首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gold nanoparticles (GNPs) are considered a potential probe to detect cancer. The present article investigates whether GNPs, even in the absence of any specific functionalization, induce any cell-specific response. We report GNP-induced death response in human carcinoma lung cell line A549. In contrast, the two other cell lines tested, BHK21 (baby hamster kidney) and HepG2 (human hepatocellular liver carcinoma), remained unaffected by GNP treatment. The specificity of the induction of the death response in A549 cells implies that GNPs do not universally target all cell types. Flow-cytometric studies indicated that the response was dose dependent and had a threshold effect (in A549). Gradual increase in GNP concentration induces a proportional cleavage of poly(ADP-ribose) polymerase. The programmed nature of the death response is implied, because such cleavage follows activation of caspases. Notably, at higher GNP concentration there was an asymmetric accumulation of GNPs in the periphery outside the cell nucleus of the A549 cells. This was confirmed by confocal microscopy, a green scattering (possibly, surface-enhanced Raman effect) appearing on selective z-slices of the image.  相似文献   

2.
The nanoparticle (NP) response of platelets is shown to be critically dependent on extent of preactivation of platelets by an agonist like ADP. A transition from de-aggregatory to aggregatory state is triggered in the presence of gold NPs (AuNP) only in such critical conditions. Adhered and suspended platelets respond differentially to NPs. Preactivation in the adhered state induced by shear force explains such observation. The NP effect is associated with enhanced release reaction, tyrosine phosphorylation and CD62P expression level. Unlike cancer cells, whose response is maximal when NP size is optimal (within the range 50 - 70 nm), the platelet response monotonically increases with reduction of the AuNP size. The uptake study, using quenching of quinacrine hydrochloride fluorescence by AuNP, indicates that accumulation 18 nm AuNP is several-fold higher than the 68 nm AuNP. It is further shown that AuNP response can provide a simple measure for thrombotic risk associated with nano-drugs. FROM THE CLINICAL EDITOR: Platelet aggregation can be triggered in the presence of gold nanoparticles (AuNP). Platelet response monotonically increases with reduction of the AuNP size. AuNP response can provide a simple measure for thrombotic risk associated with nano-drugs.  相似文献   

3.
A stochastic variation in size and electrical parameters is common in nanoparticles. Synthesizing gold nanoparticles with a varying range of size and zeta potential, we show that there is clustering at certain regions of hydrodynamic diameter and zeta potentials that can be classified using k-clustering technique. A cluster boundary was observed around 50 nm, a size known for its optimal response to cells. However, neither size nor zeta potential alone determined the optimal cellular response (e.g., percentage cell survival) induced by such nanoparticles. A complex interplay prevails between size, zeta potential, nature of surface functionalization, and extent of adhesion of the cell to a solid matrix. However, it follows that the ratio of zeta potential to surface area, which scales as the electrical field (by Gaussian law), serves as an appropriate indicator for optimal cellular response. The phase plot spanned by fractional survival and effective electric field (charge density) indicates a positive correlation between mean cell survival and the magnitude of the electric field. The phase plot spanned by fractional survival and effective electric field (charge density) associated with the nanosurface shows a bifurcation behavior. Wide variation of cell survival response is observed at certain critical values of the surface charge density, whereas in other ranges the cellular response is well behaved and more predictable. Existence of phase points near the critical region corresponds to wide fluctuation of nanoparticle-induced response, for small changes in the nanosurface property. Smaller nanoparticles with low zeta potential (e.g., those conjugated with arginine) can have such an attribute (i.e., higher electrical field strength), and eventually they cause more cell death. The study may help in optimal design of nanodrugs.  相似文献   

4.
Gold nanoparticles (Au NPs) have been tested as targeted delivery agents because of their high chemical stability and surface plasmon properties. Here, we investigated the biocompatibility of Au spheres (5-, 10-, 20-, 30-, 50-. and 100-nm), cubes (50-nm), and rods (10 × 90 nm) on a retinal pigment epithelial (ARPE-19) cell line. The lethal dose for killing 50% of the cells (LD50) was evaluated using an MTT (3-[4, 5 dimethyl-thiazoly-2-yl] 2-5 diphenyl tetrazolium bromide) assay. At and above LD50, based on mass concentrations, the confluent cell layer began to detach, as shown by real-time measurements of electric impedance. We found that the biocompatibility of spheres improved with increasing nanoparticle size. The Au rods were less biocompatible than 10-nm spheres. Confocal microscopy showed that cubic (50-nm) and spherical NPs (50- and 100-nm) neither had cytotoxic effects nor entered cells. Lethal doses for internalized spherical NPs, which were toxic, were recalculated based on surface area (LD50,A) concentrations. Indeed, when biocompatibility was expressed as the surface area concentration of NPs, the curve was independent of size. The LD50,A of Au nanospheres was 23 cm2/ml. Our findings demonstrate that the sole modulation of the surface area would make it possible to use Au NPs for therapeutic purposes.  相似文献   

