首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, Gottlieb and colleagues discovered a linear relation between elbow and shoulder dynamic torque in natural pointing movements in the sagittal plane. The present study investigates if the process of learning to reach involves discovering this linearity principle. We inspected torque data from four infants who were learning to reach and grab a toy in front of them. In a longitudinal study, we collected data both in the period before and after they performed their first successful reaches. Torque profiles at the shoulder and elbow were typically multipeaked and became more and more biphasic toward the end of the first year of life. Torques at the shoulder and elbow were correlated tightly for movements in the prereaching period as well as for reaches later in the year. Furthermore, slopes of a regression of shoulder dynamic torque on elbow dynamic torque were remarkably constant at a value approximately 2.5-3.0. If linear synergy is used by the nervous system to reduce the controlled degrees of freedom, it will act as a strong constraint on the complex of possible coordination patterns for arm movement early in life. Natural reaching movements can capitalize on this constraint because it simplifies the process of learning to reach.  相似文献   

2.
In cerebellar ataxia, kinematic aberrations of multijoint movements are thought to originate from deficiencies in generating muscular torques that are adequate to control the mechanical consequences of dynamic interaction forces. At this point the exact mechanisms that lead to an abnormal control of interaction torques are not known. In principle, the generation of inadequate muscular torques may result from an impairment in generating sufficient levels of torques or from an inaccurate assessment and prediction of the mechanical consequences of movements of one limb segment on adjacent joints. We sought to differentiate the relative contribution of these two mechanisms and, therefore, analyzed intersegmental dynamics of multijoint pointing movements in healthy subjects and in patients with cerebellar degeneration. Unrestrained vertical arm movements were performed at three different target movement velocities and recorded using an optoelectronic tracking system. An inverse dynamics approach was employed to compute net joint torques, muscular torques, dynamic interaction torques and gravitational torques acting at the elbow and shoulder joint. In both groups, peak dynamic interaction forces and peak muscular forces were largest during fast movements. In contrast to normal subjects, patients produced hypermetric movements when executing fast movements. Hypermetric movements were associated with smaller peak muscular torques and smaller rates of torque change at elbow and shoulder joints. The patients’ deficit in generating appropriate levels of muscular force were prominent during two different phases of the pointing movement. Peak muscular forces at the elbow were reduced during the initial phase of the movement when simultaneous shoulder joint flexion generated an extensor influence upon the elbow joint. When attempting to terminate the movement, gravitational and dynamic interaction forces caused overshooting extension at the elbow joint. In normal subjects, muscular torque patterns at shoulder and elbow joint were synchronized in that peak flexor and extensor muscular torques occurred simultaneously at both joints. This temporal pattern of muscular torque generation at shoulder and elbow joint was preserved in patients. Our data suggest that an impairment in generating sufficient levels of phasic muscular torques significantly contributes to the patients’ difficulties in controlling the mechanical consequences of dynamic interaction forces during multijoint movements. Received: 28 October 1996 / Accepted: 30 September 1997  相似文献   

3.
Prior work has shown that cerebellar subjects have difficulty adjusting for interaction torques that occur during multi-jointed movements. The purpose of this study was to determine whether this deficit is due to a general inability to generate sufficient levels of phasic torque inability or due to an inability to generate muscle torques that predict and compensate for interaction torques. A second purpose was to determine whether reducing the number of moving joints by external mechanical fixation could improve cerebellar subjects' targeted limb movements. We studied control and cerebellar subjects making elbow flexion movements to touch a target under two conditions: 1) a shoulder free condition, which required only elbow flexion, although the shoulder joint was unconstrained and 2) a shoulder fixed condition, where the shoulder joint was mechanically stabilized so it could not move. We measured joint positions of the arm in the sagittal plane and electromyograms (EMGs) of shoulder and elbow muscles. Elbow and shoulder torques were estimated using inverse dynamics equations. In the shoulder free condition, cerebellar subjects made greater endpoint errors (primarily overshoots) than did controls. Cerebellar subjects' overshoot errors were largely due to unwanted flexion at the shoulder. The excessive shoulder flexion resulted from a torque mismatch, where larger shoulder muscle torques were produced at higher rates than would be appropriate for a given elbow movement. In the shoulder fixed condition, endpoint errors of cerebellar subjects and controls were comparable. The improved accuracy of cerebellar subjects was accompanied by reduced shoulder flexor muscle activity. Most of the correct cerebellar trials in the shoulder fixed condition were movements made using only muscles that flex the elbow. Our findings suggest that cerebellar subjects' poor shoulder control is due to an inability to generate muscle torques that predict and compensate for interaction torques, and not due to a general inability to generate sufficient levels of phasic torque. In addition, reducing the number of muscles to be controlled improved cerebellar ataxia.  相似文献   

