首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of anxiolytic honokiol derivative, dihydrohonokiol-B (DHH-B), on amyloid beta protein (Abeta(25-35), 10 nM)-induced changes in Cl(-)-ATPase activity, intracellular Cl- concentration ([Cl-]i) and glutamate neurotoxicity were examined in cultured rat hippocampal neurons. DHH-B (10 ng/ml) recovered Abeta-induced decrease in neuronal Cl(-)-ATPase activity without any changes in the activities of Na+/K+-ATPase and anion-insensitive Mg2+-ATPase. A GABA(C) receptor antagonist (1,2,5,6,-tetrahydropyridin-4-yl) methyl-phosphinic acid (TPMPA, 15 microM), inhibited the protective effects of DHH-B on Cl(-)-ATPase activity. DHH-B reduced Abeta-induced elevation of [Cl-]i as assayed using a Cl(-)-sensitive fluorescent dye, and prevented Abeta-induced aggravation of glutamate neurotoxicity. These data suggest that DHH-B exerts the neuroprotective action against Abeta through GABA(C) receptor stimulation.  相似文献   

2.
Whole cell patch-clamp recordings using Cl(-)-filled pipettes revealed more negative levels of baseline current and associated current variance in embryonic rat hippocampal neurons co-cultured on a monolayer of astrocytes than those cultured on poly-D-lysine. These effects were mimicked by culturing neurons on poly-D-lysine in astrocyte-conditioned medium (ACM). The baseline current and variance decreased immediately in all cells after either local perfusion with saline or exposure to bicuculline, an antagonist of GABA at GABA(A) receptor/Cl(-) channels. Baseline current and variance in all cells reached a nadir at approximately 0 mV, the calculated equilibrium potential for Cl(-). Perfusion of ACM rapidly induced a sustained current in neurons, which also reversed polarity at approximately 0 mV. Bicuculline attenuated or eliminated the ACM-induced current at a concentration that completely blocked micromolar GABA-induced current. Quantitative analyses of spontaneously occurring fluctuations superimposed on the ACM-induced current revealed estimated unitary properties of the underlying channel activity similar to those calculated for GABA's activation of GABA(A) receptor/Cl(-) channels. Bicuculline-sensitive synaptic-like transients, which reversed at approximately 0 mV, were also detected in neurons cultured in ACM, and these were immediately eliminated along with the negative baseline current and superimposed current fluctuations by perfusion. Furthermore bicuculline-sensitive synaptic-like transients were rapidly and reversibly triggered when ACM was acutely applied. ACM induced an increase in cytoplasmic Ca(2+) in cultured embryonic hippocampal neurons that was completely blocked by bicuculline and strychnine. We conclude that astrocytes release diffusible substances, most likely GABA, that persistently activate GABA(A) receptor/Cl(-) channels in co-cultured neurons.  相似文献   

3.
We previously reported that ammonia induced apoptosis in cultured rat hippocampal neurons with moderate increases in the intracellular calcium concentration and decreases in phospho-BAD levels. Since this suggested the involvement of calcineurin in the apoptosis, the effects of calcineurin inhibitors, 1 microM cyclosporin A and 1 microM FK506, on the ammonia-induced neuronal apoptosis were tested. Both of the inhibitors abolished the neuronal apoptosis assessed by double staining with Hoechst 33258 and anti-neurofilament antibody, and the ammonia-induced decrease in phospho-BAD Ser(155) level. Thus, calcineurin appeared to be involved in the dephosphorylation of BAD at the sites including Ser(155) in ammonia-induced apoptosis.  相似文献   

