. Together these results suggest that p85-sErbB3 is a naturally occurring negative regulator of HRG-stimulated signal transduction that may have important therapeutic applications in human malignancies associated with HRG-mediated cell growth such as breast and prostate cancer.  相似文献   

4.
Zhan L  Xiang B  Muthuswamy SK 《Cancer research》2006,66(10):5201-5208
Receptor tyrosine kinases of the ErbB family are implicated in a number of cancers, including that of the breast. ErbB receptors are activated by ligand-induced formation of homodimers and heterodimers. Receptor heterodimerization is thought to play a critical role in breast cancers overexpressing multiple members of the ErbB family. Although coexpression of ErbB receptors is associated with poor patient prognosis, the mechanisms by which receptor heterodimerization regulates tumor progression are not clear, due in part to a lack of methods that allow controlled activation of specific receptor heterodimers in mammary epithelial cells. Here, we report an approach to activate ErbB1-ErbB2 heterodimers in a nontumorigenic breast epithelial cell line, MCF-10A, without interference from endogenous ErbB receptors. Using such a method, we show that whereas both ErbB2 homodimers and ErbB1-ErbB2 heterodimers were equally potent in activating the Ras/mitogen-activated protein kinase pathway, the heterodimers were more potent in activating the phosphoinositide 3'-kinase (PI3K) and phospholipase Cgamma1 pathways than ErbB2 homodimers. We combined the dimerization system with a three-dimensional cell culture approach to show that whereas both ErbB2 homodimers and ErbB1-ErbB2 heterodimers induced disruption of three-dimensional acini-like structures, only heterodimers promoted invasion of cells through extracellular matrix. The ability of heterodimers to induce invasion required the ErbB1 kinase activity and required activation of PI3K, Ras/mitogen-activated protein kinase, and phospholipase Cgamma1 signaling pathways. Thus, we have identified cell invasion as a heterodimer-specific biological outcome and suggest that coexpression of ErbB1 may critically regulate invasive progression of ErbB2-positive breast cancers.  相似文献   

5.
BACKGROUND AND AIM: Sarcoidosis is an inflammatory disorder of unknown origin. The nuclear regulatory factor-kappaB (NF-kappaB) appears to play a key role in immune and inflammatory processes such as asthma, rheumatoid arthritis and inflammatory bowel disease. We hypothesized that NF-kappaB activation might be involved in the pathological process of sarcoidosis. METHODS: Twelve sarcoidosis patients, biopsy proven, and five healthy control subjects, all nonsmokers, were studied. Blood samples were taken and routinely analysed for several parameters including the serum angiotensin converting enzyme (sACE) level. Mononuclear cells were isolated from these patients in order to quantify the NF-kappaB contents in the nuclear extract of the mononuclear cells. RESULTS: Mononuclear cells NF-kappaB expressed per mg protein were twice as high in both untreated (n = 5) and treated (n = 7) patients with sarcoidosis compared to the control subjects (p < 0.001). In contrast, the sACE level appeared to be low in the treated patients compared to the untreated patients (p < 0.01). CONCLUSIONS: These results indicate that the inflammation in sarcoidosis is associated with NF-kappaB activation. Moreover, the suppression of the activated NF-kappaB response by glucocorticoids seems less successful than the suppression of the sACE activity. Future studies should focus on the clinical relevance of this observation and establish the possible therapeutic consequences of the increased NF-kappaB activation in sarcoidosis.  相似文献   

6.
Xia W  Gerard CM  Liu L  Baudson NM  Ory TL  Spector NL 《Oncogene》2005,24(41):6213-6221
Antibodies and small molecule tyrosine kinase inhibitors targeting ErbB2 exhibit distinct, noncross resistant mechanisms of action. Here, apoptosis of ErbB2-overexpressing breast cancer cells was enhanced by combining lapatinib, an inhibitor of ErbB1 and ErbB2 tyrosine kinases, with anti-ErbB2 antibodies, including (i) trastuzumab, a humanized monoclonal antibody, and (ii) pAb, rabbit polyclonal antisera generated by vaccination with a human ErbB2 fusion protein. Treating ErbB2-overexpressing breast cancer cell lines with a relatively low concentration of lapatinib alone resulted in a minimal increase in tumor cell apoptosis with an associated decrease in steady-state protein levels of p-ErbB2, p-Akt, p-Erk1/2, and notably survivin, compared to baseline. Exposure to pAb alone reduced total ErbB2 protein, disrupting ErbB3 transactivation, leading to a marked inhibition of p-Akt; however, survivin protein levels remained unchanged and apoptosis only increased slightly. Treatment with trastuzumab alone had relatively little effect on survivin and apoptosis was unaffected. Combining lapatinib with either pAb or trastuzumab markedly downregulated survivin protein and enhanced tumor cell apoptosis. The association between the inhibition of survivin and enhanced apoptosis following the combination of ErbB2-targeted therapies provides a biological effect in order to identify therapeutic strategies that promote tumor cell apoptosis and might improve clinical response.  相似文献   

