首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymorphism of human cytochrome P-450   总被引:2,自引:0,他引:2  
The cytochrome P-450 forms involved in debrisoquine 4-hydroxylation (P-450DB), phenacetin O-deethylation (P-450PA), S-mephenytoin 4-hydroxylation (P-450MP), and nifedipine 1,4-oxidation (P-450NF) have been purified to electrophoretic homogeneity from human liver microsomes. All of these reactions show in vivo polymorphism in humans. Evidence for the roles of the purified proteins in these processes comes from in vitro reconstitution and immunoinhibition studies. The rat orthologs of these enzymes are as follows--P-450DB: P-450UT-H; P-450PA: P-450ISF-G; P-450MP: P-450UT-I; P-450NF: P-450PCN-E. Only in the case of P-450UT-H is the primary rat ortholog the same cytochrome P-450 which catalyses the catalytic reaction under consideration. Reconstitution and immunochemical studies establish that the following reactions are catalysed by the individual P-450s--P-450DB: debrisoquine 4-hydroxylation, sparteine delta 5-oxidation, bufuralol 1'-hydroxylation, encainide O-demethylation, and propanolol 4-hydroxylation; P-450PA: phenacetin O-deethylation; P-450MP: S-mephenytoin 4-hydroxylation and tolbutamide methyl hydroxylation; P-450NF: oxidation of nifedipine and 16 other substituted dihydropyridines, estradiol 2- and 4-hydroxylation, aldrin epoxidation, benzphetamine N-demethylation and 6 beta-hydroxylation of testosterone, androstenedione and cortisol. A cDNA clone has been isolated that corresponds to rat P-450UT-H, as shown by a number of criteria. Studies with this probe establish that the sex and strain variation in debrisoquine 4-hydroxylase and related activities is related to differences in the levels of a 2.0 kb length mRNA present.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A rat liver cDNA library was prepared using the expression vector bacteriophage lambda gt11 and plaques were screened using polyclonal antibodies raised to purified rat liver cytochrome P-450UT-H, the major enzyme involved in debrisoquine 4-hydroxylation, bufuralol 1'-hydroxylation, and sparteine delta 5-oxidation. A clone was selected which contained a 1.3-kb insert. The Escherichia coli beta-galactosidase fusion protein had a molecular weight greater than that of native beta-galactosidase (and reacted with anti-P-450UT-H after electrophoresis) and was also shown to compete with microsomal P-450UT-H for anti-P-450UT-H, partially relieving catalytic inhibition by anti-P-450UT-H in rat liver microsomes. Hybrid selection experiments with the cloned cDNA also support the view that the insert is related to P-450UT-H. mRNA electrophoresis/hybridization experiments indicated that the 1.3-kb cDNA probe recognized primarily only a single size class of mRNA (2.0 kb) in rat liver. mRNA blotting and in vitro translation/immunoprecipitation experiments both indicated that levels of P-450UT-H mRNA are similar in male and female Sprague-Dawley rats. Dark Agouti strain rats of both sexes contained significantly less P-450UT-H mRNA than did Sprague-Dawley rats and the females had approximately one-half the level of the males. These results are consonant with sex and strain differences in measured levels of P-450UT-H and bufuralol 1'-hydroxylase and sparteine delta 5-oxidase activities. Analysis of genomic DNA indicated that several DNA restriction fragments hybridized to this partial length cDNA; no differences were found between the rat strains and sexes. The results suggest that the basis for the variation in P-450UT-H and its activities among rat strains and sexes is at the level of mRNA concentrations.  相似文献   