4.
Although 3alpha-substituted metabolites of progesterone are well established to interact with GABA(A) receptor/Cl(-) channels, the nature of the interaction(s) remains uncertain. We used patch-clamp recording to study the interaction with GABA(A) receptor/Cl(-) channels expressed by embryonic hippocampal neurons differentiating in culture and nonneuronal cells transfected with GABA(A) receptor subunits. Allopregnanolone primarily induced multiphasic current responses in neurons, which were eliminated by bicuculline, an antagonist of GABA at GABA(A) receptor/Cl(-) channels. Similar multiphasic responses blocked by bicuculline were induced by allopregnanollone in nonneuronal cells transfected with alpha(1) and gamma(2) subunits, indicating that the steroid activation of GABA(A) receptor/Cl(-) channels occurred independently of GABA. Fluctuation analyses of current responses to allopregnanolone and GABA revealed underlying channel activities with similar estimated unitary properties. However, although both agonists activated Cl(-) channels with similar estimated short and long burst-length durations, most of those stimulated by the steroid were short, while most of those opened by GABA were long. Allopregnanolone potentiated GABA-evoked Cl(-) currents in nonneuronal cells transfected with alpha(1) and beta(2) or beta(3) subunits, which did not exhibit multiphasic responses to the steroid, indicating another, independent action of the steroid at activated receptors. Pertussis toxin treatment eliminated the low-amplitude current and attenuated the high-amplitude current induced by allopregnanolone in a reversible manner. Mastoparan, which activates G proteins directly, triggered a high-amplitude current after a delay, which was blocked by bicuculline. The results indicate that allopregnanolone interacts with GABA(A) receptor/Cl(-) channels expressed by embryonic hippocampal neurons in multiple ways, some of which are mediated by G proteins.  相似文献   

5.
Light entrains the biological clock both in adult and larval Drosophila melanogaster. The Bolwig organ photoreceptors most likely constitute one substrate for this light entrainment in larvae. Acetylcholine (ACh) has been suggested as the neurotransmitter in these photoreceptors, but there is no evidence that ACh signaling is involved in photic input onto circadian pacemaker neurons. Here we demonstrate that the putative targets of the Bolwig photoreceptors, the PDF-containing clock neurons (LNs), in the larval brain express functional ACh receptors (AChRs). With the use of GAL4-UAS-driven expression of green fluorescent protein (GFP), we were able to identify LNs in dissociated cell culture. After loading with the Ca(2+)-sensitive dye fura-2, we monitored changes in intracellular Ca(2+) levels ([Ca(2+)](i)) in GFP-marked LNs while applying candidate neurotransmitters. ACh induced transient increases in [Ca(2+)](i) at physiological concentrations. These increases were dependent on extracellular Ca(2+) and Na(+) and were likely caused by activation of voltage-dependent Ca(2+) channels. Application of nicotinic and muscarinic agonists and antagonists showed that the AChRs on cultured LNs have a nicotinic pharmacology. Antibodies to several subunits of nicotinic AChRs (nAChRs) labeled the putative contact site of the Bolwig organ axon terminals with the dendrites of LNs, as well as dissociated LNs in culture. Our findings support a role of ACh as input factor onto the LNs and suggest that Ca(2+) is used as a second messenger mediating cholinergic input within the LNs. Experiments using a more general GAL4-UAS-driven expression of GFP showed that functional expression of nAChRs is a widespread phenomenon in peptidergic neurons.  相似文献   

6.
Depending on their subunit composition, GABA(A) receptors can be highly sensitive to Zn(2+). Although a pathological role for Zn(2+)-mediated inhibition of GABA(A) receptors has been postulated, no direct evidence exists that endogenous Zn(2+) can modulate GABAergic signaling in the brain. A possible explanation is that Zn(2+) is mainly localized to a subset of glutamatergic synapses. Hippocampal mossy fibers are unusual in that they are glutamatergic but have also been reported to contain GABA and Zn(2+). Here, we show, using combined Timm's method and post-embedding immunogold, that the same mossy fiber varicosities can contain both GABA and Zn(2+). Chelating Zn(2+) with either calcium-saturated EDTA or N,N,N',N'-tetrakis (2-pyridylmethyl)ethylenediamine had no effect on stratum-radiatum-evoked inhibitory postsynaptic currents (IPSCs), but enhanced IPSCs evoked by stimuli designed to recruit dentate granule cells. We also show that IPSCs recorded in CA3 pyramidal neurons in acute hippocampal slices are depressed by exogenous Zn(2+). This depression was of similar amplitude whether the IPSCs were evoked by stimulation in s. radiatum (to recruit local interneurons) or in the s. granulosum of the dentate gyrus (to recruit mossy fibers). These results show for the first time that GABAergic IPSCs can be modulated by endogenous Zn(2+) and are consistent with GABA release at Zn(2+)-containing mossy fiber synapses.  相似文献   