7.
8.
9.
Inappropriate signalling through the EGFR and ErbB2/HER2 members of the epidermal growth factor family of receptor tyrosine kinases is well recognised as being causally linked to a variety of cancers. Consequently, monoclonal antibodies specific for these receptors have become increasingly important components of effective treatment strategies for cancer. Increasing evidence suggests that ErbB3 plays a critical role in cancer progression and resistance to therapy. We hypothesised that co-targeting the preferred ErbB2/ErbB3 heterodimer with a bispecific single-chain Fv (bs-scFv) antibody would promote increased targeting selectivity over antibodies specific for a single tumour-associated antigen (TAA). In addition, we hypothesised that targeting this important heterodimer could induce a therapeutic effect. Here, we describe the construction and evaluation of the A5-linker-ML3.9 bs-scFv (ALM), an anti-ErbB3/ErbB2 bs-scFv. The A5-linker-ML3.9 bs-scFv exhibits selective targeting of tumour cells in vitro and in vivo that co-express the two target antigens over tumour cells that express only one target antigen or normal cells that express low levels of both antigens. The A5-linker-ML3.9 bs-scFv also exhibits significantly greater in vivo targeting of ErbB2'+'/ErbB3'+' tumours than derivative molecules that contain only one functional arm targeting ErbB2 or ErbB3. Binding of ALM to ErbB2'+'/ErbB3'+' cells mediates inhibition of tumour cell growth in vitro by effectively targeting the therapeutic anti-ErbB3 A5 scFv. This suggests both that ALM could provide the basis for an effective therapeutic agent and that engineered antibodies selected to co-target critical functional pairs of TAAs can enhance the targeting specificity and efficacy of antibody-based cancer therapeutics.  相似文献   

10.
Overexpression of ErbB2 in cancer and ErbB2-targeting strategies   总被引:14,自引:0,他引:14  
Yu D  Hung MC 《Oncogene》2000,19(53):6115-6121
This past decade has witnessed the remarkable advances in the understanding of the role of the erbB2 gene in cancers and the stunning progress in developing targeted therapies for erbB2-overexpressing cancers. Activation of the ErbB2 receptor signaling pathways can enhance various metastasis-associated properties that lead to an increase of cancer metastasis. Additionally, ErbB2 overexpression confers therapeutic resistance via receptor-mediated antiapoptotic signals. To limit these disastrous effects of the overexpressed ErbB2, various ErbB2-blocking strategies have been developed in the laboratories and several have been tested in clinical trials or approved as therapies for ErbB2 overexpressing cancers. In this article, we will discuss the detrimental effects of the erbB2 gene in cancers, with a focus on breast cancer. We will also outline ErbB2-targeting strategies as potential therapies for ErbB2-overexpressing cancers. Progress in understanding the molecular biology of ErbB2 and in molecular-based treatment of ErbB2-overexpressing tumors will bring great benefits to cancer patients.  相似文献   

11.
Our prior studies identified co-expression of the human epidermal growth factor-like receptors 2 (ErbB2) and 3 (ErbB3), as well as the growth factor neuregulin-1 (NRG-1) in normal lung epithelium and lung cancers. As ErbB2 and ErbB3 dimerize to produce a high affinity receptor for NRG-1, we postulated that an autocrine growth loop was present in transformed and non-transformed pulmonary epithelial cells. To test this hypothesis, we examined four cell lines derived from human non-small cell carcinomas for: (1) ErbB2 and ErbB3 expression and endogenous activation; (2) NRG-1 expression and secretion/shedding; and (3) the effect of receptor blockade on autocrine receptor activation. Our studies found that ErbB2 and ErbB3 were expressed by each of these cell lines. In addition, the NRG-1 gene was also expressed with both major isoforms of NRG-1 (NRG-1alpha and NRG-1beta) found intracellularly. Only the NRG-1alpha isoform, however, was found secreted/shed into the culture medium. The secreted/shed NRG-1alpha was capable of activating the ErbB2/ErbB3 receptor complex expressed on the breast adenocarcinoma cell line MCF-7. Basal ErbB2 phosphorylation was identified in all lung cancer cell lines and was inhibited with an antibody that blocked the NRG-1 binding site on ErbB3. Taken together, these data show that secreted NRG-1alpha can activate the ErbB2/ErbB3 heterodimer in an autocrine fashion. The identification of a NRG-1alpha/ErbB2/ErbB3 autocrine loop raises the possibility that interruption of this loop may have therapeutic potential in lung cancer.  相似文献   

12.
Previously, we demonstrated that cancerous inhibitor of protein phosphatase 2A (CIP2A) mediates bortezomib-induced apoptosis in hepatocellular carcinoma cells. Herein, we report that bortezomib sensitizes solid tumor cells to radiation-induced apoptosis. Treatment with a combination of bortezomib and radiation downregulated CIP2A in a dose-dependent manner in solid tumor cells. Knockdown of CIP2A enhanced radiation-induced apoptosis in cancer cells, and ectopic expression of CIP2A in cancer cells abolished radiation-induced apoptosis. Finally, our in vivo data showed that bortezomib and radiation combination treatment decreased tumor growth significantly. Thus, bortezomib sensitized solid tumor cells to radiation through the inhibition of CIP2A.  相似文献   