4.
The speed of arm movements is normally increased by increasing agonist muscle activity, but in overarm throwing, an additional effect on speed may come from exploitation of interaction torques (a passive torque associated with motion at adjacent joints). We investigated how the central nervous system (CNS) controls interaction torques at the shoulder and elbow to increase speed in 2-D overarm throwing. Twelve experienced throwers made slow, medium, and fast 2-D throws in a parasagittal plane. Joint motions were computed from recordings made with search coils; joint torques were calculated using inverse dynamics. For slow and medium-speed throws, elbow extension was primarily produced by elbow muscle torque. For fast throws, there was an additional late-occurring elbow extensor interaction torque. Parceling out this elbow extension interaction torque revealed that it primarily arose from shoulder extension deceleration. Surprisingly, shoulder deceleration before ball release was not caused by shoulder flexor (antagonist) muscle torque. Rather, shoulder deceleration was produced by passive elbow-to-shoulder interaction torques that were primarily associated with elbow extension acceleration and velocity. It is concluded that when generating fast 2-D throws, the CNS utilized the arm’s biomechanical properties to increase ball speed. It did this by coordinating shoulder and elbow motions such that an instantaneous mechanical positive feedback occurred of interaction torques between shoulder and elbow before ball release. To what extent this mechanism is utilized in other fast multijoint arm movements remains to be determined.  相似文献   

5.
During multijoint limb movements such as reaching, rotational forces arise at one joint due to the motions of limb segments about other joints. We report the results of three experiments in which we assessed the extent to which control signals to muscles are adjusted to counteract these "interaction torques." Human subjects performed single- and multijoint pointing movements involving shoulder and elbow motion, and movement parameters related to the magnitude and direction of interaction torques were manipulated systematically. We examined electromyographic (EMG) activity of shoulder and elbow muscles and, specifically, the relationship between EMG activity and joint interaction torque. A first set of experiments examined single-joint movements. During both single-joint elbow (experiment 1) and shoulder (experiment 2) movements, phasic EMG activity was observed in muscles spanning the stationary joint (shoulder muscles in experiment 1 and elbow muscles in experiment 2). This muscle activity preceded movement and varied in amplitude with the magnitude of upcoming interaction torque (the load resulting from motion of the nonstationary limb segment). In a third experiment, subjects performed multijoint movements involving simultaneous motion at the shoulder and elbow. Movement amplitude and velocity at one joint were held constant, while the direction of movement about the other joint was varied. When the direction of elbow motion was varied (flexion vs. extension) and shoulder kinematics were held constant, EMG activity in shoulder muscles varied depending on the direction of elbow motion (and hence the sign of the interaction torque arising at the shoulder). Similarly, EMG activity in elbow muscles varied depending on the direction of shoulder motion for movements in which elbow kinematics were held constant. The results from all three experiments support the idea that central control signals to muscles are adjusted, in a predictive manner, to compensate for interaction torques-loads arising at one joint that depend on motion about other joints.  相似文献   