7.
Responses to rapid application of glutamic acid (Glu) and gamma-aminobutyric acid (GABA), 0.01-3 mM, were recorded by whole-cell patch clamp of cultured crab (Cardisoma carnifex) X-organ neurons. Responses peaked within 200 ms. Both Glu and GABA currents had reversal potentials that followed the Nernst Cl(-) potential when [Cl(-)](i) was varied. A Boltzmann fit to the normalized, averaged dose-response curve for Glu indicated an EC(50) of 0.15 mM and a Hill coefficient of 1.05. Rapid (t(1/2) approximately 1 s) desensitization occurred during Glu but not GABA application that required >2 min for recovery. Desensitization was unaffected by concanavalin A or cyclothiazide. N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, quisqualate, and kainate (to 1 mM) were ineffective, nor were Glu responses influenced by glycine (1 microM) or Mg(2+) (0-26 mM). Glu effects were imitated by ibotenic acid (0.1 mM). The following support the conclusion that Glu and GABA act on different receptors: 1) responses sum; 2) desensitization to Glu or ibotenic acid did not diminish GABA responses; 3) the Cl(-)-channel blockers picrotoxin and niflumic acid (0.5 mM) inhibited Glu responses by approximately 90 and 80% but GABA responses by approximately 50 and 20%; and 4) polyvinylpyrrolydone-25 (2 mM in normal crab saline) eliminated Glu responses but left GABA responses unaltered. Thus crab secretory neurons have separate receptors responsive to Glu and to GABA, both probably ionotropic, and mediating Cl(-) conductance increases. In its responses and pharmacology, this crustacean Glu receptor resembles Cl(-)-permeable Glu receptors previously described in invertebrates and differs from cation-permeable Glu receptors of vertebrates and invertebrates.  相似文献   

8.
The ability of the neuroactive steroid pregnenolone sulfate to alter N-methyl-D-aspartate (NMDA) receptor-mediated elevations in intracellular Ca2+ ([Ca2+]i) was studied in cultured fetal rat hippocampal neurons using microspectrofluorimetry and the Ca2+ sensitive indicator fura-2. Pregnenolone sulfate (5-250 microM) caused a concentration-dependent and reversible potentiation of the rise (up to approximately 800%) in [Ca2+]i induced by NMDA. In contrast, the steroid failed to alter basal (unstimulated) [Ca2+]i or to modify the rise in [Ca2+]i that occurs when hippocampal neurons are depolarized by high K+ in the presence of the NMDA receptor antagonist CPP. These data suggest that the previously reported excitatory properties of pregnenolone sulfate may be due, in part, to an augmentation of the action of glutamic acid at the NMDA receptor.  相似文献   

9.
目的观察人N-甲基-D-门冬氨酸受体(NMDAR,NR)主亚基(NR1)单克隆抗体mAbN1对谷氨酸诱导的大鼠海马神经元Ca2 内流的影响。方法建立谷氨酸介导的大鼠海马神经元兴奋毒性损伤模型,以mAbN1及MK-801分别预处理海马神经元,用Fluo-3/AM法,在激光扫描共聚焦显微镜下观察对细胞内游离Ca2 浓度([Ca2 ]i)的影响。结果mAbN1能显著抑制谷氨酸所致海马神经元[Ca2 ]i升高,此作用强于MK-801,且其本身对生理状态下神经元[Ca2 ]i无影响。结论mAbN1的抗兴奋毒性作用可能是通过改变NR的蛋白质二级结构从而影响兴奋毒性作用中的Ca2 内流实现的。  相似文献   