3.
The genetically controlled polymorphic oxidation of debrisoquine and sparteine is caused by the absence or functional deficiency of a cytochrome P-450 isozyme. In order to elucidate the mechanisms underlying the differences in cytochrome P-450 function we have studied the 1'-hydroxylation of the prototype drug bufuralol in human liver microsomes of individuals phenotyped in vivo as extensive metabolizers (EM, N = 10), poor metabolizers (PM, N = 5) and in subjects with an intermediate rate of metabolism (IM, N = 4). PM- as compared to EM-microsomes were characterized by a decreased Vmax for (+)-bufuralol 1'-hydroxylation (7.51 +/- 2.03 nmol X mg-1 X hr-1 vs 11.95 +/- 4.80 nmol X mg-1 X hr-1) but not for (-)-bufuralol 1'-hydroxylation (4.72 +/- 0.87 nmol X mg-1 X hr-1 vs 5.55 +/- 1.49 nmol X mg-1 X hr-1). The apparent Km for (+)-bufuralol 1'-hydroxylation was increased in PM microsomes (118 +/- 84.9 microM vs 17.9 +/- 6.30 microM). Inhibition of bufuralol 1'-hydroxylation by quinidine was biphasic in EM microsomes, providing further support for the involvement of at least two cytochrome P-450 isozymes. Quinidine acted as a competitive inhibitor of only the high affinity/stereoselectivity component of the reaction. Our data suggest that the debrisoquine/sparteine type of oxidation polymorphism is caused by an almost complete loss of a minor cytochrome P-450 isozyme which has a high affinity and stereoselectivity for (+)-bufuralol and a high sensitivity to inhibition by quinidine.  相似文献   

4.
Oxidation of 17 alpha-ethynylestradiol by human liver cytochrome P-450   总被引:7,自引:0,他引:7  
One of the classic examples of adverse drug interactions involves pregnancies in women using the oral contraceptive 17 alpha-ethynylestradiol who also ingest rifampicin or barbiturates or hydantoins. Previous work had demonstrated increased metabolism (2-hydroxylation) of 17 alpha-ethynylestradiol in individuals using rifampicin. In this report evidence is presented for the involvement of a specific form of human cytochrome P-450, termed P-450NF, in this phenomenon. Although purified P-450NF has only relatively low catalytic 17 alpha-ethynylestradiol 2-hydroxylase activity, antibodies raised to P-450NF specifically inhibited greater than 90% of the activity in liver microsomes which had either high or low catalytic activity. When different liver samples were compared, rates of microsomal 17 alpha-ethynylestradiol 2-hydroxylation were highly correlated with amounts of immunochemically measured P-450NF or rates of nifedipine oxidation, a characteristic activity of P-450NF. Prior incubation of human liver microsomes with NADPH and troleandomycin resulted in decreased 17 alpha-ethynylestradiol 2-hydroxylation. In addition, 17 alpha-ethynylestradiol appears to be a mechanism-based inhibitor in human liver microsomes, as shown by the loss of both spectrally detectable cytochrome P-450 and 17 alpha-ethynylestradiol 2-hydroxylase activity during incubation in the presence of NADPH. Additional experiments did not show any evidence for the involvement of a number of other human cytochrome P-450 enzymes in 17 alpha-ethynylestradiol 2-hydroxylation (i.e., P-450DB, P-450PA, P-450MP, P-450j). These results are consistent with the view that P-450NF is the major enzyme involved in 17 alpha-ethynylestradiol oxidation and that drugs and hormones which influence the expression and activity of this enzyme can influence the efficacy and side effects of this compound.  相似文献   

5.
Quinidine and its diastereoisomer quinine were tested in vitro for their effect on the 4-hydroxylation of debrisoquine, the O-deethylation of phenacetin and the 1'-hydroxylation of bufuralol, by human liver microsomal samples; quinidine was studied for its effect on debrisoquine 4-hydroxylation in vivo. Quinidine was a potent inhibitor of the 4-hydroxylation of debrisoquine and the 1'-hydroxylation of bufuralol, with IC50 values of 0.7 and 0.2 microM, being around 100 times more potent in this respect than quinine. Very much higher (1000-fold) levels of quinidine were required to inhibit the O-deethylation of phenacetin, being rather less potent in this than quinine. Eight subjects were phenotyped for their debrisoquine oxidation status and found to be extensive metabolisers (EM). They were tested again after the co-administration of 50 mg of quinidine with the debrisoquine. The concomitant administration of quinidine increased the metabolic ratios (MRs) by a mean of 26-fold. The effects of quinidine at a dose of only 50 mg, on the metabolism of a new drug in EM subjects may prove a useful method of assessing the contribution of the debrisoquine 4-hydroxylase isozyme to the elimination of the drug tested.  相似文献   

