首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the actions of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) on human monocytes, using a serum-free culture system. GM-CSF and IL-3 did not promote the differentiation of monocytes into macrophages but rather into cells with a phenotype compatible with that of immature dendritic cells (DCs). The addition of fetal bovine serum to serum-free cultures with GM-CSF or IL-3 restored the differentiation of monocytes into macrophages. Cells generated with GM-CSF or IL-3 elicited phagocytic activity. Cells generated in the presence of GM-CSF or IL-3, followed by the addition of tumor necrosis factor-alpha, displayed a phenotype of mature DCs, and primed and stimulated immunogenic peptide-specific T lymphocytes. Surprisingly, GM-CSF and IL-3 inhibited macrophage colony-stimulating factor (M-CSF)-dependent differentiation of monocytes into macrophages and induced differentiation into immature DCs. We asked if the inhibition of M-CSF-dependent differentiation into macrophages by GM-CSF or IL-3 was associated with the expression of M-CSF receptors (M-CSFR). GM-CSF or IL-3 down-regulated the expression of M-CSFR. These data demonstrate that GM-CSF and IL-3 primarily support the differentiation of monocytes into DCs and inhibit M-CSF-dependent differentiation into macrophages by suppressing the expression of M-CSFR, thereby promoting differentiation into DCs.  相似文献   

2.
Segal  GM; McCall  E; Bagby  GC Jr 《Blood》1988,72(4):1364-1367
Interleukin-1 (IL-1) induces cultured human umbilical vein endothelial cells to elaborate heterogeneous hematopoietic growth factors, including granulocyte-macrophage and granulocyte colony-stimulating factors (GM-CSF and G-CSF, respectively). Because erythroid burst- promoting activity (BPA) is also elaborated by endothelial cells exposed to IL-1, we sought to determine whether the BPA released by IL- 1-induced endothelial cells simply reflects the known erythropoietic activity of GM-CSF or whether other uncharacterized factors might be involved. Media conditioned by multiply passaged endothelial cells cultured for three days with recombinant IL-1 alpha (ECMIL-1) stimulated erythroid burst and GM colony formation in cultures of human nonadherent T-lymphocyte-depleted marrow mononuclear cells. Pretreatment with an anti-GM-CSF antiserum neutralized all the BPA and 56% of the GM colony-stimulating activity (GM-CSA) in ECMIL-1. The antiserum used in these studies did not inhibit IL-3 or G-CSF activity and did not inhibit ECMIL-1-induced murine GM colony growth (a measure of human G-CSF). To examine whether GM-CSF induces BPA release by accessory cells, media conditioned by marrow cells cultured for three days with GM-CSF were tested in the colony growth assays. Pretreatment with anti-GM-CSF antiserum completely neutralized the BPA and GM-CSA of the marrow cell-conditioned medium. We conclude that GM-CSF is the BPA elaborated by IL-1-induced endothelial cells. The in vitro erythropoietic activity of GM-CSF is not dependent on induced BPA release by accessory cells and therefore likely results from a direct effect of GM-CSF on progenitor cells.  相似文献   