5.
Gold nanoparticles (AuNPs) are currently used in several fields including biomedical applications, although no conclusive information on their cytotoxicity is available. For this reason this work has investigated the effects of AuNPs in vitro on Balb/3T3 mouse fibroblasts. Results obtained exposing cells for 72 h to AuNPs 5 and 15 nm citrate stabilized, revealed cytotoxic effects only for AuNPs 5 nm at concentration ≥ 50 μM if measured by colony forming efficiency (CFE). To understand the differences in cytotoxicity observed for the two AuNPs sizes, we investigated the uptake and the intracellular distribution of the nanoparticles. By TEM it was observed that 5 and 15 nm AuNPs are internalized by Balb/3T3 cells and located within intracellular endosomal compartments. Quantification of the uptake by ICP-MS showed that AuNPs internalization enhanced even up to 72 h. Disruption of the actin cytoskeleton was evident, with cell footprints narrow and contracted; effects more remarkable in cells exposed to 5 nm AuNP. The mechanism of NPs cell internalization was investigated using immunocytochemistry and western blot. No significant effect was observed in the expression level of caveolin, while reduction of the expression and degradation of the clathrin heavy chain was observed in cells exposed for 72 h to AuNPs.  相似文献   

6.
Anti-glycation activity of gold nanoparticles (GNPs) has been reported for the first time. Nonenzymatic glycation of alpha-crystallin leads to formation of cataract, or opaque aggregate of proteins. In this article we report prevention of glycation of alpha-crystallin by conjugation with GNPs. Formation of advanced glycosylic end products is prevented even if a strong glycating agent such as fructose is used. In addition, the nanoconjugation can provide some important information on the structural distribution of this dynamic chaperone protein. Because GNPs are biocompatible, their reported anti-glycation activity may have ophthalmological implications.  相似文献   

7.
Gold is an excellent absorber of X-rays. If tumours could be loaded with gold, this would lead to a higher dose to the cancerous tissue compared with the dose received by normal tissue during a radiotherapy treatment. Calculations indicate that this dose enhancement can be significant, even 200% or greater. In this paper, the physical and biological parameters affecting this enhancement are discussed. Gold nanoparticles have shown therapeutic efficacy in animal trials and these results are reviewed. Some 86% long-term (>1 year) cures of EMT-6 mouse mammary subcutaneous tumours was achieved with an intravenous injection of gold nanoparticles before irradiation with 250-kVp photons, whereas only 20% were cured with radiation alone. The clinical potential of this approach is also discussed.  相似文献   

8.
Gold nanoparticles (AuNPs) have huge potential for various biomedical applications, but their successful use depends on their uptake and possible toxicity in the liver, their main site for accumulation. Therefore, in this work we compared the cytotoxic effects induced by AuNPs with different size (~ 15 nm and 60 nm), shape (nanospheres and nanostars) and capping [citrate- or 11-mercaptoundecanoic acid (MUA)], in human HepaRG cells or primary rat hepatocytes (PRH) cultivated with serum-free or Foetal Bovine Serum (FBS)-supplemented media.The safety assessment of the AuNPs demonstrated that overall they present low toxicity towards hepatic cells. Among all the tested AuNPs, the smaller 15 nm spheres displayed the highest toxicity. The toxicological effect was capping, size and cell-type dependent with citrate-capping more toxic than MUA (PRH with FBS), the 15 nm AuNPs more toxic than 60 nm counterparts and PRH more sensitive, as compared to the HepaRG cells. The incubation with FBS-free media produced aggregation of AuNPs while its presence greatly influenced the toxicity outcomes. The cellular uptake of AuNPs was shape, size and capping dependent in PRH cultivated in FBS-supplemented media, and significantly different between the two types of cells with extensively higher internalization of AuNPs in PRH, as compared to the HepaRG cells.These data show that the physical-chemical properties of AuNPs, including size and shape, as well as the type of cellular model, greatly influence the interaction of the AuNPs with the biological environment and consequently, their toxicological effects.  相似文献   