6.
4-Hydroxylation of minaprine was measured on microsomal fractions prepared from 25 different human liver samples. In vitro formation of 4-hydroxyminaprine exhibited a large interindividual variability. Indeed, minaprine 4-hydroxylase activity ranged between 0.033 and 0.421 nmol/min/mg microsomal protein. Two samples presented a particularly low enzyme activity. Minaprine 4-hydroxylation followed Michaelis-Menten kinetics with KM and Vmax values of 5.26 microM and 0.478 nmol/min/mg microsomal protein, respectively, for one particular representative sample. The effects of various compounds (substrates or inhibitors of cytochrome P-450 isoforms) on 4-hydroxyminaprine formation were investigated. Selective substrates for P-450IA [benzo(a)pyrene, theophylline, and phenacetin], IIC (hexobarbital), IIE (aniline), and IIIA (erythromycin, nifedipine, and troleandomycin) cytochrome subfamilies did not inhibit 4-hydroxyminaprine formation. The nonspecific cytochrome P-450 inhibitor, cimetidine, slightly inhibited minaprine 4-hydroxylation. The classical substrates of the P-450IID cytochrome subfamily (debrisoquine, propranolol, and sparteine) inhibited minaprine 4-hydroxylation, as did the known P-450IID specific inhibitor, quinidine. These compounds inhibited minaprine 4-hydroxylase with Ki values of 16.5 (debrisoquine), 14.4 (propranolol), 61.9 (sparteine), and 0.146 microM (quinidine). 4-Hydroxyminaprine formation rate was shown not to be correlated with the activity of both erythromycin N-demethylase (r = 0.29, non-significant) and aniline hydroxylase (r = -0.15, NS). In contrast, minaprine 4-hydroxylase was well correlated with both debrisoquine 4-hydroxylase activity (r = 0.501, p less than 0.05) and immunoquantified cytochrome P-450IID6 (r = 0.579, p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The kinetics of bufuralol 1'-hydroxylase activity of hepatic microsomal fractions have been determined in female DA and Fischer 344 rats, strains between which there is a large difference in debrisoquine 4-hydroxylase activity. Two components of bufuralol 1'-hydroxylase activity could be observed in both strains. Although there were differences between the strains in Vmax and Km of both components of activity, these were much less marked than the differences previously reported for debrisoquine 4-hydroxylase (Kahn et al., Drug Metab. Dispos. 13, 510 (1985)). The kinetics of bufuralol 1'-hydroxylase activity were such that the difference in activity between the strains varied with the concentration of bufuralol, 4-5-fold at 2.5 microM, no difference at 100 microM Competitive inhibitors of debrisoquine 4-hydroxylase activity in man were competitive inhibitors of bufuralol 1'-hydroxylase activity in the Fischer 344 rat, but not in the DA rat. The Ki for inhibition of bufuralol 1'-hydroxylase activity by debrisoquine in the Fischer 344 rat was 184 microM, compared with a Km for the 4-hydroxylation of this compound of 10.5 microM. It is concluded that the major isozyme of cytochrome P-450 catalysing the 1'-hydroxylation of bufuralol in the rat is different from that catalysing debrisoquine 4-hydroxylation (P-450UT-H).  相似文献   

