首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yan P  Liu N  Kim GM  Xu J  Xu J  Li Q  Hsu CY  Xu XM 《Experimental neurology》2003,183(2):286-297
Posttraumatic inflammation has been implicated in secondary tissue damage after spinal cord injury (SCI). Tumor necrosis factor-alpha (TNF-alpha) is a key inflammatory mediator that is increasingly expressed after SCI. The effect of TNF-alpha is mediated through its receptors TNFR1 (p55) and TNFR2 (p75). However, whether these two receptors are expressed after SCI has not been demonstrated. In the present study, the temporo-spatial expression of TNFR1 and TNFR2 was examined in rats that had received a 10 g impact injury dropped at a height of 12.5 mm using the New York University impact device. In sham operates, no detectable TNFR1 or TNFR2 immunoreactivity (IR) was observed. In contused spinal cord, TNFR1 protein expression and immunoreactivity (IR) were detected as early as 15 min postinjury, reached its peak at 8 h, and declined markedly after 1 and 3 days postinjury. The temporal pattern of TNFR2 expression was similar to that of TNFR1 but its expression peaked at 4 h postinjury. During peak expression, TNFR1- and TNFR2-IR were most intense at the site of injury and decreased gradually from the injury epicenter. TNFR1- and TNFR2-positive cells included neurons, astrocytes, and oligodendrocytes. Methylprednisolone (MP), a synthetic glucocorticoid, partially inhibited the injury-induced expression of TNFR1 and TNFR2, an effect which could be reversed by RU486, an antagonist of glucocorticoid receptors. We suggest that the expression of TNFR1 and TNFR2 after SCI may contribute to posttraumatic inflammatory responses of TNF-alpha.  相似文献   

2.
Distributions of heat shock protein (HSP)-70 mRNAs and heat shock cognate protein (HSC)-70 mRNAs after 10 min of transient global ischemia were investigated in gerbil forebrain by in situ hybridization using cloned cDNA probes selective for the mRNAs. Expression of HSP70 immunoreactivity was also examined in the same brains. In hippocampal CA1 neuronal cells, in which only a minimal induction of immunoreactive HSP70 protein was found, the strong hybridization for HSP70 mRNA disappeared at around 2 days before the death of CA1 cells became evident. Furthermore, in hippocampal CA3 cells, a striking induction of HSP70 mRNA was sustained even at 2 days along with a prominent accumulation of HSP70 immunoreactivity. In contrast to the case of HSP70 mRNA, HSC70 mRNA was present in most neuronal cells, especially dense in CA3 cells, of the sham brain. A co-induction of HSP70 and HSC70 mRNAs was observed in several cell populations after the reperfusion with a peak at 8 h, although the magnitude of HSC70 mRNA induction was lower than that of HSP70 mRNA, particularly in CA1 cells. The expression of HSC70 mRNA in CA1 cells also disappeared at around 2 days. All the induced signals of HSP70 and HSC70 mRNAs in other cell populations were diminished and returned to the sham level, respectively, by 7 days. These results are the first to show the time courses of distribution of HSP70 and HSC70 mRNAs and the immunoreactive HSP70 protein in the same gerbil brain after ischemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Inflammation including local accumulations of tumor necrosis factor alpha (TNF-alpha) is a part of Alzheimer's disease pathology and may exacerbate age-related neurodegeneration. Most studies on TNF-alpha and TNF neuronal receptors are conducted by using embryonic neurons. Few studies consider age-related deficits that may occur in neurons. Age-related changes in susceptibility to TNF-alpha through TNF receptor 1 (TNFR1) and receptor 2 (TNFR2) expression could increase susceptibility to beta-amyloid (1-42, Abeta42). Evidence is conflicting about which receptor mediates survival and/or apoptosis. We determined how aging affects receptor expression in cultured adult rat cortical neurons. Old neurons were more susceptible to Abeta42 toxicity than middle-aged neurons, and the addition of TNF-alpha was neuroprotective in middle-aged neurons, but exacerbated the toxicity from Abeta42 in old neurons. These pathologic and protective responses in old and middle-aged neurons, respectively, correlated with higher starting TNFR1 and TNFR2 mRNA levels in old vs. middle-aged neurons. Middle-aged neurons treated with TNF-alpha plus Abeta42 did not show an increase in either TNFR1 or TNFR2 mRNA, but old neurons showed an up-regulation in TNFR2 mRNA and not TNFR1 mRNA. Despite these mRNA changes, surface immunoreactivity of both TNFR1 and TNFR2 increased with the dose of TNF-alpha in middle-aged neurons. However, middle-aged neurons treated with TNF-alpha plus Abeta42 showed an up-regulation in both TNFR1 and TNFR2 surface expression, whereas old neurons failed to up-regulate surface expression of either receptor. These findings support the hypothesis that age-related changes in TNF-alpha surface receptor expression contribute to the neuronal loss associated with inflammation in Alzheimer's disease.  相似文献   

