共查询到19条相似文献,搜索用时 78 毫秒
1.
目的 探讨TBATS模型在流行性腮腺炎发病率预测中的可行性.方法 以2004—2017年江西省流腮数据作为演示数据.2004年1月至2017年6月数据作为训练集,2017年7~12月数据作为测试集.训练集分别训练TBATS模型、SARIMA模型,并预测2017年7~12月发病率并与测试集比较,采用MAPE,RMSE,M... 相似文献
2.
目的 利用季节性自回归滑动平均模型(seasonal autoregressive integrated moving average,SARIMA)、支持向量回归模型(support vector regression, SVR)对喀什地区流行性腮腺炎( mumps)的月发病数进行预测,在上述两模型的基础上建立SARIMA - SVR组合模型,提高预测的精准度,为控制新疆喀什地区2021年流腮传播趋势提供科学预测。方法 以喀什地区2005年1月—2017年12月的流腮月发病数据为训练集,进行数据的拟合以及预测模型的训练,分别建立SARIMA、SVR、SARIMA - SVR组合模型。对2018年1月—2020年12月的流腮月发病数进行预测,并与实际值相比较,采用均方根误差(root mean square error,RMSE)衡量模型预测性能。结果 ARIMA(2,1,1)(0,0,1)12为最优的SARIMA模型,建立的SARIMA、SVR、SARIMA - SVR组合模型预测2018年1月—2020年12月的喀什地区流腮月发病数的RMSE分别为:9.611、9.545、3.427。结论 SARIMA - SVR组合模型对喀什地区流腮的预测精度高于单一预测模型,故选取该模型建立方式,利用2005年1月—2020年12月的喀什地区流腮月发病数据预测该地区2021年的月发病数。 相似文献
3.
《中国卫生统计》2020,(4)
目的比较季节性差分自回归移动平均模型(seasonal autoregressive integrated moving average,SARIMA)和SARIMA-广义回归神经网络(general regression neural network,GRNN)组合模型对中国流行性腮腺炎发病的预测效果,指导流行性腮腺炎的预防控制。方法收集2010年1月-2017年12月全国流行性腮腺炎月发病率数据,构建SARIMA模型和SARIMA-GRNN组合模型,以2018年的实际月发病率进行验证,比较两种模型的拟合效果。结果流行性腮腺炎的流行特征呈季节性双峰分布。经筛选:SARIMA(2,1,2)×(0,1,1)_(12)模型为相对最优模型(AIC=49.02,AICc=50.12,BIC=63.53);SARIMA-GRNN组合模型的最优光滑因子为0.013。SARIMA模型的MAPE、MAE、RMSE和R~2分别为17.221%、0.236、0.252和0.714,SARIMA-GRNN为14.115%、0.181、0.221和0.781。结论 SARIMA-GRNN组合模型拟合和预测效果均优于单纯SARIMA模型,更适合于我国流行性腮腺炎发病率的预测,可为该病的防控提供科学依据。 相似文献
4.
目的 比较α-sutte、SARIMA及其组合模型(SutteSARIMA)在甲肝发病率预测中的应用效果,为优化甲肝预测模型提供参考。方法 收集2004—2017年全国甲肝逐月发病率数据。以2004年1月—2017年6月数据作为训练集,2017年7—12月数据作为测试集。利用训练数据分别训练α-sutte、SARIMA及SutteSARIMA模型。利用训练模型预测2017年7—12月发病率,并与测试集比较。采用平均绝对误差百分比(Mean Absolute Percentage Error, MAPE),平均绝对误差(Mean Absolute Error, MAE),均方根误差(Root Mean Squared Error, RMSE)和平均误差率(Mean ErrorRate, MER)评价模型拟合及预测效果。结果 α-sutte、SutteSARIMA模型残差均在0附近波动。α-sutte、SARIMA及SutteSARIMA模型拟合的MAPE、MAE、RMSE、MER依次为7.68%、0.02、0.03、6.34%,12.10%、0.03、0.05、12.18%,7.72%、... 相似文献
5.
6.