8.
Using the stereospecific metabolism of (+)- and (-)-bufuralol and (+)- and (-)-metoprolol as model reactions, we have characterized the enzymic deficiency of the debrisoquine/sparteine-type polymorphism by comparing kinetic data of subjects in vivo with their microsomal activities in vitro and with reconstituted activities of cytochrome P-450 isozymes purified from human liver. The metabolism of bufuralol in liver microsomes of in vivo phenotyped 'poor metabolizers' of debrisoquine and/or sparteine is characterized by a marked increase in Km, a decrease in Vmax and a virtual loss of the stereoselectivity of the reaction. These parameters apparently allow the 'phenotyping' of microsomes in vitro. A structural model of the active site of a cytochrome P-450 for stereospecific metabolism of bufuralol and other polymorphically metabolized substrates was constructed. Two cytochrome P-450 isozymes, P-450 buf I and P-450 buf II, both with MW 50,000 Da, were purified from human liver on the basis of their ability to metabolize bufuralol to 1'-hydroxy-bufuralol. However, P-450 buf I metabolized bufuralol in a highly stereoselective fashion ((-)/(+) ratio 0.16) as compared to P-450 buf II (ratio 0.99) and had a markedly lower Km for bufuralol. Moreover, bufuralol 1'-hydroxylation by P-450 buf I was uniquely characterized by its extreme sensitivity to inhibition by quinidine. Antibodies against P-450 buf I and P-450 buf II inhibited bufuralol metabolism in microsomes and with the reconstituted enzymes. Immunochemical studies with these antibodies with microsomes and translations in vitro of RNA from livers of extensive and poor metabolizers showed no evidence for a decrease in the recognized protein or its mRNA. Because the antibodies do not discriminate between P-450 buf I and P-450 buf II, both a decreased content of P-450 buf I or its functional alteration could explain the polymorphic metabolism in microsomes. The genetically defective stereospecific metabolism of mephenytoin was determined in liver microsomes of extensive and poor metabolizers of mephenytoin phenotyped in vivo. Microsomes of poor metabolizers were characterized by an increased Km and a decreased Vmax for S-mephenytoin hydroxylation as compared to extensive metabolizers and a loss of stereospecificity for the hydroxylation of S-versus R-mephenytoin. A cytochrome P-450 with high activity for mephenytoin 4-hydroxylation was purified from human liver. Immunochemical studies with inhibitory antibodies against this isozyme suggest the presence in poor-metabolizer microsomes of a functionally altered enzyme.  相似文献   

9.
4-Substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines are important because of their roles as calcium channel blockers. The mixed-function oxidation of 14 4-aryl- and four 4-alkyl-substituted derivatives by human liver microsomes was examined. The major product of enzymatic oxidation of all the 4-aryl compounds was the pyridine derivative containing the 4-aryl group. The 4-alkyl compounds, in contrast, formed a pyridine derivative in which a hydrogen atom was present at the 4-position and the alkyl group was lost; these compounds also inactivated cytochrome P-450 and caused the loss of nifedipine oxidase activity after enzymatic oxidation. All of these reactions were extensively inhibited by an antibody raised to purified human liver nifedipine oxidase cytochrome P-450 (P-450NF), indicating a major role for this enzyme in the oxidation of these compounds. Oxidation of the 4-alkyl compounds led not only to the loss of P-450NF but also to decreases in catalytic activities of cytochrome P-450 isozymes catalyzing other reactions (phenacetin O-deethylation and hexobarbital 3'-hydroxylation). The results indicate that P-450NF (or closely related enzyme forms) is responsible for the oxidation of these nifedipine-related compounds in human liver microsomes and that metabolism is highly dependent upon 4-substitution; with alkyl substituents, radicals are postulated to leave P-450NF to attack other proteins.  相似文献   

10.
Competitive inhibition studies using human liver microsomes have shown that quinidine (QD) has an exceptionally high affinity (60 nM) for the genetically variable cytochrome P-450 that catalyzes the formation of 4-hydroxydebrisoquine and dehydrosparteines from debrisoquine and sparteine. The present study examined the effect of sparteine and debrisoquine on the oxidation of QD by microsomes prepared from two human livers. QD and its major metabolite 3-hydroxy-QD were measured by quantitative TLC. QD 3-hydroxylation followed saturable single-site kinetics over a 1-250 microM range of QD concentrations. The Km and Vmax of the reaction in the two liver specimens were 47.5 +/- 3.5 microM and 58.7 +/- 5.9 microM, and 0.36 +/- 0.08 and 0.29 +/- 0.02 nmol of 3-hydroxy-QD/mg of protein/min. Sparteine and debrisoquine (250 microM) had no effect on this QD 3-hydroxylase activity. Furthermore, near-saturation of the sparteine/debrisoquine isozyme by 250 microM sparteine had no effect on the oxidation of QD by all routes (measured by QD disappearance from an initial level of 70 nM during an 8-hr incubation period). These observations indicate that none of the major oxidative reactions of QD are catalyzed by the sparteine/debrisoquine isozyme; QD may simply bind to this cytochrome P-450, without being oxidized by it.  相似文献   