4.
Preischemic hyperglycemia is known to aggravate brain damage caused by transient forebrain ischemia. Because heat shock proteins (HSPs) 72 have been proposed to play a protective role against ischemic neuronal injury, we studied the HSP(72) mRNA expression and protein synthesis in gerbils subjected to 10 min bilateral carotid occlusion under normoglycemic, hyperglycemic and fasting conditions. HSP(72) mRNA expression and HSP(72) synthesis were studied using in situ hybridization and immunostaining, respectively. After 8 h of blood recirculation, HSP(72) mRNAs were expressed in all the hippocampal subfields of the three different groups, with higher expression in the hyperglycemic gerbils. After 48 h of reperfusion, HSP(72) mRNAs had almost completely disappeared in the hyper- and normoglycemic groups, and were more strongly expressed in the CA(1) neurons of the fasted group. At this time, fasted gerbils exhibited intense HSP(72) immunoreactivity in the CA(1), whereas an absence of immunoreactivity was observed in that area in the other groups. Finally, ischemia was also associated with marked astrocytic activation, as evidenced by GFAP immunostaining. Overall results indicate that preischemic differences in blood glucose supply to the brain are related to HSP(72) mRNA expression (in terms of duration) and to HSP(72) protein induction (in terms of intensity) in the vulnerable CA(1) neurons of the hippocampus. Ability of CA(1) neurons to synthesize HSP(72) proteins was associated with higher neuronal survival in the fasted group after 48 h of reflow, suggesting a protective role of HSP(72), even though evaluation of neuronal damage at 7 days indicated that neuronal death was mainly delayed in the time.  相似文献   

5.
We evaluated by immunocytochemistry cellular localization and time-dependent expression of tumor necrosis factor a (TNF-alpha) and its receptors p55 (TNF-RI) and p75 (TNF-R2) in human ischemic brains. We observed them in microglia, neurons, astrocytes, macrophages and blood vessels. Since TNF-alpha expression was very intense and prolonged in microglia, it probably constitutes the main cellular source of the cytokine following cerebral ischemia in humans. Constitutive expression of TNF-alpha receptors was observed in neurons and blood vessels while in other cells it was induced by ischemia. In macrophages, dominant immunolabeling for TNF-R2 was seen. In other cells, immunoreactions for both types of TNF-alpha receptors were similar but the pattern of immunostaining was different: homogenous for TNF-R1 and granular for TNF-R2. Beneficial and detrimental role of TNF-alpha in cerebral ischemia and supposed mechanisms of action are discussed.  相似文献   

6.
Lee TH  Kato H  Chen ST  Kogure K  Itoyama Y 《Neuroreport》2002,13(17):2271-2275
We studied the spatial and temporal expression of BDNF immunoreactivity and mRNA in the hippocampal formation after transient forebrain ischemia in gerbils. Our study demonstrated that in the vulnerable CA1 neurons, there was a prolonged expression disparity between BDNF immunoreactivity and mRNA and the BDNF level was reduced, in contrast to the ischemia-resistant dentate gyrus neurons that showed transient expression disparity and maintained the BDNF level. This expression disparity of the neurotrophic factor may be related to delayed neuronal death. Double immunostaining showed that reactive astroglia and microglia could express BDNF, suggesting a possible involvement of these cells in the mechanism of neuronal survival after ischemia.  相似文献   