《江苏预防医学》2019,(2)
目的比较自回归滑动平均求和季节乘积模型(SARIMA)和季节趋势模型对手足口病(HFMD)发病率的预测效能。方法利用荆州市2010—2015年的手足口病逐月发病率作为拟合数据,以2016年的逐月发病率作为预测数据,分别建立SARIMA模型和季节趋势模型后,根据2个模型的平均绝对百分比误差(MAPE)、平均误差率(MER)、均方误差(MSE)和平均绝对误差(MAE)评价模型的效果。结果 SARIMA(1,0,0)(1,1,0)12(不含常数项)拟合和预测的MAPE、MER、MSE、MAE为18.86%,25.47%,24.23,2.17和15.61%、16.71%、9.41、2.02;季节趋势模型拟合和预测的MAPE、MER、MSE和MAE为33.91%、39.48%、44.38、3.31和21.06%、20.32%、12.63、2.54。结论 SARIMA模型拟合效果较好,预测精度更高,可应用于手足口病疫情的预测和预警。 相似文献
7.
目的 探讨SARIMA-RBF组合模型拟合及预测我国流行性腮腺炎(流腮)流行趋势的应用。方法 利用全国2004—2015年流腮逐月发病率建立SARIMA模型。将基于SARIMA模型的拟合值作为输入向量,实际值作为输出向量,根据时间因素作为输入向量与否建立2个SARIMA-RBF组合模型(加入时间因素记为组合模型A,不加入时间因素记为组合模型B)。运用SARIMA模型和2个SARIMA-RBF组合模型预测2016年7—12月流腮发病率并与实际值比较,采用平均绝对百分比误差(MAPE)、平均误差率(MER)、均方误差(MSE)和平均绝对误差(MAE)评价模型拟合及预测效果。结果 SARIMA(0,1,1)(0,1,1) 12为最优SARIMA模型。SARIMA模型、组合模型A和组合模型B拟合的MAPE 分别为15.724%、12.217%、13.941%,MER分别为15.168%、10.179%、14.042%,MSE分别为0.336、0.167、0.713,MAE分别为0.296、0.199、0.274。预测的MAPE 分别为12.069%、7.904%、9.598%,MER分别为12.331%、7.872%、10.636%,MSE分别为0.022、0.013、0.025,MAE分别为0.138、0.088、0.119。结论 考虑时间因素的SARIMA-RBF组合模型为最优拟合及预测模型,具有良好推广应用价值。 相似文献
8.
目的 通过建立SARIMA模型,探讨该模型在手足口病发病率预测中的应用,为疾病预防控制部门制定防控策略提供理论依据.方法 应用SPSS 20.0软件包对乌鲁木齐市2009年1月1日至2014年12月31日手足口病月发病率进行初步平稳化处理并建立季节性ARIMA模型.结果 通过对参数和模型的拟合优度检验及残差白噪声序列检验,最终确定模型为SARIMA(1,0,0)(1,1,0)12,该模型能较好的对以往发病率进行拟合,真实值均在预测值的95%置信区间内.结论 SARIMA(1,0,0)(1,1,0)12模型能够较准确地预测手足口病发病趋势,但若要获得更为准确的预测信息,则需要使用多模型联合的方法来预测. 相似文献
9.
目的探讨求和自回归移动平均(ARIMA)模型在流行性腮腺炎发病预测中的应用,验证分析模型的可行性与适用性。方法对南京市2004年1月至2012年12月流行性腮腺炎发病率资料进行ARIMA模型拟合,用建立的模型对2013年1—12月发病率进行拟合检测,之后对2014年各月发病率进行预测评价。结果 2004—2013年流行性腮腺炎累计报告病例14 871例,年均发病率为21.78/10万,每年各月流行性腮腺炎发病率始终围绕在1.85/10万附近波动。建立ARIMA(1,0,0)(2,1,0)12模型为最优模型。模型残差序列为白噪声。除常数项外,模型各参数均有统计学意义。模型的平均绝对百分误差为29.63%,R2为0.76。用建立的模型拟合2013年1—12月发病率,均在95%可信区域内,符合实际发病率变动趋势,验证了该模型的可行性。用该模型对2014年流行性腮腺炎进行预测,年发病率为1.48/10万,发病高峰期在4、5、6月,月发病率分别为2.33/10万、2.72/10万、2.52/10万。结论 ARIMA模型可用于拟合流行性腮腺炎发病率在时间序列上的变化趋势,可进行动态分析和短期预测。 相似文献
10.
