首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatocyte growth factor (HGF) has been demonstrated to stimulate osteoblast proliferation and participated bone remodeling. Bone morphogenetic protein-2 (BMP-2) is a crucial mediator in bone formation during fracture healing. However, the effects of HGF in BMP-2 expression in human osteoblasts are large unknown. Here we found that HGF induced BMP-2 expression in human osteoblasts dose-dependently. HGF-mediated BMP-2 production was attenuated by c-Met inhibitor or siRNA. Pretreatment with FAK inhibitor or JNK inhibitor (SP600125) also blocked the potentiating action of HGF. Stimulation of osteoblasts with HGF enhanced FAK phosphorylation, JNK phosphorylation, and RunX2 translocation from cytosol to the nucleus. HGF-mediated Runx2 binding to BMP-2 promoter was inhibited by c-Met inhibitor, FAK inhibitor, and SP600125. The binding of Runx2 to the BMP-2 promoter, as well as the recruitment of p300 and the enhancement of histones H3 and H4 acetylation on the BMP-2 promoter was enhanced by HGF. Our results suggest that HGF increased BMP-2 production in human osteoblasts via the c-Met receptor/FAK/JNK/Runx2 and p300 signaling pathways.  相似文献   

2.
3.
4.
In the field of osteoporosis, there has been growing interest in anabolic agents that enhance bone mass and improve bone architecture. In this study, we demonstrated that the ubiquitous plant triterpenoid, ursolic acid, enhances differentiation and mineralization of osteoblasts in vitro. We found that ursolic acid induced the expression of osteoblast-specific genes with the activation of mitogen-activated protein kinases, nuclear factor-kappaB, and activator protein-1. Additionally, noggin, an antagonist of bone morphogenetic proteins (BMPs), inhibited ursolic acid-induced osteoblast differentiation. Noggin also inhibited the activation of Smad and the induction of BMP-2 mRNA expression by ursolic acid in the late stage of osteoblast differentiation. Importantly, ursolic acid was shown to have bone-forming activity in vivo in a mouse calvarial bone formation model. A high proportion of positive immunostaining of BMP-2 was found in the nuclear region of woven bone formed by ursolic acid. These results suggested that ursolic acid has the anabolic potential to stimulate osteoblast differentiation and enhance new bone formation.  相似文献   

5.
Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, was investigated for its effects on differentiation of osteoblasts. By means of alkaline phosphatase (ALP) activity and osteocalcin ELISA assay, we have shown that fraxetin exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB. Alkaline phosphatase and osteocalcin are phenotypic markers for early-stage differentiated osteoblasts and terminally differentiated osteoblasts, respectively. Our results indicated that fraxetin stimulated osteoblast differentiation at various stages (from osteoprogenitors to terminally differentiated osteoblasts). Induction of differentiation by fraxetin was associated with increased bone morphogenetic protein-2 (BMP-2) and BMP-4 productions. Addition of purified BMP-2 and BMP-4 proteins did not increase the upregulation of ALP activity and osteocalcin secretion by fraxetin, whereas the BMPs antagonist noggin blocked both fraxetin and BMP-2 and BMP-4 mediated ALP activity and osteocalcin secretion enhancement, indicating that BMP-2 and BMP-4 productions are required in fraxetin-mediated osteoblast maturation and differentiation. These findings are novel and may be important in the treatment and prevention of osteoporosis.  相似文献   

6.
7.
Myricetin (3,3',4',5,5',7-hexahydroxyflavone), a flavonoid compound, is present in vegetables and fruits. By means of alkaline phosphatase (ALP) activity, osteocalcin, and type I collagen enzyme-linked immunosorbent assay (ELISA), we have shown that myricetin exhibits a significant induction of differentiation in MG-63 and hFOB human osteoblasts. Alkaline phosphatase and osteocalcin are phenotypic markers for early-stage differentiated osteoblasts and terminally differentiated osteoblasts, respectively. Our results indicate that myricetin stimulates osteoblast differentiation at various stages, from maturation to terminally differentiated osteoblasts. Induction of differentiation by myricetin is associated with increased bone morphogenetic protein-2 (BMP-2) production. The BMP-2 antagonist noggin blocked myricetin-mediated ALP activity and osteocalcin secretion enhancement, indicating that BMP-2 production is required in myricetin-mediated osteoblast maturation and differentiation. Induction of differentiation by myricetin is associated with increased activation of SMAD1/5/8 and p38 mitogen-activated protein kinases. Cotreatment of p38 inhibitor SB203580 inhibited myricetin-mediated ALP upregulation and osteocalcin production. In conclusion, myricetin increased BMP-2 synthesis, and subsequently activated SMAD1/5/8 and p38 MAPK, and this effect may contribute to its action on the induction of osteoblast maturation and differentiation, followed by an increase of bone mass.  相似文献   