3.
OBJECTIVE: To further investigate the effects of interleukin-1 (IL-1) in immune-mediated joint inflammation, we examined the role of IL-2, Th1 interferon-gamma (IFNgamma), and Th2 (IL-4) cytokines, joint macrophages, and macrophage-derived cytokines (IL-12 p40, IL-6, leukemia inhibitory factor [LIF], oncostatin M [OSM], and granulocyte-macrophage colony-stimulating factor [GM-CSF]) in a CD4+ T lymphocyte-dependent model of acute arthritis. METHODS: Methylated bovine serum albumin (mBSA)/IL-1-induced arthritis was elicited in wild-type, gene-knockout, and monoclonal antibody-treated mice. Synovial lining macrophages were selectively depleted by intraarticular injection of clodronate liposomes prior to disease induction. The severity of arthritis was assessed histologically. RESULTS: Mice deficient in IL-2 were almost completely protected from arthritis, and neutralization of IL-4 reduced the severity of disease. In contrast, arthritis severity and resolution appeared to be independent of IFNgamma. Synovial lining macrophage depletion markedly reduced arthritis severity. IL-6 or LIF deficiency was only modestly protective, although as previously reported, GM-CSF deficiency conferred profound disease resistance. IL-12 p40-deficient mice (which lack IL-12 and IL-23) and OSM receptor-deficient mice were susceptible to mBSA/IL-1-induced arthritis. CONCLUSION: Acute mBSA/IL-1-induced arthritis is dependent on IL-2 and IL-4, but not IFNgamma. In vivo, the Th1/Th2 paradigm may be distorted by the presence of macrophage-derived cytokines such as IL-1. Synovial lining macrophages are essential in mBSA/IL-1-induced arthritis. However, the requirement for macrophage-derived cytokines is selective; that is, IL-6, LIF, and especially GM-CSF are necessary, but IL-12, IL-23, and OSM are dispensable. IL-1 may therefore influence both adaptive and innate immune mechanisms in acute inflammatory arthritis.  相似文献   

4.
Interleukin-8 (IL-8) is a major neutrophil chemoattractant and functional stimulant that is induced by IL-1, tumor necrosis factor alpha (TNF alpha), and lipopolysaccharide (LPS). We report that recombinant human (rh) granulocyte-macrophage colony-stimulating factor (GM-CSF) and rhIL-3 are also potent inducers of IL-8 messenger RNA (mRNA) accumulation and protein secretion by normal peripheral blood monocytes. Neutrophils produce IL-8 in response to GM-CSF but not to IL- 3. In contrast, recombinant human granulocyte-CSF (rhG-CSF), at concentrations as high as 100 ng/mL, does not induce IL-8 in either cell type. rhGM-CSF also induces IL-8 mRNA expression and IL-8 protein in the promonocytic cell line, U-937, whereas rhG-CSF does not. IL-8 secretion by monocytes was stimulated within 2 hours after incubation with rhGM-CSF or rhIL-3. Stimulation of neutrophils with rhGM-CSF resulted in an increase in cell-associated IL-8 at 4 hours. At 24 hours, cell-associated IL-8 levels declined, whereas secreted IL-8 levels increased. In contrast, virtually all IL-8 induced in monocytes appeared as secreted protein. Neither rhGM-CSF nor rhIL-3 induced detectable secretion of IL-1, TNF alpha, or IL-6 protein by monocytes. rhGM-CSF, and to a lesser degree rhIL-3, potently stimulated IL-8 secretion in cultures of heparinized whole blood, whereas rhG-CSF had no significant effect on IL-8 secretion. Induction of IL-8 by GM-CSF may be physiologically important in enhancing the acute inflammatory response.  相似文献   

5.
Amegakaryocytic thrombocytopenia (AMT) is a rare and often fatal disorder of infancy and childhood presenting with isolated thrombocytopenia that progresses to marrow failure. The defect in thrombopoiesis is not well understood nor is the etiology of the progressive marrow failure. No standard modality of treatment exists. Here, we evaluated the capacity of marrow cells isolated from five patients with AMT and progressive marrow failure to generate megakaryocyte progenitor cells (CFU-MK). These in vitro studies demonstrated assayable numbers of CFU-MK from all patient bone marrows that responded in vitro to the addition of interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or the combination of both. These findings suggest that the defect in AMT might be partially correctable by the administration of these cytokines. A Phase I/II trial of in vivo administration of these same hematopoietins in the identical patients was conducted in which no significant toxicity was observed. IL-3 but not GM-CSF administration resulted in improved platelet counts in two patients and decreased bleeding and transfusion requirement in the remaining three. No clinical benefit was observed when GM-CSF was administered after IL-3 pretreatment. Prolonged IL-3 administration has resulted in platelet increases in an additional two patients. In vitro responsiveness of CFU- MK to either cytokine did not predict the degree of clinical response. Although the optimal dose and schedule of IL-3 either alone or in combination remains to be established, this study suggests that IL-3 may contribute to the treatment of patients with AMT.  相似文献   