10.
The gamma-aminobutyric acid (GABA) inhibiting properties of several classes of antipsychotic medications were studied using gigaseal whole-cell voltage-clamp techniques in cultured chick spinal cord and rat hippocampal neurons. At doses above 1 microM trifluoperazine, chlorpromazine and thioridazine blocked GABA currents in a non-competitive fashion decreasing the maximal transmitter response without altering the half-maximal effective concentration. In contrast, haloperidol was ineffective against GABA at concentrations up to 100 microM. Among the agents studied trifluoperazine was the most potent GABA inhibitor with half maximal effect at 12 microM. Trifluoperazine (100 microM) also inhibited glycine-gated chloride currents in spinal cord neurons to an extent comparable to GABA (85 +/- 6% inhibition) but reduced glutamate currents by less than 35% in either spinal cord or hippocampal neurons.  相似文献   

11.
At present, little is known about the mechanisms by which cannabinoids exert their effects on the central nervous system. In this study, fluorescence imaging and electrophysiological techniques were used to investigate the functional relationship between cell surface cannabinoid type 1 (CB(1)) receptors and GABAergic synaptic transmission in cultured hippocampal neurons. CB(1) receptors were labelled on living neurons using a polyclonal antibody directed against the N-terminal 77 amino acid residues of the rat cloned CB(1) receptor. Highly punctate CB(1) receptor labelling was observed on fine axons and at axonal growth cones, with little somatic labelling. The majority of these sites were associated with synaptic terminals, identified either with immunohistochemical markers or by using the styryl dye FM1-43 to label synaptic vesicles that had undergone active turnover. Dual labelling of neurons for CB(1) receptors with either the inhibitory neurotransmitter GABA or its synthesising enzyme glutamate decarboxylase, demonstrated a strong correspondence. The immunocytochemical data was supported by functional studies using whole-cell patch-clamp recordings of miniature inhibitory postsynaptic currents (mIPSCs). The cannabinoid agonist WIN55,212-2 (100nM) markedly inhibited (by 77+/-6.3%) the frequency of pharmacologically-isolated GABAergic mIPSCs. The effects of WIN55,212-2 were blocked in the presence of the selective CB(1) receptor antagonist SR141716A (100nM).In conclusion, the present data show that cell surface CB(1) receptors are expressed at presynaptic GABAergic terminals, where their activation inhibits GABA release. Their presence on growth cones could indicate a role in the targeting of inhibitory connections during development.  相似文献   

12.
The current study showed that potassium K current (I(K)), which is evoked at depolarizing potentials between -30 and +40 mV in cultured hippocampal neurons, was significantly reduced by exposure to the CB1 cannabinoid receptor agonist WIN 55,212-2 (WIN-2). WIN-2 (20-40 nM) produced an average 45% decrease in I(K) amplitude across all voltage steps, which was prevented by SR141716A, the CB1 receptor antagonist. The cannabinoid receptor has previously been shown to be G(i/o) protein-linked to several cellular processes; however, the decrease in I(K) was unaffected by modulators of G(i/o) proteins and agents that alter levels of protein kinase A. In contrast, CB1 receptor-mediated or direct activation of G(s) proteins with cholera toxin (CTX) produced the same decrease in I(K) amplitude as WIN-2, and the latter was blocked in CTX-treated cells. G(s) protein inhibition via GDPbetaS also eliminated the effects of WIN-2 on I(K). Consistent with this outcome, activation of protein kinase C (PKC) by arachidonic acid produced similar effects to WIN-2 and CTX. Kappa opioid receptor agonists, which also reduce I(K) amplitude via G(s) proteins, were compared with WIN-2 actions on I(K.) The kappa receptor agonist U50,488 reduced I(K) amplitude in the same manner as WIN-2, while the kappa receptor antagonist, nor-binaltorphimine, actually increased I(K) amplitude and significantly reduced the effect of co-administered WIN-2. The results indicate that CB1 and kappa receptor activation is additive with respect to I(K) amplitude, suggesting that CB1 and kappa receptors share a common G(s) protein signaling pathway involving PKC.  相似文献   