8.
Nitrogen-containing bisphosphonates (BPs) are antiresorptive drugs used for the treatment of metabolic bone diseases. Bone marrow stromal cells such as mesenchymal stem cells (MSCs) and MSC-derived osteoblasts that originate from MSCs are known to regulate osteoclast differentiation and activation via the expression of receptor activator of NF-κB ligand (RANKL). Although the effects of nitrogen-containing BPs on osteoclasts and osteoblasts have been well investigated, their effects in MSCs have not been clarified. In this study, we investigated the effects of risedronate (RIS), a nitrogen-containing BP, on osteoblast differentiation, RANKL expression and apoptosis in human and rat MSCs. RIS suppressed the formation of mineralized nodules and mRNA expression of differentiation marker genes such as bone sialoprotein and osteocalcin in MSC-derived osteoblasts. The RANKL expression induced by 1,25-(OH)(2) vitamin D(3) was not affected by RIS in human MSC-derived osteoblasts. In addition, treatment with high-concentration RIS induced chromatin condensation, an apoptosis feature, in MSCs. RIS-induced chromatin condensation was suppressed by a pan-caspase inhibitor zVAD-FMK and a cell-permeable isoprenoid analogue geranylgeraniol. These results indicate that RIS suppressed osteoblast differentiation and induced caspase- and isoprenoid depletion-dependent apoptosis and suggest that the antiresorptive effect of RIS is not mediated by a decrease in the RANKL expression in MSC-derived osteoblasts.  相似文献   

9.
The biomechanical stability of mineralized tissues at the interface between implant surface and bone tissue is of critical importance. Anodically oxidized titanium prepared in a chloride solution results in enhanced mineralization of adherent osteoblasts and has antimicrobial activity against oral microorganisms. We evaluated the nanomechanical properties and molecular structures of the in vitro mineralized tissues developing around anodically oxidized titanium surfaces with and without preparation in chloride solution. Anodically oxidized titanium surfaces showed superior osteogenic gene expressions than those of thermally oxidized and bare titanium surfaces. Preparation of anodically oxidized titanium in chloride enhanced the production of mineralized tissue around it. However, the mineralized tissue around anodically oxidized titanium prepared without chloride had increased mineral:matrix and cross-linking ratios, resulting in higher hardness and lower elasticity.From the Clinical EditorIn this study anodically oxidized titanium was used to enhance the biomechanical stability of mineralized tissues at the implant surface -- bone tissue interface. The mineralized tissue around anodically oxidized titanium prepared without chloride had increased mineral:matrix and cross-linking ratios, resulting in higher hardness and lower elasticity.  相似文献   

10.
Periosteum has been demonstrated to contain mesenchymal progenitor cells differentiating to osteoblasts, and both bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) may play important roles in cell-based approaches to bone regeneration. The purpose of this study was to evaluate the feasibility and efficacy of BMP-2 and/or VEGF on periosteal cell differentiation to osteoblasts in vitro and ectopic bone formation in vivo. Human periosteum-derived cells were transfected with BMP-2, VEGF, BMP-2 + VEGF, or vehicle as a control by non-viral gene transfer and then cultured and implanted to nude mice intramuscularly. Real-time polymerase chain reaction analysis of the culture revealed that transgenes for BMP-2 and BMP-2 + VEGF induced more mRNA expression of alkaline phosphatase, collagen type I, and osteocalcin than VEGF and vehicle treatments; additionally, alizarin red S staining, alkaline phosphatase staining, and alkaline phosphatase activity were significantly higher in the BMP-2 + VEGF transgene than in the other versions. After implantation, ectopic bone was observed at 4 weeks and greatly increased at 8 weeks in all groups. In particular, the combination of BMP-2 and VEGF formed significantly more bone at 4 weeks, and VEGF transfection resulted in more blood vessels relative to the conditions without VEGF. Thus, VEGF might enhance BMP2-induced bone formation through modulation of angiogenesis.  相似文献   

11.
目的初步研究二甲双胍(MF)在体外对小鼠颅盖骨成骨细胞增殖、骨形态发生蛋白一2(BMP一2)及核心结合因子(Cbfa一1)mRNA表达的影响,探讨二甲双胍对骨代谢的可能作用机制。方法(1)分离培养原代颅盖骨成骨细胞并对其进行鉴定。(2)以乳鼠成骨细胞为体外实验模型,不同浓度(0、50、100、200、400Ixmol/L)的MF干预体外培养的成骨细胞24h后,M1vr法检测成骨细胞的增殖能力,实时荧光定量PCR法检测成骨细胞BMP-2及Cbfa-1基因表达。结果二甲双胍干预成骨细胞24h后,可促进成骨细胞的增殖,在浓度400μxmol/L的OD值最大为0.298±0.047(P〈0.05);可促进BMP-2及Cbfa-1mRNA的表达,呈剂量效应关系。结论二甲双胍可促进成骨细胞的增殖和分化,可能通过调节BMP-2及Cbfa-1的表达,从而促进骨的形成。  相似文献   