11.
The kinetics of inhibition of debrisoquine 4-hydroxylase activity by quinidine and quinine in rat and human liver microsomes have been compared. Quinidine is a potent inhibitor of debrisoquine 4-hydroxylase activity of human liver (IC50: 3.6 microM). However, its stereoisomer, quinine, is some 60 times less potent (IC50:223 microM). Both compounds are able to inhibit greater than 95% of 4-hydroxylase activity. In rat liver microsomes quinine is approximately 50 times more potent an inhibitor (IC50:2.4 microM) than quinidine (IC50:137 microM). Again, 4-hydroxylase activity is inhibited by greater than 95%. Inhibition of debrisoquine 4-hydroxylase activity by both quinine and quinidine in human and rat liver is competitive. Values of Ki for quinidine in human and rat were 0.6 microM and 50 microM, whereas with quinidine the Ki values were 13 microM and 1.7 microM, respectively. The data in this paper are consistent with 4-hydroxylation of debrisoquine in both rat and human liver catalysed by a specific form of cytochrome P-450. Although both quinidine and quinine are competitive inhibitors of debrisoquine 4-hydroxylase activity in rat and man, their potency is reversed. This suggests that the nature of the active site of cytochrome P-450dbl differs between the two species, and indicates that data on the specificity of this isoenzyme in the rat should be extrapolated to man with extreme caution.  相似文献   

12.
1-Aminobenzotriazole (ABT) is extensively used as a non-specific cytochrome P450 (CYP) inhibitor. In this study, the inhibitory effect of ABT on CYP-dependent drug oxidations was investigated in human liver microsomes (HLM) and compared with that of SKF-525A, another non-specific inhibitor. The following probe activities for human CYP isoforms were determined using pooled HLM: phenacetin O-deethylation (CYP1A2); diclofenac 4'-hydroxylation (CYP2C9); S-mephenytoin 4'-hydroxylation, (CYP2C19); bufuralol 1'-hydroxylation (CYP2D6); chlorzoxazone 6-hydroxylation (CYP2E1); midazolam 1'-hydroxylation, nifedipine oxidation, and testosterone 6beta-hydroxylation (CYP3A). ABT had the strongest inhibitory effect on the CYP3A-dependent drug oxidations and the weakest effect on the diclofenac 4'-hydroxylation. SKF-525A potently inhibited the bufuralol 1'-hydroxylation, but weakly inhibited chlorzoxazone 6-hydroxylation. The inhibitory effects of ABT and SKF-525A were increased by preincubation in some probe reactions, and this preincubation effect was greater in ABT than in SKF-525A. The remarkable IC50 shift (> 10 times) by preincubation with ABT was observed on the phenacetin O-deethylation, chlorzoxazone 6-hydroxylation, and midazolam 1'-hydroxylation. In conclusion, ABT and SKF-525A had a wide range of IC50 values in inhibiting the drug oxidations by HLM with and without preincubation.  相似文献   

13.
A sensitive, specific assay utilizing fluorescence-HPLC has been developed for determining the 1'-hydroxylation of bufuralol by human liver. The 1'-hydroxylation of the isomers of bufuralol varied threefold, both the Vmax and the Km for the (+) isomer being greater than the corresponding values for the (-) isomer. Debrisoquine was a competitive inhibitor of the 1'-hydroxylation of both isomers and of the racemate of bufuralol. Both isomers and the racemate of bufuralol were competitive inhibitors of debrisoquine 4-hydroxylase activity. The competitive inhibition of debrisoquine and bufuralol of each other's metabolism, together with the similarity in the values for Km and Ki, support the conclusion that the same form of cytochrome P-450 catalyses these two reactions.  相似文献   

14.
Twenty-eight samples of human liver have been characterised for cytochrome P-450 content, aldrin epoxidase, debrisoquine 4-hydroxylase and bufuralol 1'-hydroxylase activities. Evidence is presented here and elsewhere that bufuralol 1'-hydroxylase and debrisoquine 4-hydroxylase are activities catalysed by the same form of cytochrome P-450 in man, and that this form is different from that catalysing the epoxidation of aldrin. Attempts to phenotype liver samples in vitro, in the absence of any metabolic data in vivo for debrisoquine 4-hydroxylation status, met with limited success. A combination of enzyme assays will most probably be required in any such phenotyping of human liver samples.  相似文献   