7.
Heat shock proteins act as molecular chaperones and are involved in protein folding, refolding, transport, and translocation. In the present study, we observed changes in heat shock protein 60 (HSP60) immunoreactivity and protein level in the gerbil hippocampal CA1 region after 5 min of transient forebrain ischemia and its neuroprotective effect against ischemic damage. HSP60 immunoreactivity in the CA1 region began to increase in the stratum pyramidale at 30 min after ischemia/reperfusion, and peaked 24 h after ischemia/reperfusion. Thereafter, HSP60 immunoreactivity was decreased in the CA1 region with time. Seven days after ischemia/reperfusion, HSP60 immunoreactivity was increased again in the CA1 region: at this time point after ischemia/reperfusion, HSP60 immunoreactivity was expressed in glial cells in the ischemic CA1 region. HSP60 immunoreactive glial cells were astrocytes containing glial fibrillar acidic protein. In contrast, change in HSP60 immunoreactivity in the ischemic CA2/3 region was not significant compared with that in the ischemic CA1 region. In Western blot study, HSP60 protein level in the CA1 region was increased after ischemia/reperfusion and highest 24 h after ischemia/reperfusion. Animals treated with recombinant adenoviruses expressing Hsp60 (Ad-Hsp60) showed the neuroprotection of CA1 pyramidal neurons from ischemic damage. These results suggest that HSP60 may be associated with delayed neuronal death of CA1 pyramidal neurons after transient ischemia, and the induction of HSP60 protects the neurons from ischemic damage.  相似文献   

8.
9.
10.
Exogenous TGF-beta1 has been shown to protect neurons from damage induced in vitro and in vivo. In this study we attempted to examine the expression of endogenous TGF-beta1 mRNA and protein in the hippocampus of non-ischemic and ischemic rats, and to localize TGF-beta1 protein and DNA fragmentation by double-staining. Transient ischemia was induced for 10 min in Wistar rats by clamping both common carotid arteries and lowering blood pressure to 40 mmHg. Bioactive TGF-beta1 was selectively determined in CA1 pyramidal neurons of non-ischemic rats. It was upregulated after 3 h and 6 h of reperfusion corresponding to the increase in TGF-beta1 mRNA level detected by RT-PCR. Lectin and GFAP staining showed no detectable activated microglial cells and astrocytes in the hippocampus 3 h and 6 h after ischemia. When neuronal damage proceeded through day 2 to day 4 after ischemia as demonstrated by TUNEL-staining, TGF-beta1 immunoreactivity (ir) disappeared in damaged neurons but persisted in viable neurons although TGF-beta1 mRNA levels continuously increased. Double-staining revealed that TUNEL-positive neurons did not express TGF-beta1, while TUNEL-negative neurons in the CA1 subfield exhibited a distinct TGF-beta1 ir. These data indicate that hippocampal CA1 neurons can express TGF-beta1 under physiological conditions and upregulate its expression during the first hours after ischemia, that is independent of the activation of glial cells. The endogenous TGF-beta1 expressed in neurons may play a role in the pathological process of DNA degradation and delayed neuronal death after transient forebrain ischemia.  相似文献   