6.
7.
Interleukin-1 (IL-1) was found to act synergistically with granulocyte-macrophage colony-stimulating factor (GM-CSF) on granulocytic colony growth of normal human bone marrow cells, depleted of mononuclear phagocytes and T lymphocytes. Using CD34/HLA-DR-enriched bone marrow cells we demonstrated that this activity of IL-1 was not a direct action on hematopoietic progenitor cells, but an effect of an intermediate factor produced by residual accessory cells in response to IL-1. Neutralization experiments using an anti-IL-6 antiserum showed that IL-1-induced IL-6 did not contribute to the observed synergy. Furthermore, IL-6 by itself had neither a direct stimulatory effect on CFU-GM colony growth, nor did it act synergistically with GM-CSF on granulocytic or monocytic colony formation. Neutralization experiments with an anti-G-CSF monoclonal antibody showed that IL-1-induced G-CSF production was responsible for the synergy with GM-CSF. Using combinations of G-CSF and GM-CSF this synergistic activity could be detected at concentrations of G-CSF as low as 0.1 ng/mL (10 U/mL). Our results indicate that IL-1, but not IL-6, stimulates the GM-CSF-dependent proliferation of relatively mature myeloid progenitor cells in the presence of small numbers of accessory cells.  相似文献   

8.
9.
Recombinant human interleukin-2 (IL-2), administered to cancer patients by continuous intravenous (IV) infusion (3 x 10(6) U/m2/d), was found to induce the in vivo production of colony-stimulating factors (CSF). Plasma obtained from patients during IL-2 treatment stimulated in vitro colony formation of normal human bone marrow cells, depleted of mononuclear phagocytes and T lymphocytes. This colony-stimulating activity (CSA) was identified as IL-5, granulocyte-macrophage CSF (GM-CSF), and macrophage CSF (M-CSF), by the ability of specific antibodies against these factors to neutralize their effects. The presence of IL-2-induced GM-CSF and M-CSF was also demonstrated by specific radioimmunoassays. During IL-2 treatment, plasma also contained detectable levels of IL-6, which was measured in a bioassay. Using a cDNA-polymerase chain reaction (PCR) with specific primer sets for the various CSF, we showed that IL-2 treatment induced the expression of mRNA for M-CSF, GM-CSF, IL-3, and IL-5, but not for granulocyte CSF (G-CSF) in peripheral blood mononuclear cells, suggesting differential expression of CSF in vivo in response to IL-2. Furthermore, no negative regulators of hematopoiesis, such as interferon gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF-alpha), were found in plasma. These data illustrate that in vivo administration of high-dose IL-2 may result in a stimulatory effect on hematopoiesis. The induction of detectable levels of IL-5 and GM-CSF in the circulation may explain the eosinophilia and neutrophilia observed in these patients.  相似文献   

10.
11.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic hemopoietic growth factor and activator of mature myeloid cell function. We have previously shown that residue 21 in the first helix of GM-CSF plays a critical role in both biological activity and high-affinity receptor binding. We have now generated analogues of GM-CSF mutated at residue 21, expressed them in Escherichia coli, and examined them for binding, agonistic, and antagonistic activities. Binding experiments showed that GM E21A, E21Q, E21F, E21H, E21R, and E21K bound to the GM-CSF receptor alpha chain with a similar affinity to wild-type GM-CSF and had lost high-affinity binding to the GM-CSF receptor alpha-chain-common beta-chain complex. From these mutants, only the charge reversal mutants E21R and E21K were completely devoid of agonistic activity. Significantly we found that E21R and E21K antagonized the proliferative effect of GM-CSF on the erythroleukemic cell line TF-1 and primary acute myeloid leukemias, as well as GM-CSF-mediated stimulation of neutrophil superoxide production. This antagonism was specific for GM-CSF in that no antagonism of interleukin 3-mediated TF-1 cell proliferation or tumor necrosis factor alpha-mediated stimulation of neutrophil superoxide production was observed. E. coli-derived GM E21R and E21K were effective antagonists of both nonglycosylated and glycosylated wild-type GM-CSF. These results show that low-affinity GM-CSF binding can be dissociated from receptor activation and have potential clinical significance for the management of inflammatory diseases and certain leukemias where GM-CSF plays a pathogenic role.  相似文献   