6.
We tested the hypothesis that in fast arm movements the CNS deliberately utilizes interaction torques to decelerate (brake) joint rotations. Twelve subjects performed fast 2-D overarm throws in which large elbow extension velocities occurred. Joint motions were computed from recordings made with search coils; joint torques were calculated using inverse dynamics. After ball release, a large follow-through shoulder extension acceleration occurred that was initiated by shoulder extensor muscle torque. This shoulder acceleration produced a flexor interaction torque at the elbow that initiated elbow deceleration (braking). An instantaneous mechanical interaction of passive torques then occurred between elbow and shoulder, i.e., elbow extension deceleration produced a large shoulder extensor interaction torque that contributed to the shoulder extension acceleration which, simultaneously, produced a large elbow flexor interaction torque that contributed to elbow extension deceleration, and so on. Late elbow flexor muscle torque also contributed to elbow deceleration. The interaction of passive torques between shoulder and elbow was braked by shoulder flexor muscle torque. In this mechanism, shoulder musculature contributed to braking elbow extension in two ways: shoulder extensors initiated the mechanical interaction of passive torques between shoulder and elbow and shoulder flexors dissipated kinetic energy from elbow braking. It is concluded that, in fast 2-D throws, the CNS deliberately utilizes powerful interaction torques between shoulder and elbow to brake motion at the elbow.  相似文献   

7.
We examined the systematic variation in shoulder and elbow torque, as well as movement kinematics, for horizontal-plane arm movements with direction reversals performed by normal individuals and individuals with Down syndrome. Eight neurologically normal individuals and eight individuals with Down syndrome performed horizontal, planar reversal movements to four different target locations. The four locations of the targets were chosen such that there is a systematic increase in elbow interaction torque for each of the four different target locations. This systematic increase in interaction torque has previously been shown to lead to progressively larger movement reversal errors, and trajectories that do not show a sharp reversal of direction, for movements to and from the target in patients who have proprioceptive abnormalities. We computed joint torques at the elbow and shoulder and found a high correlation between elbow and shoulder torque for the neurologically normal subjects. The ratio of joint torques varied systematically with target location. These findings extend previously reported findings of a linear synergy between shoulder and elbow joints for a variety of point-to-point movements. There was also a correlation between elbow and shoulder torque in individuals with Down syndrome, but the magnitude of the correlation was less. The ratio of joint torques changed systematically with target direction in individuals with Down syndrome but was slightly different from the ratio observed for neurologically normal individuals. The difference in the ratio was caused by the generation of proportionately more elbow torque than shoulder torque. The fingertip path of individuals with Down syndrome showed a sharp reversal in moving toward and then away from the target. In this respect, they were similar to neurologically normal individuals but dissimilar to individuals with proprioceptive deficits. Finally, we observed that individuals with Down syndrome spend proportionately more time in the vicinity of the target than normal individuals. Collectively these results show that there is a systematic relationship between joint torques at the elbow and shoulder. This relationship is present for reversal movements and is also present in individuals with Down syndrome.  相似文献   

8.
Studies of multijoint arm movements have demonstrated that the nervous system anticipates and plans for the mechanical effects that arise from motion of the linked limb segments. The general rules by which the nervous system selects appropriate muscle activities and torques to best deal with these intersegmental effects are largely unknown. In order to reveal possible rules, this study examined the relationship of muscle and interaction torques to joint acceleration at the shoulder, elbow and wrist during point-to-point arm movements to a range of targets in the horizontal plane. Results showed that, in general, dynamics differed between the joints. For most movements, shoulder muscle torque primarily determined net torque and joint acceleration, while interaction torque was minimal. In contrast, elbow and wrist net torque were determined by a combination of muscle and interaction torque that varied systematically with target direction and joint excursion. This "shoulder-centered pattern" occurred whether subjects reached targets using straight or curved finger paths. The prevalence of a shoulder-centered pattern extends findings from a range of arm movement studies including movement of healthy adults, neurological patients, and simulations with altered interaction effects. The shoulder-centered pattern occurred for most but not all movements. The majority of the remaining movements displayed an "elbow-centered pattern," in which muscle torque determined initial acceleration at the elbow and not at the shoulder. This occurred for movements when shoulder excursion was <50% of elbow excursion. Thus, both shoulder- and elbow-centered movements displayed a difference between joints but with reversed dynamics. Overall, these findings suggest that a difference in dynamics between joints is a general feature of horizontal plane arm movements, and this difference is most commonly reflected in a shoulder-centered pattern. This feature fits well with other general shoulder-elbow differences suggested in the literature on arm movements, namely that: (a) agonist muscle activity appears more closely related to certain joint kinematics at the shoulder than at the elbow, (b) adults with neurological damage display less disruption of shoulder motion than elbow motion, and (c) infants display adult-like motion first in the shoulder and last at the wrist.  相似文献   