12.
Osteoarthritis (OA) is a chronic degenerative joint disease showing altered bone metabolism. Osteoblasts contribute to the regulation of cartilage metabolism and bone remodeling. We have shown previously that induction of heme oxygenase-1 (HO-1) protects OA cartilage against inflammatory and degradative responses. In this study, we investigated the effects of HO-1 induction on OA osteoblast metabolism. HO-1 was induced with cobalt protoporphyrin IX (CoPP) and by transduction with LV-HO-1. In osteoblasts stimulated with interleukin (IL)-1β, CoPP enhanced mineralization, the expression of a number of markers of osteoblast differentiation such as Runx2, bone morphogenetic protein-2, osteocalcin, and collagen 1A1 and 1A2, as well as the ratio osteoprotegerin/receptor activator of nuclear factor-κB ligand. HO-1 induction significantly reduced the expression of matrix metalloproteinase (MMP)-1, MMP-2 and MMP-3, and the production of pro-inflammatory cytokines such as tumor necrosis factor-α and IL-6 whereas IL-10 levels increased. HO-1 also exerted inhibitory effects on prostaglandin (PG)E(2) production which could be dependent on cyclooxygenase-2 and microsomal PGE synthase-1 down-regulation. The activity of senescence-associated β-galactosidase and the expression of the senescence marker caveolin-1 were significantly decreased after HO-1 induction. The inhibition of nuclear factor-κB activation induced by IL-1β in OA osteoblasts may contribute to some HO-1 effects. Our results have shown that HO-1 decreases the production of relevant inflammatory and catabolic mediators that participate in OA pathophysiology thus eliciting protective effects in OA osteoblasts.  相似文献   

13.
Objectives We investigated the effect of Cistanche deserticola Ma. (CD) on bone formation by cultured osteoblasts. Methods The mineralized nodule formation assay was used to examine the in‐vitro effects of CD on bone formation. Alkaline phosphatase (ALP), bone morphogenetic proteins (BMP)‐2 and osteopontin (OPN) mRNA expression was analysed by quantitative real‐time polymerase chain reaction. The mechanism of action of CD extract was investigated using Western blotting. The in‐vivo anti‐osteoporotic effect of CD extract was assessed in ovariectomized mice. Key findings CD extract had no effect on the proliferation, migration or wound healing of cultured osteoblasts, but increased ALP, BMP‐2 and OPN mRNA and bone mineralization. Mitogen‐activated protein kinase (MAPK) or nuclear factor (NF)‐κB inhibitors reduced CD extract‐induced bone formation and ALP, BMP‐2 and OPN expression. However, CD extract did not affect osteoclastogenesis. In addition, CD extract prevented the bone loss induced by ovariectomy in vivo. Conclusions CD may be a novel bone formation agent for the treatment of osteoporosis.  相似文献   

14.
15.
Reconstruction or filling of bone defects, especially in the maxillofacial region, often requires use of biomaterials. An implant should fasten healing of the bone gap or it should replace autogenic bone grafts. The combination of bone morphogenetic proteins with suitable carrier may fulfill these requirements. Proteins causing differentiation of mesenchymal cells in chondroblasts and osteoblasts were called Bone Morphogenetic Proteins--BMPs. The authors extracted BMP from bovine bones and placed it into collagen carrier formed from generally accessible hemostatic sponge--Spongostan. The implants were grafted into rat femoral muscle pouches in order to trace the tissue response. Pathologic examinations were performed 3, 6 and 8 weeks after implantation. On the basis on macroscopic and microscopic examinations it was stated that collagen sponge speckled with BMP caused minimal tissue response and evolved characteristic thin connective tissue capsule formation around the implant. The connective tissue penetrated spongious structure of the implant, filling the spaces, which became growing due to sponge resorption. Characteristic hyalinization and sparse chondroblasts were visible 8 weeks after implantation.  相似文献   