12.
13.
Gillessen S  Mach N  Small C  Mihm M  Dranoff G 《Blood》2001,97(4):922-928
Studies of mice rendered deficient in granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-3 (IL-3) have established unique roles for these cytokines in pulmonary homeostasis, resistance to infection, and antigen-specific T- and B-cell responses. In addition to these distinctive properties, however, GM-CSF and IL-3 also stimulate the development and activation of hematopoietic cells in many similar ways, raising the possibility that each factor might partially compensate for the other's absence in singly deficient mice. To test whether endogenous GM-CSF and IL-3 mediate redundant functions in vivo, we generated mice lacking both cytokines through sequential gene targeting experiments in embryonic stem (ES) cells. Surprisingly, doubly deficient animals, but not single knockouts, showed increased numbers of circulating eosinophils. Doubly deficient mice, moreover, developed weaker contact hypersensitivity reactions to haptens applied epicutaneously than mice deficient in either factor alone. Together, these findings delineate overlapping roles for GM-CSF and IL-3 in hematopoiesis and immunity. (Blood. 2001;97:922-928)  相似文献   

14.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a potent cytokine capable of inducing differentiation, proliferation, and activation of a variety of immunologically active cell populations. In addition to its effects on stimulating granulocytic hematopoiesis, it also facilitates development of both humoral and cellular mediated immunity. Accordingly, strategies involving the use of GM-CSF as a vaccine adjuvant have attracted considerable attention. These strategies include the systemic administration of soluble GM-CSF with an immunogen, and also its use as part of gene therapy approaches to immunization. Because of the potency of this cytokine as an immune adjuvant, particular interest has focused on its use to overcome poorly immunogenic antigens such as those associated with intracellular infections and cancer. This review focuses on recent advances in the use of GM-CSF as a vaccine adjuvant.  相似文献   

15.
 The present study was designed to investigate in vivo immunomodulatory properties of hematopoietic growth factors. The influence on the activation of cytokine synthesis and on the expression of surface antigens associated with cellular activation of G-CSF or GM-CSF was investigated in cancer patients receiving these factors. One single dose of growth factor was administered to patients with bladder cancer (G-CSF group) or small cell lung cancer (GM-CSF group) before chemotherapy. After cytoreductive chemotherapy patients received supportive therapy with G-CSF or GM-CSF. Peripheral blood mononuclear cells and plasma samples were obtained for flow cytometry, Northern blot analysis, and assessment of cytokine protein levels after single-dose as well as after continous cytokine administration. Our results demonstrate differences in the induction of biological activities by GM-CSF and G-CSF in vivo which correlate well with in vitro findings. Among mature hematopoietic cells the effect of G-CSF is restricted to the granulocyte lineage. With GM-CSF moderate but unequivocal modulation of monocyte function was observed. On peripheral blood monocytes expression of MHC class-II molecules and CD44 was markedly stimulated. After one single dose of GM-CSF, plasma levels of sCD25 and IL-1RA were significantly induced (p<0.0001, p=0.032, respectively) and a trend to increased IL-8 levels was observed. The changes in plasma proteins were not correlated with shifts of mRNA expression for IL-8 and IL-1RA. T-cell activation was not observed with either cytokine. These results suggest that immunomodulatory features are differentially regulated by G-CSF and GM-CSF. The clinical relevance of a selective use of both hematopoietic growth factors in various disease settings remains to be determined. Received: 20 March 1996 / Accepted: 19 July 1996  相似文献   