9.
This study investigated how the human CNS organizes complex three-dimensional (3D) ball-throwing movements that require both speed and accuracy. Skilled baseball players threw a baseball to a target at three different speeds. Kinematic analysis revealed that the fingertip speed at ball release was mainly produced by trunk leftward rotation, shoulder internal rotation, elbow extension, and wrist flexion in all speed conditions. The study participants adjusted the angular velocities of these four motions to throw the balls at three different speeds. We also analyzed the dynamics of the 3D multijoint movements using a recently developed method called "nonorthogonal torque decomposition" that can clarify how angular acceleration about a joint coordinate axis (e.g., shoulder internal rotation) is generated by the muscle, gravity, and interaction torques. We found that the study participants utilized the interaction torque to generate larger angular velocities of the shoulder internal rotation, elbow extension, and wrist flexion. To increase the interaction torque acting at these joints, the ball throwers increased muscle torque at the shoulder and trunk but not at the elbow and wrist. These results indicates that skilled ball throwers adopted a hierarchical control in which the proximal muscle torques created a dynamic foundation for the entire limb motion and beneficial interaction torques for distal joint rotations.  相似文献   

10.
Path constraints on point-to-point arm movements in three-dimensional space   总被引:2,自引:0,他引:2  
In this paper data are presented concerning the kinematic and dynamic characteristics of point-to-point arm movements which are inwardly or outwardly directed in three-dimensional space. Elbow and wrist position as well as elbow angle of extension were measured. From these data, other angles were computed trigonometrically and elbow and shoulder torques were calculated. Some of the angles describing arm and forearm motion were found to be linearly related for any given movement. Changes in shoulder and elbow torque were found to be similar to those described for movements restricted to one degree of freedom. Shoulder and elbow motions were not affected when it was required that the orientation of the hand in space remain constant. These observations were taken to indicate that shoulder and elbow motions are tightly coupled for movements in three-dimensional space and that wrist motion has no influence on this coupling. Linear relations between angles express such coupling. They are taken to result from functional constraints and may facilitate the mapping between extrinsic and intrinsic coordinate systems. Some of the observations pertaining to the torque lead to the hypothesis of a further constraint limiting the number of possible trajectories in a point-to-point movement.  相似文献   

11.
Single-joint elbow flexions are associated with muscle activity at the shoulder that opposes interaction torques arising from rotation of the elbow. We have previously shown that this activity is linearly related to elbow muscle torque and is robust in the presence of novel dynamic loads. Here we examined this relationship in the context of shoulder joint fixation. We tested the hypothesis that after mechanically fixing the shoulder the relationship between shoulder muscle activity and elbow muscle torque will be preserved. In contrast, proposals in which energetic variables are optimized predict that shoulder muscle activity should cease. Subjects performed single-joint elbow flexions in a horizontal plane while interacting with the KINARM robotic exoskeleton. After repeated movements with the shoulder joint fixed we observed a slight and gradual decrease in the activity of pectoralis major relative to movements in which the shoulder was free to rotate. However the strength of the coupling between the shoulder and elbow did not change after shoulder fixation. This is consistent with our previous findings and suggests that the nervous system maintains this inter-joint coupling relationship even when activity at the fixed joint is no longer needed for movement accuracy.  相似文献   

12.
Different investigators have proposed that multi-joint arm movements are planned with respect to either the path of the hand or the forces and torques acting about the moving joints. In this experiment, we examined the kinematic and kinetic response of the motor system when a load was applied to the forearm, which reduced the natural anisotropy of the arm. We asked two questions: (1) when the movement path changes upon the introduction of the novel load, do muscle torques at the shoulder and elbow remain the same as they were before the load was applied? and (2) when the path is restored partially as the novel load is learned, do changes in muscle torque occur preferentially at one or the other joint? Participants performed rapid arm movements to a target with and without the novel load attached to their arm. Changes in hand path and muscle torque profiles were examined immediately after the application of the load and again following 30 practice trials. The introduction of the load increased the curvature of hand paths for each participant and resulted in changes in the magnitude and time course of muscle torque at both joints, although to a greater extent at the shoulder. After practice with the load, hand paths and elbow muscle torques resembled those produced with no load. Muscle torques produced at the shoulder, however, did not return to pre-load patterns. These observations provide support for the idea that movements are initiated by planned muscle torques and that as the movement proceeds muscle torques are regulated in order to produce hand paths that conform approximately to a kinematic plan.  相似文献   