16.
Daidzein, a natural isoflavonoid found in Leguminosae, has received increasing attention because of its possible role in the prevention of osteoporosis. In the present investigation, primary osteoblastic cells isolated from newborn Wistar rats were used to investigate the effect of this isoflavonoid on osteoblasts. Daidzein (2-50 microM) increased the viability (P<0.05) of osteoblasts by about 1.4-fold. In addition, daidzein (2-100 microM) increased the alkaline phosphatase activity and osteocalcin synthesis (P<0.05) of osteoblasts by about 1.4- and 2.0-fold, respectively. Alkaline phosphatase and osteocalcin are phenotypic markers for early-stage differentiated osteoblasts and terminally differentiated osteoblasts, respectively. Our results indicated that daidzein stimulated osteoblast differentiation at various stages (from osteoprogenitors to terminally differentiated osteoblasts). We also investigated the effect of daidzein on bone morphogenetic protein (BMP) production in osteoblasts that display the mature osteoblast phenotype. The results indicated that BMP2 synthesis was elevated significantly in response to daidzein (the mRNA increased 5.0-fold, and the protein increased 7.0-fold), suggesting that some of the effects of daidzein on the cell may be mediated by the increased production of BMPs by the osteoblasts. In conclusion, daidzein has a direct stimulatory effect on bone formation in cultured osteoblastic cells in vitro, which may be mediated by increased production of BMPs in osteoblasts.  相似文献   

17.
Heparin displays several types of biological activities by binding to various extracellular molecules, including pivotal roles in bone metabolism. We have previously reported that heparin competitively inhibits the binding activity of bone morphogenic protein-2 (BMP-2) to BMP and the BMP receptor (BMPR) and suppresses BMP-2 osteogenic activity. In the present study, we examined whether heparin affects osteoblast differentiation induced by BMP-2 at various time points in vitro. We found that 72 h of treatment with heparin inhibited alkaline phosphatase (ALP) activity. However, 144 h of treatment enhanced the ALP activity in BMP-2-stimulated MC3T3-E1 cells. Although heparin decreased the phosphorylation of Smad1/5/8 after 0.5 h of culture, prolonged periods of culture with heparin enhanced the Smad phosphorylation. In addition, 72 h of treatment with heparin enhanced the mRNA expression of runx2 and osterix in BMP-2-stimulated MC3T3-E1 cells. Furthermore, the mRNA expression of BMP antagonists and inhibitory Smads induced by BMP-2 was preferentially blocked by heparin at the 24 and 48 h time points. These findings indicate biphasic effects of heparin on BMP-2 activity and suggest that heparin has complex effects on the BMP-2 osteogenic bioactivities. Prolonged culture with heparin stimulated BMP-2-induced osteogenic activity via down-regulation of BMP-2 antagonists and inhibitory Smads.  相似文献   

18.
SSH-BM-I was synthesized from tryptamine by using a newly developed synthetic method, and it has structural similarity to bromomelatonin. Recently, it had been reported that SSH-BM-I increases osteoblasts in scales of gold fish. However, the effect of SSH-BM-I on osteoblast differentiation in mammalian cells has not yet been examined. Therefore, this study examined the effect of SSH-BM-I on osteoblast differentiation in mesenchymal progenitor-like cells and mature osteoblast-like cells. SSH-BM-I enhanced terminal osteoblast differentiation, as indicated by mineralization, which was accompanied by upregulation of the osteogenic marker genes bone sialoprotein (BSP) and osteocalcin (OC). However, in mesenchymal progenitor ROB-C26 cultures, no mineralized nodules were observed regardless of SSH-BM-I treatment, although BMP-2 was able to induce nodule formation in these cells. Furthermore, BMP-2-induced nodule formation was suppressed by SSH-BM-I treatment in ROB-C26 cultures. We further investigated the impact of the timing and duration of SSH-BM-I treatment on osteoblast differentiation. The effect of SSH-BM-I treatment on osteoblast differentiation of ROB-C26 in the presence of BMP-2 switches from negative to positive sometime between day 6 and 9, because SSH-BM-I treatment enhanced the formation of mineralized nodules when it was started on day 9, but suppressed nodule formation when it was started at day 6 or earlier. These results suggest that the stimulatory effects of SSH-BM-I on the formation of mineralized nodules depend on the degree of cell differentiation.  相似文献   

19.
Bone morphogenetic proteins (BMPs) play an essential role in skeletal tissue, as they induce the commitment of mesenchymal cells toward cells of the osteoblastic lineage and also enhance the differentiated function of the osteoblast. BMPs are required for skeletal development, maintenance of adult bone homeostasis and fracture healing. BMP actions are tempered by extracellular and intracellular signals that block BMP signal transduction at multiple levels. Identification of these BMP regulatory molecules allows us to investigate their role in diseases that affect skeletal function and could provide a novel therapeutic intervention point for treatment. Both extracellular and intracellular antagonists are regulated by BMPs, indicating the existence and need for local feedback mechanisms to modulate BMP biological responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号