11.
12.
Calpain-mediated spectrin degradation is triggered by cerebral ischemia and, when persistent, is thought to signal irreversible neuronal injury. Hyperthermia superimposed upon cerebral ischemia may exacerbate the injury process. In this study, we compared the extent of spectrin degradation in the brains of rats subjected to 1 h of transient proximal middle cerebral artery (MCA) clip-occlusion performed under conditions of cranial normothermia (37°C) or mild cranial hyperthermia (39°C). Immunocytochemical localization of spectrin breakdown products was achieved by the use of a rabbit polyclonal antibody which reacted selectively with calpain-generated fragments of brain spectrin. The perfusion times studied were 1, 4 or 24 h. Following normothermic MCA occlusion, spectrin immunoreactivity was present only occasionally and only in scattered cortical neurons immediately upon reperfusion and 1 h later; all normothermic brains showed sparse immunoreactivity at 4 h of reperfusion; and no immunoreactivity was detected at 24 h. By contrast, following hyperthermic MCA occlusion, moderate-to-intense immunostaining was present in cortical pyramidal neurons even immediately upon reperfusion and persisted at 1 h of reperfusion. At 4 and 24 h, most brains exhibited dense immunoreactivity associated with morphologically shrunken neurons. Following 24 h survival, semi-thick plastic sections revealed intact neuropil and only selective neuronal necrosis in normothermic rats. By contrast, pan-necrosis was evident 24 h after the hyperthermic ischemic insult. These results indicate that mild cranial hyperthermia superimposed upon transient focal ischemia markedly enhances calpain activation and spectrin degradation; this process appears to be an important mechanism by which hyperthermia exacerbates ischemic injury.  相似文献   

13.
目的 观察大鼠大脑中动脉闭塞(MCAO)后再灌注不同时间点单核细胞趋化蛋白-1(MCP-1)与基因表达的变化.以探讨其在脑缺血再灌注损伤中的意义。方法 建立大鼠局灶性脑缺血再灌注模型,用免疫荧光双标染色、逆转录-聚合酶链反应(RT-PCR)技术检测MCP-1蛋白表达、mRNA转录水平。结果 (1)缺血再灌注后缺血脑组织中存在表达MCP-1/NSE和MCP-1/GFAP双阳性细胞.提示神经元和神经胶质细胞是产生MCP-1的细胞来源之一。(2)各缺血再灌注组MCP-1 mRNA表达均高于假手术组.再灌注1h MCP-1的mRNA转录即有升高.且随时间延长而进一步升高.24h达到高峰之后逐渐下降。结论 脑缺血再灌注引起MCP-1表达上调.提示MCP-1可能参与了局灶性脑缺血再灌注损伤。  相似文献   

14.
There is much evidence to suggest that ischemic injury occurs during the reperfusion phase of ischemia–reperfusion insults, and that the injury may be due to reactive-oxygen-species (ROS)-mediated oxidative events, including lipid peroxidation and DNA damage. However, oxidative DNA damage has until now not been examined in situ. In the present study, we report for the first time observation of cell type- and region-specific oxidative DNA damages in 5 min transient ischemic model by immunohistochemical methods, using monoclonal antibody against 8-hydroxy-2′-deoxyguanosine (8-OHdG), an oxidative DNA product. The cell types containing 8-OHdG immunoreactivity were neurons, glia and endothelial cells in the hippocampus. The 8-OHdG immunoreactivity was present in the nucleus but not the cytoplasm of these cells. The level of 8-OHdG in CA1 increased significantly (P<0.05) at the end of 30 min after ischemia, but there was no increase within CA2 and CA3 areas. The 8-OHdG levels in the hippocampus increased significantly (about fourfold) after 3 h of reperfusion and remained significantly (P<0.01) elevated for at least 12 h. At 4 days after ischemia, 8-OHdG levels in the CA2 and CA3 areas decreased to levels of the sham without neuronal loss, while disappearance of 8-OHdG immunoreactivity in the CA1 coincided with neuronal death in this area. These findings strongly suggest that ischemia-induced DNA damage evolves temporally and spatially, and that oxidative DNA damage may be involved in delayed neuronal death in the CA1 region.  相似文献   