目的比较季节性求和自回归移动平均(SARIMA)模型及残差自回归模型在甲肝发病率预测中的应用效果。方法根据四川省2004年1月~2009年6月的甲肝月发病率资料,分别拟合SARIMA模型和残差自回归模型,比较两种模型的拟合及预测效果。结果 SARIMA模型的AIC值和BIC值分别为64.98和59.07,残差自回归模型的AIC值和BIC值分别为110.01和103.44;SARIMA模型的拟合值与实际值的MAPE、MAE及MSE分别为0.0349、0.0835及0.0016,残差自回归模型的SARIMA的拟合值与实际值的MAPE、MAE及MSE分别为0.0557、0.1392及0.0050。结论 SARIMA模型的拟合与预测效果优于残差自回归模型。 相似文献
11.
湖南省手足口病发病趋势SARIMA模型预测 总被引:1,自引:0,他引:1
目的 建立湖南省手足口病发病趋势的SARIMA模型,为手足口病的预防和控制提供参考依据。方法 收集中国疾病预防控制信息系统2008年5月-2013年12月湖南省手足口病月发病率数据建模,以2014年1-7月的月发病率数据进行验证,并对2014年8月-2015年7月发病情况进行预测;应用SPSS 18.0中的"Define Dates"模块和"ForeCasting"模块进行分析,建立季节性差分自回归移动平均模型(SARIMA)。结果 湖南省手足口病月发病率发病趋势预测模型为SARIMA(1,0,0)(1,1,0)12,模型自回归参数AR1=0.765,(t=8.789,P<0.001),残差为白噪声(Ljung-Box Q=15.420,P=0.494),预测值与实际值的相对误差范围为6.90%~46.31%,平均相对误差为20.37%;预测2014年发病率2次高峰分别在5月份和11月份,均高于2013年同月份的发病率;2015年上半年高峰期也在5月份,低于2014年同月份的发病率。结论 SARIMA(1,0,0)(1,1,0)12拟合效果较好,可用于湖南省手足口病月发病率的短期预测。 相似文献
12.
目的比较和评价不同时间序列模型预测医院感染发病率的效果,探索可用于预测医院感染发病率的最佳模型。方法以上海某三级甲等医院2011—2016年累计72个月的月度医院感染发病率数据作为拟合集构建季节性自回归移动平均模型(ARIMA)、NAR神经网络模型和ARIMA-BPNN组合模型,以2017年1—12月的月度感染发病率数据作为预测集检验模型的预测效果,评价比较不同模型的预测效果。结果对于拟合集,ARI-MA模型、NAR神经网络模型和ARIMA-BPNN组合模型的MAPE分别为13.00%、14.61%和11.95%;对预测集,三者的MAPE分别为15.42%、26.31%和14.87%。结论三种时间序列模型对医院感染发病率均具有较好的预测效果,其中ARIMA-BPNN组合模型对拟合和预测该院医院感染发病情况最佳,可为医院决策提供一定的数据支持。 相似文献
13.
14.
目的 探讨季节性差分自回归求和滑动平均(seasonal auto-regressive integrated moving average, SARIMA)模型在苏州市细菌性痢疾月发病数预测中的应用。 方法 利用R i386 3.2.3软件对2005年1月-2018年4月苏州市细菌性痢疾月发病数据构建SARIMA模型,对2018年5-7月份细菌性痢疾的月发病人数进行预测,验证预测效果。 结果 建立了SARIMA(0,l,2)×(0,1,1)12模型,Ljung-Box检验结果为Q=19.494,P=0.244,模型拟合效果良好,与2018年5-7月实际发病人数比较,实际值均在预测值95%可信区间内,相对误差的平均值为-0.147。 结论 SARIMA(0,l,2)×(0,1,1)12模型可以对苏州市细菌性痢疾月发病人数进行较好的预测。 相似文献
15.
16.