13.
We previously showed that inactivating the anterior interpositus nucleus in cats disrupts prehension; paw paths, normally straight and accurate, become curved, hypometric, and more variable. In the present study, we determined the joint kinematic and dynamic origins of this impairment. Animals were restrained in a hammock and trained to reach and grasp a cube of meat from a narrow food well at varied heights; movements were monitored using the MacReflex analysis system. The anterior interpositus nucleus was inactivated by microinjection of the GABA agonist muscimol (0.25-0.5 microgram in 0.5 microliter saline). For each joint, we computed the torque due to gravity, inertial resistance (termed self torque), interjoint interactions (termed interaction torque), and the combined effects of active muscle contraction and passive soft tissue stretch (termed generalized muscle torque). Inactivation produced significant reductions in the amplitude, velocity, and acceleration of elbow flexion. However, these movements continued to scale normally with target height. Shoulder extension was reduced by inactivation but wrist angular displacement and velocity were not. Inactivation also produced changes in the temporal coordination between elbow, shoulder, and wrist kinematics. Dynamic analysis showed that elbow flexion both before and during inactivation was produced by the combined action of muscle and interaction torque, but that the timing depended on muscle torque. Elbow interaction and muscle torques were scaled to target height both before and during inactivation. Inactivation produced significant reductions in elbow flexor interaction and muscle torques. The duration of elbow flexor muscle torque was prolonged to compensate for the reduction in flexor interaction torque. Shoulder extension was produced by extensor interaction and muscle torques both before and during inactivation. Inactivation produced a reduction in shoulder extension, primarily by reduced interaction torque, but without compensation. Wrist plantarflexion, which occurred during elbow flexion, was driven by plantarflexor interaction and gravitational torques both before and during inactivation. Muscle torque acted in the opposite direction with a phase lead to restrain the plantarflexor interaction torque. During inactivation, there was a reduction in plantarflexor interaction torque and a loss of the phase lead of the muscle torque. Our findings implicate the C1/C3 anterior interpositus zone of the cerebellum in the anticipatory control of intersegmental dynamics during reaching, which zone is required for coordinating the motions of the shoulder and wrist with those of the elbow. In contrast, this cerebellar zone does not play a role in scaling the movement to match a target.  相似文献   

14.
The leading joint hypothesis (LJH), developed for planar arm reaching, proposes that the interaction torques experienced by the proximal joint are low compared to the corresponding muscle torques. The human central nervous system could potentially ignore these interaction torques at the proximal (leading) joint with little effect on the wrist trajectory, simplifying joint-level control. This paper investigates the extension of the LJH to spatial reaching. In spatial motion, a number of terms in the governing equation (Euler’s angular momentum balance) that vanish for planar movements are non-trivial, so their contributions to the joint torque must be classified as net, interaction or muscle torque. This paper applies definitions from the literature to these torque components to establish a general classification for all terms in Euler’s equation. This classification is equally applicable to planar and spatial motion. Additionally, a rationale for excluding gravity torques from the torque analysis is provided. Subjects performed point-to-point reaching movements between targets whose locations ensured that the wrist paths lay in various portions of the arm’s spatial workspace. Movement kinematics were recorded using electromagnetic sensors located on the subject’s arm segments and thorax. The arm was modeled as a three-link kinematic chain with idealized spherical and revolute joints at the shoulder and elbow. Joint torque components were computed using inverse dynamics. Most movements were ‘shoulder-led’ in that the interaction torque impulse was significantly lower than the muscle torque impulse for the shoulder, but not the elbow. For the few elbow-led movements, the interaction impulse at the elbow was low, while that at the shoulder was high, and these typically involved large elbow and small shoulder displacements. These results support the LJH and extend it to spatial reaching motion.  相似文献   