15.
The cynomolgus monkey is an animal species widely used to study drug metabolism because of its evolutionary closeness to humans. However, drug-metabolizing enzyme activities have not been compared in various parts of the liver and small intestine in cynomolgus monkeys. In this study, therefore, drug-metabolizing enzyme activities were analyzed in the liver (the five lobes) and small intestine (six sections from the duodenum to the distal ileum). 7-Ethoxyresorufin O-deethylation, coumarin 7-hydroxylation, paclitaxel 6α-hydroxylation, diclofenac 4'-hydroxylation, tolbutamide methylhydroxylation, S-mephenytoin 4'-hydroxylation, bufuralol 1'-hydroxylation, chlorzoxazone 6-hydroxylation, midazolam 1'-hydroxylation, and testosterone 6β-, 16α-, 16β-, and 2α-hydroxylation were used as the probe reactions for this investigation. In liver, all probe reactions were detected and enzyme activity levels were similar in all lobes, whereas, in the small intestine, all enzyme activities were detected (except for coumarin 7-hydroxylase and testosterone 16α-hydroxylase activity), but from jejunum to ileum there was a decrease in the level of enzyme activity. This includes midazolam 1'-hydroxylation and testosterone 6β-hydroxylation, which are catalyzed by cynomolgus monkey cytochrome P450 (CYP) 3A4/5, orthologs of human CYP3A4/5, which are important drug-metabolizing enzymes. The data presented in this study are expected to facilitate the use of cynomolgus monkeys in drug metabolism studies.  相似文献   

16.
Previous kinetic studies have identified a high-affinity (S)-warfarin 7-hydroxylase present in human liver microsomes which appears to be responsible for the termination of warfarin's biological activity. Inhibition of the formation of (S)-7-hydroxywarfarin, the inactive, major metabolite of racemic warfarin in humans, is known to be the cause of several of the drug interactions experienced clinically upon coadministration of warfarin with other therapeutic agents. In order to identify the specific form(s) of human liver cytochrome P-450 involved in this particular toxicity, we have determined the metabolic profiles of 11 human cytochrome P-450 forms expressed in HepG2 cells toward both (R)- and (S)-warfarin. Of the 11 forms examined only 2C9 displayed the regioselectivity and stereoselectivity appropriate for the high-affinity human liver microsomal (S)-7-hydroxylase. We further compared Michaelis-Menten and sulfaphenazole inhibition constants for (S)-warfarin 7-hydroxylation catalyzed by cDNA-expressed 2C9 and by human liver microsomes. Similar kinetic constants were obtained for each enzyme source. It is concluded that 2C9 is likely to be a principal form of human liver P-450 which modulates the in vivo anticoagulant activity of the drug. It is further concluded that those drug interactions with warfarin that arise as a result of decreased clearance of the biologically more potent S-enantiomer may have as their common basis the inhibition of P-450 2C9.  相似文献   

17.
Human cytochrome P-450IIE1 has been implicated in the oxidation of a number of substrates, including protoxins and -carcinogens. To date, no drugs have been identified that are exclusive substrates for the protein and are applicable for use as noninvasive probes of the in vivo function of the enzyme in humans. Chlorzoxazone was found to be oxidized only to 6-hydroxychlorzoxazone in human liver microsomes. Results of steady-state kinetics are consistent with the view that only a single enzyme catalyzes the reaction. The microsomal reaction was strongly inhibited by rabbit anti-P-450IIE1 and, in a competitive manner, by known P-450IIE1 substrates. Rates of chlorzoxazone 6-hydroxylation in different human liver microsomal preparations were well correlated with levels of immunochemically measured P-450IIE1 and rates of (CH3)2NNO oxidation. Chlorzoxazone 6-hydroxylation was also found to be catalyzed by purified human liver P-450IIE1. These results provide strong evidence that P-450IIE1 is the primary catalyst of chlorzoxazone 6-hydroxylation in human liver. Rates of chlorzoxazone 6-hydroxylation vary considerably among human liver samples, and chlorzoxazone 6-hydroxylation may have potential use as a noninvasive probe in estimating the in vivo expression of human P-450IIE1 and its significance as a risk factor in the toxicity and carcinogenicity of a number of solvents, nitrosamines, and drugs.  相似文献   