15.
Hwang IK  Yoo KY  Kim DW  Kang TC  Choi SY  Kwon YG  Han BH  Kim JS  Won MH 《Brain research》2006,1086(1):181-190
Alterations of immunoreactivity and protein contents of Na(+)/Ca(2+) exchanger 1 (NCX1) were observed in the gerbil hippocampus proper after 5 min of transient forebrain ischemia. NCX1 immunoreactivity was significantly changed in the hippocampal CA1 region, but not in the CA2/3 region after ischemia/reperfusion. In the sham-operated group, NCX1 immunoreactivity was mainly detected in CA1 pyramidal cells. However, 30 min after ischemia/reperfusion, NCX1 immunoreactivity was significantly decreased and then increased at 1 day after ischemia. At this time, NCX1 immunoreactivity in CA1 pyramidal cells was similar to that of the sham-operated group. At 3 days after ischemia, NCX1 immunoreactivity was significantly reduced in the CA1 region compared to that of the sham-operated group and NCX1 immunoreactivity was significantly increased again 4 days after ischemia. Thereafter, NCX1 immunoreactivity was decreased time-dependently in ischemia groups. Between 15 min and 6 h post-ischemia, NCX1 immunoreactivity was expressed in astrocytes in the strata oriens and radiatum of the CA1 region. From 3 days post-ischemia, NCX1 immunoreactivity was expressed in astrocytes in the strata oriens and radiatum. Ischemia-induced changes in NCX1 protein contents in the hippocampus proper concurred with immunohistochemical data post-ischemia. Our results suggest that changes in NCX1 in CA1 pyramidal cells and astrocytes after ischemia are associated with intracellular Na(+) concentrations and that NCX1 may induce an intracellular calcium overload, which may be related to neuronal death.  相似文献   

16.
Ubiquitin binds to short-lived proteins and denatured proteins produced by various forms of injury. The loss of ubiquitin leads to an accumulation of abnormal proteins and may affect cellular structure and function. The aim of the present study is to observe the chronological changes in ubiquitin naive form and its mutant form (ubiquitin+1) in the hippocampal CA1 region (CA1) after transient cerebral ischemia in gerbils. Delayed neuronal death in the CA1 was confirmed 4 days after ischemic insult with NeuN immunohistochemistry. Ubiquitin immunoreactivity and protein level in the CA1 were lowest at 12 h after ischemia/reperfusion; thereafter, they were increased with time. Ubiquitin+1 immunoreactivity and protein levels in the CA1 were slightly decreased at 3 h after ischemia/reperfusion, and they were significantly increased 1 day after ischemia/reperfusion. In addition, ubiquitin and ubiquitin+1 immunoreaction was expressed in astrocytes after delayed neuronal death in the ischemic CA1. To elucidate the protective effect of ubiquitin on ischemic damage, the animals were treated with ubiquitin (1.5 mg/kg body weight) intravenously via the femoral vein. Ubiquitin treatment significantly reduced ischemia-induced locomotor hyperactivity, neuronal death and reactive gliosis such as astrocytes and microglia. In addition, 5 days after ubiquitin treatment in the ischemic group, ubiquitin immunoreactivity was similar to that in the ubiquitin-treated sham group, however, ubiquitin+1 immunoreactivity was higher than that in the ubiquitin-treated sham group. These findings indicate that the depletion of ubiquitin and the accumulation of ubiquitin+1 in CA1 pyramidal neurons after transient cerebral ischemia may inhibit ubiquitin proteolytic pathway and this leads to delayed neuronal death of CA1 pyramidal neurons directly or indirectly after transient cerebral ischemia.  相似文献   

17.
目的动态研究不同灌注时间和灌注量对全脑组织缺血损害的恢复程度和即早基因。c-fos的表达,以探明适应性再灌注的脑保护作用机制。方法沙鼠随机分7组,实验组夹闭两侧颈总动脉,造成沙土鼠全脑缺血模型,夹闭10 min后,不同开放时问段(4 min,8 min,10 min,15 min,30 min),开放不同脑血流量(1/ 4,1/2,一次性全开放)和单纯血液稀释后分别观察缺血海马CA区c-fos蛋白的表达,及缺血区大脑半球的改善状况。结果开放15 min,1/2脑血流量时c-fos蛋白表达最高(P<0.05),海马CA区缺血损害改善最明显,开放15 min,全脑血流量一次性开放时海马CA区损害最严重。结论(1)在适应性灌注流量中,脑缺血海马区c-fos的表达和神经元凋亡呈反相作用关系;(2)低流量灌注有明显改善脑缺血的作用,夹闭10min后, 开放1/2脑血流量,持续15 min的效果比一次性再灌注开放效果要好。  相似文献   