13.
He Q  Huang Y  Sheikh MS 《Oncogene》2004,23(6):1321-1325
There has been a considerable debate as to whether caspase-2 is an initiator or effector caspase. Recently, a new model of intrinsic pathway of apoptosis has been proposed, which suggests caspase-2 to be an initiator caspase. For example, ultraviolet radiation (UV) and other DNA damage-inducing agents were shown to first activate caspase-2 and then regulate the mitochondrial and postmitochondrial events. Active caspase-2 was found to engage mitochondria by promoting Bax translocation to the mitochondria. Consequently, Bax was proposed to play a central role in bridging the active caspase-2 with mitochondria by affecting mitochondrial permeability, cytochrome c release into the cytosol and caspase-9 activation. In the present study, we investigated the role of Bax in UV-induced apoptosis and caspase-2 activation. Our results indicate that UV-induced apoptosis and caspase-2 activation were diminished in Bax-deficient cells, suggesting that Bax appears to play an important role in UV-induced apoptosis as well as caspase-2 activation, and that it also appears to reside upstream of caspase-2. Bax deficiency also affected the activation of caspase-3 and -8 and abolished caspase-9 activation during UV-induced apoptosis, suggesting that the absence of caspase-9 activation may affect caspase-2, -3 and -8 activation in Bax-deficient cells. Based on our results, we propose that activation of caspases is not a linear cascade of events, but is rather connected via complex feedback loops.  相似文献   

14.
15.
16.
17.
目的 探讨ErbB3在骨肉瘤细胞Saos-2中的表达及其意义.方法 实时定量PCR检测骨肉瘤细胞Saos-2和正常人类成骨细胞N704中ErbB3 mRNA的表达水平,Western blotting检测ErbB3蛋白表达水平.使用短发夹RNA (shRNA)构建ErbB3表达沉默的Saos-2细胞,检测0~3d内Saos-2细胞数目.测定ErbB3表达沉默和正常Saos-2细胞在0~ 100μmol/L紫杉醇下48 h存活率.结果 相对于正常人类成骨细胞N704,骨肉瘤细胞Saos-2的ErbB3 mRNA表达量增加(4.15±0.04)倍,差异有统计学意义(t=7.31,P<0.05),且ErbB3蛋白水平显著增加.ErbB3沉默能降低Saos-2细胞的增殖水平,培养第3天ErbB3沉默的Saos-2细胞数目为(2.22-±0.29)万个,而未沉默细胞数目为(4.58-±0.41)万个,差异有统计学意义(t =8.23,P<0.05).此外,ErbB3沉默能降低Saos-2细胞对紫杉醇的耐受,给药紫杉醇20 μmol/L时,ErbB3沉默组细胞存活率为(43.2±4.7)%,而未沉默组存活率为(61.4±5.9)%,差异有统计学意义(t=6.74,P<0.05).结论 骨肉瘤细胞Saos-2高度表达ErbB3,ErbB3的表达可增强Saos-2细胞的增殖能力,同时增强Saos-2细胞对紫杉醇的耐受.  相似文献   

18.
Although ionizing radiation (IR) activates multiple cellular factors that vary depending on dose and tissue specificity, the activation of NF-kappaB appears to be a well-conserved response in tumor cells exposed to IR. Recently, it also has been demonstrated that nonsteroidal anti-inflammatory agents inhibit tumor necrosis factor and interleukin-1-induced NF-kappaB activation and act as radiosensitizing agents. These observations reinforce the growing notion that NF-kappaB may be a protective cellular factor responding to the cytotoxicity of IR and other damaging stimuli. As such, we addressed the idea and mechanism that NF-kappaB is a downstream target of the nonsteroidal anti-inflammatory agent indomethacin and is involved in the process of radiosensitization. In this study, we report that indomethacin inhibited IR-induced activation of NF-kappaB and sensitized HeLa cells to IR-induced cytotoxicity at similar concentrations. Pretreatment of HeLa cells with SB 203580, a pyridinyl imidazole compound that specifically inhibits p38 mitogen-activated protein kinase (MAPK), abrogated the ability of indomethacin to inhibit IR-induced activation of NF-kappaB and diminished the indomethacin radiosensitizing effect. In addition, the transient genetic activation of p38(MAPK) inhibited IR induction of NF-kappaB gene expression in the absence of indomethacin. Finally, permanently transfected cell lines genetically unable to activate NF-kappaB, because of expression of a dominant negative I-kappaBalpha gene, demonstrated increased sensitivity to IR-induced cytotoxicity. Taken together, these results suggest that p38 MAPK is a target involved in indomethacin-induced radiosensitization and that NF-kappaB may be one downstream target in this process.  相似文献   

19.

Background  

The type I insulin-like growth factor receptor (IGF-IR) and ErbB2 (Her-2) are receptor tyrosine kinases implicated in human breast cancer. Both proteins are currently the subject of targeted therapeutics that are used in the treatment of breast cancer or which are in clinical trials. The focus of this study was to utilize our inducible model of IGF-IR overexpression to explore the interaction of these two potent oncogenes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号