13.
Medications that selectively increase 5-hydroxytryptamine are currently the most commonly prescribed antidepressants. However, it is not known which receptors for 5-hydroxytryptamine, nor which post-receptor cellular signals, mediate the antidepressant actions of 5-hydroxytryptamine. The hippocampus is highly innervated by serotonergic neurons and appears to be an ideal region of the brain for studying the antidepressant role of 5-hydroxytryptamine. Treatment with antidepressants has been shown to cause increased expression of proteins in the hippocampus that appear to be protective against stress-induced atrophy. This suggests a role for pathways, such as mitogen-activated protein kinase, that regulate protein synthesis. In the present study we found that 5-HT(7) receptors, expressed by cultured rat hippocampal neurons, couple to stimulation of the mitogen-activated protein kinase extracellular signal-regulated kinases ERK1 and ERK2. The 5-HT(1/7) receptor-selective agonist 5-carboxamidotryptamine maleate (5-CT) as well as the 5-HT(1A/7) receptor-selective agonists 8-hydroxy-N,N-dipropyl-aminotetralin (8-OH-DPAT) and N,N-dipropyl-5-carboxamidotryptamine maleate (dipropyl-5-CT) were found to activate extracellular signal-regulated kinase with equal efficacy to 5-HT. However, the EC(50) for 8-OH-DPAT was approximately 200-fold greater than that of 5-HT, a difference in potency consistent with the pharmacology of 5-HT(7), but not 5-HT(1A), receptors. Additionally, pretreatment with pertussis toxin, which would be expected to block the actions of 5-HT(1,) but not 5-HT(7,) receptors caused no inhibition. 4-Iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]N-2-pyridinyl-benzamide hydrochloride (p-MPPI) and N-[2-[4-(2-Methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-cyclohexanecarb oxamide maleate (WAY-100635), antagonists selective for 5-HT(1A) receptors, similarly caused no inhibition of the activity of 5-HT.In summary, these studies are the first to demonstrate that 5-hydroxytryptamine activates the mitogen-activated protein kinase ERK in primary neuronal cultures. That 5-HT(7) receptors couple to activation of extracellular signal-regulated kinase in hippocampal neurons suggests a possible role for 5-HT(7) receptors in mediating some of the actions of antidepressants that increase 5-hydroxytryptamine.  相似文献   

14.
Hippocampal long-term potentiation (LTP) induced by theta-burst pairing of Schaffer collateral inputs and postsynaptic firing is associated with localized increases in synaptic strength and dendritic excitability. Using the same protocol, we now demonstrate a decrease in cellular excitability that was blocked by the h-channel blocker ZD7288. This decrease was also induced by postsynaptic theta-burst firing alone, yet it was blocked by NMDA receptor antagonists, postsynaptic Ca2+ chelation, low concentrations of tetrodotoxin, omega-conotoxin MVIIC, calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors and a protein synthesis inhibitor. Increasing network activity with high extracellular K+ caused a similar reduction of cellular excitability and an increase in h-channel HCN1 protein. We propose that backpropagating action potentials open glutamate-bound NMDA receptors, resulting in an increase in I(h) and a decrease in overall excitability. The occurrence of such a reduction in cellular excitability in parallel with synaptic potentiation would be a negative feedback mechanism to normalize neuronal output firing and thus promote network stability.  相似文献   

15.
Molecular correlates of the M-current in cultured rat hippocampal neurons   总被引:9,自引:6,他引:9  
M-type K+ currents ( I K(M)) play a key role in regulating neuronal excitability. In sympathetic neurons, M-channels are thought to be composed of a heteromeric assembly of KCNQ2 and KCNQ3 K+ channel subunits. Here, we have tried to identify the KCNQ subunits that are involved in the generation of I K(M) in hippocampal pyramidal neurons cultured from 5- to 7-day-old rats. RT-PCR of either CA1 or CA3 regions revealed the presence of KCNQ2, KCNQ3, KCNQ4 and KCNQ5 subunits. Single-cell PCR of dissociated hippocampal pyramidal neurons gave detectable signals for only KCNQ2, KCNQ3 and KCNQ5; where tested, most also expressed mRNA for the vesicular glutamate transporter VGLUT1. Staining for KCNQ2 and KCNQ5 protein showed punctate fluorescence on both the somata and dendrites of hippocampal neurons. Staining for KCNQ3 was diffusely distributed whereas KCNQ4 was undetectable. In perforated patch recordings, linopirdine, a specific M-channel blocker, fully inhibited I K(M) with an IC50 of 3.6 ± 1.5 μM. In 70 % of these cells, TEA fully suppressed I K(M) with an IC50 of 0.7 ± 0.1 m m . In the remaining cells, TEA maximally reduced I K(M) by only 59.7 ± 5.2 % with an IC50 of 1.4 ± 0.3 m m ; residual I K(M) was abolished by linopirdine. Our data suggest that KCNQ2, KCNQ3 and KCNQ5 subunits contribute to I K(M) in these neurons and that the variations in TEA sensitivity may reflect differential expression of KCNQ2, KCNQ3 and KCNQ5 subunits.  相似文献   