16.
Stewart-Akers  AM; Cairns  JS; Tweardy  DJ; McCarthy  SA 《Blood》1993,81(10):2671-2678
The treatment of cancer with lymphokine-activated killer (LAK) cells in conjunction with high-dose interleukin-2 (IL-2) has been limited by the toxicity of IL-2 and the narrow range of tumors that respond to therapy. Cytokines that are capable of augmenting lower doses of IL-2 are, therefore, a major focus of research. We report here that granulocyte-macrophage colony-stimulating factor (GM-CSF) can augment low-dose IL-2 LAK induction from murine splenocytes. Anti-tumor necrosis factor alpha (anti-TNF alpha) or anti-interferon gamma (anti- IFN gamma) monoclonal antibodies did not inhibit (IL-2 + GM-CSF)- induced LAK generation, indicating that GM-CSF augmentation does not require TNF alpha or IFN gamma activity. Depletion of natural killer cells before culture did not inhibit low-dose IL-2-induced LAK generation or the ability of GM-CSF to augment LAK generation. In contrast, depletion of both CD4+ and CD8+ T cells before culture inhibited the generation of LAK activity. However, depletion of only CD4+ T cells, or only CD8+ T cells, did not inhibit the generation of IL-2 or (IL-2 + GM-CSF) LAK activity. These results suggest that LAK precursors are present in both the CD4+ and CD8+ T-cell populations and suggest that the addition of GM-CSF to low-dose IL-2 may result in the generation of T-derived LAK cells.  相似文献   

17.
K B Leslie  H J Ziltener  J W Schrader 《Blood》1991,78(5):1301-1310
WEHI-274.3 is a cell line isolated from an in vivo-derived, murine myelomonocytic leukemia. Although the survival and growth of WEHI-274.3 cells in vitro is absolutely dependent on the addition of exogenous growth factors such as interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or colony-stimulating factor-1, when injected into syngeneic mice the cell line is tumorigenic. Sera from normal mice contain low levels of an activity that sustains survival of WEHI-274.3 but does not stimulate growth. In contrast, sera from mice bearing the WEHI-274.3 leukemia contained levels of CSF-1 and GM-CSF that stimulated the growth of WEHI-274.3 cells. Supernatants of cultures of WEHI-274.3 cells contained an activity that stimulated 3T3 fibroblasts to release an activity that stimulated the growth of the WEHI-274.3 cells. The 3T3-stimulatory activity released by the WEHI-274.3 cells was neutralized completely with an antiserum specific for murine IL-1 alpha, but not with antiserum specific for IL-1 beta. Moreover, WEHI-274.3 cells both in vitro and in vivo contained high levels of IL-1 alpha and IL-1 beta mRNAs. The leukemia-stimulatory activity released by the 3T3 cells was neutralized by an antiserum specific for GM-CSF. We postulate that the IL-1 alpha constitutively released by the WEHI-274.3 cells stimulates the production of GM-CSF from host cells such as fibroblasts or endothelial cells. A similar paracrine mechanism of growth stimulation may occur in acute myeloid leukemias in humans.  相似文献   

18.
Antisense oligodeoxynucleotides (ODNs) have been used to effect the specific inhibition of cellular gene expression. We have evaluated the application of this approach to the inhibition of interleukin-1 (IL-1)-induced granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) expression in cultured human umbilical vein endothelial cells. Antisense ODNs or control ODNs (sense ODNs or missense ODNs containing random base substitutions) were added to cultures of endothelial cells, the cells were induced with IL-1 alpha, and the conditioned media were assayed for GM-CSF and G-CSF by quantitative bioassays and for immunoreactive GM-CSF by enzyme immunoassay. Antisense ODNs complementary to the first 15 or 18 bases of the translation start sites of GM-CSF or G-CSF mRNAs inhibited, in a concentration-dependent fashion, the IL-1-stimulated expression of the corresponding factor, but did not affect expression of the other factor. Control ODNs did not affect GM-CSF or G-CSF expression. Exposure to a GM-CSF antisense ODN, but not a control ODN, substantially reduced cytoplasmic GM-CSF mRNA levels in IL-1-stimulated endothelial cells. Neither ODN affected levels of endothelial leukocyte adhesion molecule (ELAM)1 or glyceraldehyde-3-phosphate dehydrogenase mRNAs. We conclude that antisense ODNs complementary to the translation start sites of GM-CSF or G-CSF mRNAs inhibit expression of the corresponding factor in a sequence-specific fashion and this effect is mediated, at least in part, by reduction in the cytoplasmic level of the targeted mRNA. Moreover, IL-1-induced GM-CSF or G-CSF expression does not depend on expression of the other factor.  相似文献   