18.
Upon characterization of baculovirus-expressed cytochrome P-450 (CYP) 2C19, it was observed that this enzyme metabolized (+/-) bufuralol to 1'hydroxybufuralol, a reaction previously understood to be selectively catalyzed by CYP2D6. The apparent K(m) for this reaction was 36 microM with recombinant CYP2C19, approximately 7-fold higher than for recombinant CYP2D6. The intrinsic clearance for this reaction was 37-fold higher with CYP2D6 than for CYP2C19. The involvement of human CYP1A2 in bufuralol 1'-hydroxylation was also confirmed using the recombinant enzyme. Using S-mephenytoin as an inhibitor, the K(i) for inhibition of recombinant CYP2C19-mediated bufuralol hydroxylation was 42 microM, which is the approximate K(m) for recombinant CYP2C19-mediated S-mephenytoin metabolism. The classic CYP2D6 inhibitors quinidine and quinine showed no inhibition of CYP2C19-catalyzed bufuralol metabolism at concentrations that abolished CYP2D6-mediated bufuralol metabolism. Ticlopidine, a potent inhibitor of CYP2C19 and CYP2D6, inhibited bufuralol 1'-hydroxylation by each of these enzymes equipotently. In human liver microsomes that are known to be deficient in CYP2D6 activity, it was shown that in the presence of quinidine, the K(m) shifted from 14 to 38 microM. This is consistent with the K(m) determination for recombinant CYP2C19 of 36 microM. In human liver microsomes that have high CYP2D6 and CYP2C19 activity, the K(m) shifted to 145 microM in the presence of S-mephenytoin and quinidine, consistent with the K(m) determined for CYP1A2. This data suggests that bufuralol, and possibly other CYP2D6 substrates, have the potential to be metabolized by CYP2C19.  相似文献   

19.
20.
Levels of cytochrome P450 (P450 or CYP) proteins immunoreactive to antibodies raised against human CYP1A2, 2A6, 2C9, 2E1, and 3A4, monkey CYP2B17, and rat CYP2D1 were determined in liver microsomes of rats, guinea pigs, dogs, monkeys, and humans. We also examined several drug oxidation activities catalyzed by liver microsomes of these animal species using eleven P450 substrates such as phenacetin, coumarin, pentoxyresorufin, phenytoin, S-mephenytoin, bufuralol, aniline, benzphetamine, ethylmorphine, erythromycin, and nifedipine; the activities were compared with the levels of individual P450 enzymes. Monkey liver P450 proteins were found to have relatively similar immunochemical properties by immunoblotting analysis to the human enzymes, which belong to the same P450 gene families. Mean catalytic activities (on basis of mg microsomal protein) of P450-dependent drug oxidations with eleven substrates were higher in liver microsomes of monkeys than of humans, except that humans showed much higher activities for aniline p-hydroxylation than those catalyzed by monkeys. However, when the catalytic activities of liver microsomes of monkeys and humans were compared on the basis of nmol of P450, both species gave relatively similar rates towards the oxidation of phenacetin, coumarin, pentoxyresorufin, phenytoin, mephenytoin, benzphetamine, ethylmorphine, erythromycin, and nifedipine, while the aniline p-hydroxylation was higher and bufuralol 1′-hydroxylation was lower in humans than monkeys. On the other hand, the immunochemical properties of P450 proteins and the activities of P450-dependent drug oxidation reactions in dogs, guinea pigs, and rats were somewhat different from those of monkeys and humans; the differences in these animal species varied with the P450 enzymes examined and the substrates used. The results presented in this study provide useful information towards species-related differences in susceptibilities of various animal species regarding actions and toxicities of drugs and xenobiotic chemicals. Received: 28 August 1996 / Accepted: 20 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号