18.
The induction of c-fos protein-like immunoreactivity (CFPLI) was examined in the hippocampus of gerbils at several time points after transient global ischemia. c-Fos protein induction was largely confined to the dentate gyrus, CA3 and CA4 regions from 2 to 8 h after transient bilateral carotid occlusion. Little CFPLI was seen in the CA1 subfield, which is disproportionately sensitive to injury after global ischemia. c-Fos induction was completely blocked by pretreatment with MK-801 (3 mg/kg). Our results show that c-fos expression after global ischemia is NMDA receptor mediated, and mainly found in hippocampal neurons resistant to ischemic injury.  相似文献   

19.
Postischemic changes in the immunophilin FKBP12 in the rat brain   总被引:5,自引:0,他引:5  
An immunosuppressant tacrolimus (FK506) protects against neuronal damage following cerebral ischemia. On the other hand, the major physiological role of the immunophilin FK506-binding protein-12 (FKBP12) is a modulation of intracellular calcium flux. Since an increase in intracellular calcium concentration is a major mediator of ischemic neuronal death, we investigated the changes in FKBP12 following cerebral ischemia in the rat. We induced focal cerebral ischemia by intraluminal occlusion of the middle cerebral artery for 1 h, and global cerebral ischemia for 10 min by bilateral carotid artery occlusion combined with hypotension. The animals were killed at 4 h to 7 days after reperfusion. Immunohistochemistry was performed on paraffin sections using a monoclonal antibody raised against recombinant FKBP12. Immunoreactivity to FKBP12 in control brains was most pronounced in the CA1 subfield of the hippocampus and the striatum, the localization being primarily neuronal. Following focal ischemia, FKBP12 immunoreactivity decreased rapidly in the ischemic core by 4 h, but increased in surviving neurons in penumbra areas (4 h-7 days). Within an area of infarction, invading leukocytes and macrophages exhibited immunoreactivity to FKBP12 (3-7 days). Following global ischemia, FKBP12 immunoreactivity in CA1 neurons decreased after 1 day, and then it was lost between 2 and 7 days, although many CA1 neurons showed a transient increase in FKBP12 at 2 days. No FKBP12 immunoreactivity was observed in reactive glial cells. Thus, FKBP12 declined in dying neurons, whereas FKBP12 was upregulated in less severely injured neurons. The findings suggest that (1) FKBP12 plays an important role in the process of neuronal survival and death following cerebral ischemia, and (2) FKBP12 is involved in inflammatory reactions that occur within an area of infarction.  相似文献   

20.
Folic acid deficiency increases stroke risk. In the present study, we examined whether folic acid deficiency enhances neuronal damage and gliosis via oxidative stress in the gerbil hippocampus after transient forebrain ischemia. Animals were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to occlusion of both common carotid arteries for 5 min. Exposure to an FAD increased plasma homocysteine levels by five- to eightfold compared with those of animals fed with a control diet (CD). In CD-treated animals, most neurons were dead in the hippocampal CA1 region 4 days after ischemia/reperfusion, whereas, in FAD-treated animals, this occurred 3 days after ischemia/reperfusion. Immunostaining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was performed to examine DNA damage in CA1 neurons in both groups after ischemia, and it was found that 8-OHdG immunoreactivity in both FAD and CD groups peaked at 12 hr after reperfusion, although the immunoreactivity in the FAD group was much greater than that in the CD group. Platelet endothelial cell adhesion molecule-1 (PECAM-1; a final mediator of neutrophil transendothelial migration) immunoreactivity in both groups increased with time after ischemia/reperfusion: Its immunoreactivity in the FAD group was much higher than that in the CD group 3 days after ischemia/reperfusion. In addition, reactive gliosis in the ischemic CA1 region increased with time after ischemia in both groups, but astrocytosis and microgliosis in the FAD group were more severe than in the CD group at all times after ischemia. Our results suggest that folic acid deficiency enhances neuronal damage induced by ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号