19.
Acute myeloblastic leukemia (AML) blasts have been shown to produce a variety of cytokines in culture such as interleukin-1 (IL-1), IL-6, granulocyte-, macrophage-, and granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-alpha (TNF alpha). Using two sensitive and specific enzyme-linked immunosorbent assays for IL-1 beta and GM-CSF, we document in the present study that the production of the two cytokines by AML blasts in culture is coordinated. First, we observe a striking correlation between the levels of GM-CSF and IL-1 beta released by the cells. Thus, a high production of IL-1 beta is always concordant with a high production of GM-CSF and, conversely, low production of IL-1 beta is concordant with low levels of GM-CSF. Second, neutralization of intrinsic IL-1 using antibodies that are specific for IL-1 alpha and -1 beta suppresses the release of GM-CSF by the cells. Third, neutralization of the endogenous source of IL-1 also results in an abrogation of GM-CSF mRNA. Fourth, the production of both IL-1 beta and GM-CSF is up-regulated by exposing AML blasts to an exogenous source of IL-1, suggesting a positive regulation of autocrine growth factor production. Taken together, our results indicate that GM-CSF production by AML blasts is mediated by endogenously produced IL-1. Both IL-1 beta and -1 alpha are produced by AML blasts, although IL-1 beta appears to be more abundant. Spontaneous colony formation by AML blasts is abrogated by the addition of neutralizing antibodies against IL-1 beta and GM-CSF, whereas each antibody alone has little effect on blast proliferation. Taken together, our results are consistent with the view that the production of IL-1 beta by AML blasts supports autocrine growth in culture, through induction of CSFs or other cytokines that stimulate blast proliferation.  相似文献   

20.
Tumor necrosis factor (TNF) acts as a potent enhancer of granulocyte-macrophage colony-stimulating factor (GM-CSF)- and interleukin-3 (IL-3)-induced human acute myeloid leukemia (AML) growth in vitro. We have analyzed the effects of TNF alpha on the expression of GM-CSF and IL-3 receptors on AML cells. Incubation of blasts from seven patients with AML in serum-free medium with TNF (10(3) U/mL) and subsequent binding studies using 125I-GM-CSF and 125I-IL-3 show that TNF increases the specific binding of GM-CSF (30% to 280%) and IL-3 (40% to 600%) in all cases. From Scatchard plot analysis it appears that TNF upregulates (1) low-affinity GM-CSF binding sites, (2) common high-affinity IL-3/GM-CSF binding sites, and (3) unique (non-GM-CSF binding) IL-3 binding sites. The effect of TNF is dose dependent and is half maximal at a concentration of 100 U/mL, and becomes evident at 18 hours of incubation with TNF at 37 degrees C, but not at 0 degree C. The GM-CSF dose-response curve of AML-colony-forming units plateaus at a higher level in the presence of TNF, which indicates that additional numbers of cells become responsive to GM-CSF. Incubation of AML blasts with the phorbol ester 12-0-tetradecanoylphorbol-13-acetate or formyl-Met-Leu-Phe (protein kinase C activators) does not influence GM-CSF receptor expression, suggesting that receptor upregulation by TNF is not mediated through activation of protein kinase C. On the other hand, the protein synthesis inhibitor cycloheximide abrogates receptor upregulation induced by TNF. In contrast to these findings in AML, TNF does not upregulate GM-CSF receptor numbers on blood granulocytes or monocytes. We conclude that TNF exerts positive effects on growth factor receptor expression of hematopoietic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号