目的 建立以三门峡市手足口病发病数据为基础的整合滑动平均自回归模型(autoregressive integrated moving average model, ARIMA),并利用该模型对三门峡市手足口病的发病数进行预测。 方法 以三门峡市2008年1月—2017年12月的手足口病月发病数据为基础差分平稳化后经过文献查阅和验证建立最优ARIMA,并对2018年1月—12月的手足口病发病数进行预测,通过与实际值的比较评价预测效果。 结果 三门峡市手足口病发病预测模型为ARIMA(1,1,1)×(0,1,1)12 ,模型各项参数均有统计学意义(P<0.001),拟合优度检验BIC=0.287,残差序列为白噪声序列(P=0.10),拟合效果较好。预测了三门峡市2018年1—12月的手足口发病数,并与实际值进行比较,1—2月预测值与实际值符合度较高。 结论 拟合的三门峡市手足口病发病序列模型ARIMA(1,1,1)×(0,1,1)12效果较好,可用于对三门峡市手足口病发病趋势进行短期预测。 相似文献
17.
探讨单纯求和自回归滑动平均(ARIMA)模型和求和自回归滑动平均模型与广义回归神经网络(GRNN)组合模型在猩红热发病率研究中的应用.该研究对某市2000-2006年猩红热月发病率资料建立ARIMA模型,然后将其拟合值作为GRNN的输入,实际值作为网络的输出训练网络,然后比较两个模型的效果.结果 表明,单纯ARIMA模型和组合模型的平均误差率(MER)分别为31.6%、28.7%;决定系数(R2)分别为0.801、0.872.组合模型的效果要优于单纯ARIMA模型,可以用于发病率的拟合与预测. 相似文献
18.
目的 比较不同参数设置的SARIMA模型拟合及预测效果,为提高SARIMA模型精度提供参考。 方法 利用全国2009年1月—2015年6月手足口病逐月发病率数据,按照传统图示法确定参数p,q值,建立SARIMA模型,记为模型1。再将参数p,q值±1,构建多个备选模型,筛选最优模型,记为模型2。利用模型1和模型2预测2015年7—10月手足口病发病率并与实际值比较,采用平均绝对误差百分比(mean absolute percentage error,MAPE)、平均误差率(mean error rate,MER)、均方误差(mean square error,MSE)和平均绝对误差(mean absolute error,MAE)评价模型拟合及预测效果。 结果 模型1为SARIMA(1,0,0)(1,1,0)12;模型2有2个,包括SARIMA(1,0,1)(1,1,0)12和SARIMA(1,0,1)(0,1,1)12。SARIMA(1,0,0)(1,1,0)12、SARIMA(1,0,1)(1,1,0)12和SARIMA(1,0,1)(0,1,1)12拟合的MAPE依次分别为22.891%、20.015%、19.985%。SARIMA(1,0,0)(1,1,0)12、SARIMA(1,0,1)(1,1,0)12和SARIMA(1,0,1)(0,1,1)12预测的MAPE、MER、MSE和MAE依次分别为9.119%、8.988%、1.874%和1.107%;11.000%、10.909%、2.552%和1.344%;8.711%、8.477%、1.857%和1.044%。 结论 SARIMA(1,0,1)(0,1,1)12为最优模型,拟合及预测效果优于图示法建立的SARIMA(1,0,0)(1,1,0)12模型。在SARIMA建模过程中应在图示法基础上采用凑试法,筛选最优参数,提高模型精度。 相似文献
19.
目的 应用自回归移动平均(autoregressive integrated moving average,ARIMA)模型对我国2018-2019年肺结核发病情况进行预测,为肺结核防控工作提供参考依据。方法 收集2005年1月至2017年12月中国肺结核月发病数据,使用R 3.4.4软件基于2005年1月至2017年6月肺结核月发病数据建立ARIMA模型,比较2017年7-12月预测数据和实际数据以进行模型预测性能的检验,并预测2018-2019年肺结核发病数情况。结果 2005-2017年共报告肺结核患者13 022 675例,发病数呈逐年下降趋势,2017年肺结核患者数较2005年下降了33.68%,且季节性明显,每年冬春交界之时发病数较高。根据2005年1月至2017年6月肺结核月发病数据拟合出了ARIMA(0,1,2)(0,1,0)12模型,该模型拟合的2017年7-12月的预测值与实际值的相对误差范围是1.67%~6.80%,预测2018年和2019年发病数分别为789 509例和760 165例。结论 ARIMA(0,1,2)(0,1,0)12模型对我国肺结核发病数的拟合效果较好,可用于我国肺结核的短期预测和动态分析,具有较好的应用价值。 相似文献