9.
张鑫  刘颖  冯年平 《药学实践杂志》2016,34(3):196-200,236
近年来,作为一种新型药物递送系统,金纳米粒已引起了广泛关注。由于其特殊的物理化学性质,能与多种类型药物发生相互作用,如蛋白质、核酸、小分子药物等,从而可应用于肿瘤治疗和检测。笔者对载药金纳米粒的制备方法、载药方式和安全性等问题进行综述。  相似文献   

10.
Despite many investigations have focused on the pristine toxicity of gold nanoparticles (GNPs), little is known about the outcome of co-exposure and interaction of GNPs with heavy metals which can possibly detoxify or potentiate them. Here, the combined exposure of nickel (II) sulfate (NiSO4) and GNPs on the maturation response of dendritic cells (DCs) was explored. Exposure to GNPs or NiSO4 separately induced cell activation. When cells were exposed to a mixture of both, however, the observed cell activation pattern indicated a competitive rather than an additive effect of both inducers with levels similar to those induced by NiSO4 alone. Quantification of the GNP uptake by DCs demonstrated a significant decrease in intracellular gold content during co-incubation with NiSO4. An extensive physiochemical characterization was performed to determine the interaction between GNPs and NiSO4 in the complex physiological media using nanoparticle tracking analyses, disc centrifugation, UV–visible spectroscopy, ICP-MS analyses, zeta potential measurements, electron microscopy, and proteomics. Although GNPs and NiSO4 did not directly interact with each other, the presence of NiSO4 in the physiological media resulted in changes in GNPs' charge and their associated protein corona (content and composition), which may contribute to a decreased cellular uptake of GNPs and sustaining the nickel-induced DC maturation. The presented results provide new insights in the interaction of heavy metals and NPs in complex physiological media. Moreover, this study highlights the necessity of mixture toxicology, since these combined exposures are highly relevant for human subjection to NPs and risk assessment of nanomaterials.  相似文献   

11.
目的:探讨纳米银(AgNPs)对小鼠巨噬细胞RAW264.7毒性效应的影响,为AgNPs生物安全性的研究提供依据。方法将不同浓度的AgNPs(0、6.25、12.5、25、50、60、80μg/ml)和RAW264.7共同培养,8、24 h后采用甲基噻唑基四唑比色法(MTT)测定各组细胞的活力,选取2.5、5μg/ml两个无明显细胞毒性的浓度进行后续研究,检测应激相关基因和蛋白表达的变化;采用酶联免疫吸附试验(ELISA)检测细胞培养液中炎症因子TNF-α和IL-6的表达。结果用2.5、5μg/ml的AgNPs处理细胞,24 h后相差显微镜下可见AgNPs进入细胞内,且5μg/ml组的细胞形态有明显改变;8、24 h后ELISA结果显示,IL-6无明显变化,在5μg/ml的24 h处理组TNF-α表达有显著升高,内质网应激相关的基因和蛋白在5μg/ml的24 h处理组表达明显上调。结论 RAW264.7细胞暴露于低剂量的AgNPs后表现出明显的应激反应,并且与暴露剂量和作用时间呈正相关。低剂量AgNPs能够干扰细胞的正常生理功能,长期暴露可能产生不可逆的损伤,应引起高度关注。  相似文献   

12.
Adsorption of proteins to primary containers can result in protein loss, protein denaturation, or aggregation. We report a simple and effective method to directly detect and visualize adsorption of proteins to container surfaces by staining adsorbed proteins with gold nanoparticles, which bind proteins nonspecifically. The gold nanoparticle staining method was applied to study adsorption to siliconized glass prefilled syringes (PFSs) of a therapeutic protein in a liquid formulation. The protein was found to preferentially adsorb to glass surfaces over siliconized surfaces in PFSs. The presence of adsorbed proteins on glass surfaces was confirmed by in situ Raman spectroscopy. Gold nanoparticle staining patterns revealed that adsorption of proteins to hydrophobic cyclic olefin polymer plastic vials was minimized compared with hydrophilic type I glass vials. Bovine serum albumin (BSA) also preferentially adsorbed to glass surfaces compared with siliconized surfaces as revealed by the gold staining patterns in PFS incubated with BSA, supporting the use of albumin to minimize loss of proteins in glass containers. The method is particularly valuable for high-concentration protein formulations in which adsorption of proteins to containers cannot be easily detected by other methods.  相似文献   