15.
Directional preferences have previously been demonstrated during horizontal arm movements. These preferences were characterized by a tendency to exploit interaction torques for movement production at the shoulder or elbow, indicating that the preferred directions depend on biomechanical, and not on visual perception-based factors. We directly tested this hypothesis by systematically dissociating visual information from arm biomechanics. Sixteen subjects performed a free-stroke drawing task that required performance of fast strokes from the circle center toward the perimeter, while selecting stroke directions in a random order. Hand position was represented by a cursor displayed in the movement plane. The free-stroke drawing was performed twice, before and after visuomotor adaptation to a 30° clockwise rotation of the perceived hand path. The adaptation was achieved during practicing pointing movements to eight center-out targets. Directional preferences during performance of the free-stroke drawing task were revealed in ten out of the sixteen subjects. The orientation and strength of these preferences were largely the same in both conditions, showing no significant effect of the visuomotor adaptation. In both conditions, the major preferred directions were characterized by higher contribution of interaction torque to net torque at the shoulder as well as by relatively low inertial resistance and the sum of squared shoulder and elbow muscle torques. These results support the hypothesis that directional preferences are largely determined by biomechanical factors. However, this biomechanical effect can decrease or even disappear in some subjects when movements are performed in special conditions, such as the virtual environment used here.  相似文献   

16.
When arm movements are perturbed by a load, how does the nervous system adjust control signals to reduce error? While it has been shown that the nervous system is capable of compensating for the effects of limb dynamics and external forces, the strategies used to adapt to novel loads are not well understood. We used a robotic exoskeleton [kinesiological instrument for normal and altered reaching movements (KINARM)] to apply novel loads to the arm during single-joint elbow flexions in the horizontal plane (shoulder rotation was allowed). Loads varied in magnitude with the instantaneous velocity of elbow flexion, and were applied to the shoulder in experiment 1 (interaction loads) and the elbow in experiment 2 (direct loads). Initial exposure to both interaction and direct loads resulted in perturbations at both joints, even though the load was applied to only a single joint. Subjects tended to correct for the kinematics of the elbow joint while perturbations at the shoulder persisted. Electromyograms (EMGs) and computed muscle torque showed that subjects modified muscle activity at the elbow to reduce elbow positional deviations. Shoulder muscle activity was also modified; however, these changes were always in the same direction as those at the elbow. Current models of motor control based on inverse-dynamics calculations and force-control, as well as models based on positional control, predict an uncoupling of shoulder and elbow muscle torques for adaptation to these loads. In contrast, subjects in this study adopted a simple strategy of modulating the natural coupling that exists between elbow and shoulder muscle torque during single-joint elbow movements.  相似文献   

17.
Kinematic abnormalities of fast multijoint movements in cerebellar ataxia include abnormally increased curvature of hand trajectories and an increased hand path and are thought to originate from an impairment in generating appropriate levels of muscle torques to support normal coordination between shoulder and elbow joints. Such a mechanism predicts that kinematic abnormalities are pronounced when fast movements are performed and large muscular torques are required. Experimental evidence that systematically explores the effects of increasing movement velocities on movement kinematics in cerebellar multijoint movements is limited and to some extent contradictory. We, therefore, investigated angular and hand kinematics of natural multijoint pointing movements in patients with cerebellar degenerative disorders and healthy controls. Subjects performed self-paced vertical pointing movements with their right arms at three different target velocities. Limb movements were recorded in three-dimensional space using a two-camera infrared tracking system. Differences between patients and healthy subjects were most prominent when the subjects performed fast movements. Peak hand acceleration and deceleration were similar to normals during slow and moderate velocity movements but were smaller for fast movements. While altering movement velocities had little or no effect on the length of the hand path and angular motion of elbow and shoulder joints in normal subjects, the patients exhibited overshooting motions (hypermetria) of the hand and at both joints as movement velocity increased. Hypermetria at one joint always accompanied hypermetria at the neighboring joint. Peak elbow angular deceleration was markedly delayed in patients compared with normals. Other temporal movement variables such as the relative timing of shoulder and elbow joint motion onsets were normal in patients. Kinematic abnormalities of multijoint arm movements in cerebellar ataxia include hypermetria at both the elbow and the shoulder joint and, as a consequence, irregular and enlarged paths of the hand, and they are marked with fast but not with slow movements. Our findings suggest that kinematic movement abnormalities that characterize cerebellar limb ataxia are related to an impairment in scaling movement variables such as joint acceleration and deceleration normally with movement speed. Most likely, increased hand paths and decomposition of movement during slow movements, as described earlier, result from compensatory mechanisms the patients may employ if maximum movement accuracy is required.  相似文献   