13.
Free gold nanoparticles easily aggregate when the environment conditions change. Here, gold nanoparticles (AuNPs) with average diameter of 3.7 nm were prepared and then modified with poly(ethylene glycol) (PEG) to improve stability. The gold nanoparticles were first surface-modified with 3-mercaptopropionic acid (MPA) to form a self-assembled monolayer and subsequently conjugated with NH2-PEG-NH2 through amidation between the amine end groups on PEG and the carboxylic acid groups on the particles. The biocompatibility and intracellular fate of PEG-modified gold nanoparticles (AuNP@MPA-PEG) were then studied in human cervical cancer (HeLa) cells. Cell viability test showed that AuNP@MPA-PEG did not induce obvious cytotoxicity. Both confocal laser scanning microscopy and transmission electron microscopy demonstrated that AuNP@MPA-PEG entered into mammalian cells and the cellular uptake of AuNP@MPA-PEG was time-dependent. Inductively coupled plasma mass spectrometry and confocal microscopy imaging further demonstrated that AuNP@MPA-PEG penetrated into the nucleus of mammalian cells upon exposure for 24 h. These results suggest that surface modification can enhance the stability and improve the biocompatibility. This study also indicates that AuNP@MPA-PEG can be used as potential nuclear targeted drug delivery carrier.  相似文献   

14.
Gold nanoparticles (GNPs) have been reported to exhibit a variety of biological effects including anti-inflammatory and anti-oxidant activities. The extent of an in vitro glycation reaction mixture of collagen and glycolaldehyde was assayed to investigate the inhibition of glycolaldehye-derived advanced glycation end products (glycol-AGEs) formation with GNPs in collagen, which is a major protein component of the human dermis. GNP-treated collagen showed significantly less glycation (56.3 ± 4.2%) than an untreated glycation control. Moreover, GNP-treated glycation in a collagen lattice model significantly decreased the AGEs distribution in the model system. Taken together, these results suggest that GNPs have the potential for use in the prevention of glycation-induced skin aging.  相似文献   

15.
Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery.  相似文献   

16.
目的 构建载阿霉素(DOX)的甲氧基聚乙二醇(mPEG)修饰的金纳米粒AuNPs-mPEG@DOX,以降低DOX的毒副作用。方法 制备AuNPs-mPEG@DOX,通过粒径、电位和紫外可见光吸收光谱(UV-Vis)进行表征。考察连接巯基的DOX(HS-DOX)投药浓度对AuNPs-mPEG@DOX吸附率和载药量的影响。建立未吸附HS-DOX含量测定的高效液相色谱法(HPLC),对专属性、线性、精密度、稳定性和加样回收率进行考察。采用CCK-8法检测AuNPs-mPEG@DOX对MCF-10A和MCF-7细胞的毒性作用。结果 成功制备了AuNPs-mPEG@DOX,粒径为(46.12±0.49) nm,电位为(18.60±1.51) mV,最大吸收波长为530 nm。建立了可用于检测AuNPs-mPEG@DOX未吸附HS-DOX含量的HPLC方法,测定最佳投药浓度11.18 μg/ml,HS-DOX条件下的吸附率为(9.21±2.88)%,载药量为(2.01±0.62)%。细胞毒性实验表明AuNPs-mPEG@DOX可明显降低DOX对正常乳腺细胞的毒副作用;DOX在≥4.75 μmol/L时,AuNPs-mPEG@DOX与游离DOX对乳腺肿瘤细胞的细胞毒性作用一致。结论 AuNPs-mPEG@DOX可有效降低DOX的毒副作用,为后续AuNPs连接药物降低其毒副作用的研究提供参考。  相似文献   