18.
This study compares the coordination patterns employed for the left and right arms during rapid targeted reaching movements. Six right-handed subjects reached to each of three targets, designed to elicit progressively greater amplitude interaction torques at the elbow joint. All targets required the same elbow excursion (20 degrees ), but different shoulder excursions (5, 10, and 15 degrees, respectively). Movements were restricted to the shoulder and elbow and supported on a horizontal plane by a frictionless air-jet system. Subjects received visual feedback only of the final hand position with respect to the start and target locations. For motivation, points were awarded based on final position accuracy for movements completed within an interval of 400-600 ms. For all subjects, the right and left hands showed a similar time course of improvement in final position accuracy over repeated trials. After task adaptation, final position accuracy was similar for both hands; however, the hand trajectories and joint coordination patterns during the movements were systematically different. Right hand paths showed medial to lateral curvatures that were consistent in magnitude for all target directions, whereas the left hand paths had lateral to medial curvatures that increased in magnitude across the three target directions. Inverse dynamic analysis revealed substantial differences in the coordination of muscle and intersegmental torques for the left and right arms. Although left elbow muscle torque contributed largely to elbow acceleration, right arm coordination was characterized by a proximal control strategy, in which movement of both joints was primarily driven by the effects of shoulder muscles. In addition, right hand path direction changes were independent of elbow interaction torque impulse, indicating skillful coordination of muscle actions with intersegmental dynamics. In contrast, left hand path direction changes varied directly with elbow interaction torque impulse. These findings strongly suggest that distinct neural control mechanisms are employed for dominant and non dominant arm movements. However, whether interlimb differences in neural strategies are a consequence of asymmetric use of the two arms, or vice versa, is not yet understood. The implications for neural organization of voluntary movement control are discussed.  相似文献   

19.
A simple paradigm was used to investigate how patients with cerebellar lesions cope with the need to correct for joint interactions during a multi-joint movement. Normal subjects and patients with cerebellar degeneration performed fast unconstrained elbow flexions with the instruction to voluntarily fixate the shoulder joint. Angular kinematics and inverse dynamics analyses were performed. A susceptibility index quantified how strong-concomitant shoulder-motion depended on interactions from the elbow. Amplitudes of involuntary shoulder movements increased with elbow movement speed and were generally larger in patients. Susceptibility indices were smaller in patients, indicating a more variable compensatory response, however, increased with elbow movement speed. We conclude that patients were significantly less able to 'tune' their postural stabilizing response to match interaction torques. However, the velocity dependence of this effect points to a deficit in generating normal levels of phasic torque.  相似文献   

20.
This study examined the patterns of muscle activity that subserve the production of dynamic isometric forces in various directions. The isometric condition provided a test for basic features of neuromuscular control, since the task was analogous to reaching movement, but the behavior was not necessarily shaped by the anisotropy of inertial and viscoelastic resistance to movement. Electromyographic (EMG) activity was simultaneously recorded from nine elbow and/or shoulder muscles, and force pulses, steps, and ramps were monitored using a transducer fixed to the constrained wrists of human subjects. The force responses were produced by activating shoulder and elbow muscles; response direction was controlled by the relative intensity of activity in muscles with different mechanical actions. The primary objective was to characterize the EMG temporal pattern. Ideally, synchronous patterns of phasic muscle activation (and synchronous dynamic elbow and shoulder torques) would result in a straight force path; asynchronous muscle activation could result in substantial force path curvature. For both pulses and steps, asynchronous muscle activation was observed and was accompanied by substantial force path curvature. A second objective was to compare phasic and tonic EMG activity. The spatial tuning of EMG intensity was similar for the phasic and tonic activities of each muscle and also similar to the spatial tuning of tonic activity in a previous study where the arm was stationary but unconstrained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号