17.
Radiosensitization efficacy of gold nanoparticles (AuNPs) with low energy radiations (88 keV) was evaluated in vitro and in vivo on rats bearing glioma. In vitro, a significant dose-enhancement factor was measured by clonogenic assays after irradiation with synchrotron radiation of F98 glioma cells in presence of AuNPs (1.9 and 15 nm in diameter). In vivo, 1.9 nm nanoparticles were found to be toxic following intracerebral delivery in rats bearing glioma, whether no toxicity was observed using 15 nm nanoparticles at the same concentration (50 mg/mL). The therapeutic efficacy of gold photoactivation was determined by irradiating the animals after intracerebral infusion of AuNPs. Survival of rats that had received the combination of treatments (AuNPs: 50 mg/mL, 15 Gy) was significantly increased in comparison with the survival of rats that had received irradiation alone. In conclusion, this experimental approach is promising and further studies are foreseen for improving its therapeutic efficacy.From the Clinical EditorThese investigators report that gold nanoparticles of the correct size can be used to enhance the effects of irradiation in the context of a glioma model. Since many of the glioma varieties are currently incurable, this or similar approaches may find their way to clinical trials in the near future.  相似文献   

18.
《Nanotoxicology》2013,7(8):885-900
Abstract

The use of manufactured nanomaterials is rapidly increasing, while our understanding of the consequences of releasing these materials into the environment is still limited and many questions remain, for example, how do nanoparticles affect living organisms in the wild? How do organisms adapt and protect themselves from exposure to foreign materials? How does the environment affect the performance of nanoparticles, including their surface properties? In an effort to address these crucial questions, our main aim has been to probe the effects of aquatic organisms on nanoparticle aggregation. We have, therefore, carried out a systematic study with the purpose to disentangle the effects of the freshwater zooplankter, Daphnia magna, on the surface properties, stability, and aggregation properties of gold (Au) nanoparticles under different aqueous conditions as well as identified the proteins bound to the nanoparticle surface. We show that Au nanoparticles aggregate in pure tap water, but to a lesser extent in water that either contains Daphnia or has been pre-conditioned with Daphnia. Moreover, we show that proteins generated by Daphnia bind to the Au nanoparticles and create a modified surface that renders them less prone to aggregation. We conclude that the surrounding milieu, as well as the surface properties of the original Au particles, are important factors in determining how the nanoparticles are affected by biological metabolism. In a broader context, our results show how nanoparticles released into a natural ecosystem become chemically and physically altered through the dynamic interactions between particles and organisms, either through biological metabolism or through the interactions with biomolecules excreted by organisms into the environment.  相似文献   

19.
Gold nanoparticles are widely used in many fields as preferred materials for their unique optical and physical properties, such as surface plasmon oscillations for labeling, imaging, and sensing. Recently, many advancements were made in biomedical applications with better biocompatibility in disease diagnosis and therapeutics. Au-NPs could be prepared and conjugated with many functionalizing agents, such as polymers, surfactants, ligands, dendrimers, drugs, DNA, RNA, proteins, peptides and oligonucleotides. This review addressed the use of gold nanoparticles and the surface functionalization with a wide range of molecules, expanding and improving gold nanoparticles in targeting drugs for photothermal therapy with reduced cytotoxic effcts in various cancers, gene therapy and many other diseases. Overall, Au-NPs would be a promising vehicle for drug delivery and therapies.  相似文献   

20.
本文制备了含金纳米粒子的聚电解质微囊, 并进行了表征。以碳酸钙粒子为模板, 在其表面组装聚烯丙基胺盐酸盐 [poly (allyamine hydrochloride), PAH] 和金纳米粒子, 得到以碳酸钙粒子为母核, PAH/金纳米粒子为壳的核壳结构微粒。用乙二胺四乙酸二钠 (EDTA) 溶解碳酸钙, 即可得到含有金纳米粒子的聚电解质微囊。用扫描电镜表征碳酸钙粒子、含金纳米粒子的聚电解质微囊去掉母核前后的形状, 可观察到碳酸钙粒子表面包裹金纳米粒子前后的差别。用显微镜表征了微囊在溶液中的形态, 微囊在水中分散性良好。载入异硫氰酸荧光素标记的牛血清白蛋白 (FITC-bovine serum albumin, FITC-BSA) 作为模型药物, 用荧光显微镜可以观察到微囊内有一定的荧光强度, 检测得到牛血清白蛋白的包封率为 (34.31 ± 2.44) %, 聚电解质微囊载药量为 (43.75 ± 3.12) mg·g−1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号