16.
The ability to control the physiological and pharmacological properties of synaptic receptors is a powerful tool for studying neuronal function and may be of therapeutic utility. We designed a recombinant adenovirus to deliver either a GABA(C) receptor rho(1) subunit or a mutant GABA(A) receptor beta(2) subunit lacking picrotoxin sensitivity [beta2(mut)] to hippocampal neurons. A green fluorescent protein (GFP) reporter molecule was simultaneously expressed. Whole cell patch-clamp recordings demonstrated somatic expression of both bicuculline-resistant GABA(C) receptor-mediated and picrotoxin-resistant GABA(A) receptor-mediated GABA-evoked currents in rho(1)- and beta(2)(mut)-transduced hippocampal neurons, respectively. GABAergic miniature inhibitory postsynaptic currents (mIPSCs) recorded in the presence of 6-cyano-7-nitroquinoxalene-2,3-dione, Mg(2+), and TTX revealed synaptic events with monoexponential activation and biexponential decay phases. Despite the robust expression of somatic GABA(C) receptors in rho(1)-neurons, no bicuculline-resistant mIPSCs were observed. This suggested either a kinetic mismatch between the relatively brief presynaptic GABA release and slow-activating rho(1) receptors or failure of the rho(1) subunit to target properly to the subsynaptic membrane. Addition of ruthenium red, a presynaptic release enhancer, failed to unmask GABA(C) receptor-mediated mIPSCs. Short pulse (2 ms) application of 1 mM GABA to excised outside-out patches from rho(1) neurons proved that a brief GABA transient is sufficient to activate rho(1) receptors. The simulated-IPSC experiment strongly suggests that if postsynaptic GABA(C) receptors were present, bicuculline-resistant mIPSCs would have been observed. In contrast, in beta(2)(mut)-transduced neurons, picrotoxin-resistant mIPSCs were observed; they exhibited a smaller peak amplitude and faster decay compared with control. Confocal imaging of transduced neurons revealed rho(1) immunofluorescence restricted to the soma, whereas punctate beta(2)(mut) immunofluorescence was seen throughout the neuron, including the dendrites. Together, the electrophysiological and imaging data show that despite robust somatic expression of the rho(1) subunit, the GABA(C) receptor fails to be delivered to the subsynaptic target. On the other hand, the successful incorporation of beta(2)(mut) subunits into subsynaptic GABA(A) receptors demonstrates that viral transduction is a powerful method for altering the physiological properties of synapses.  相似文献   

17.
We examined immunoreactivities for gamma-aminobutyric acidB-receptor (GABA(B)R) subtypes, GABA(B)R1 and GABA(B)R2, in the mesencephalic trigeminal nucleus neurons (MTN neurons) of the rat. Immunoreactivity for GABA(B)R1 was prominent in cell bodies of MTN, whereas that for GABA(B)R2 was very weak, if existed. For electron microscopy, the immunogold-silver method for GABA(B)R1 was combined with the immunoperoxidase method for glutamic acid decarboxylase (GAD: the synthetic enzyme of GABA). Immunogold-silver particles indicating GABA(B)R1 immunoreactivity were distributed widely in the cytoplasm of the cell bodies postsynaptic to GAD-immunoreactive axon terminals, but were rarely associated with synaptic membrane specialization or extrasynaptic sites of plasma membrane. It has been indicated that GABA(B)R1 may not be transported to plasma membrane when no GABA(B)R2 exists. Thus, it was presumed that GABA(B)R1 in the cell body of the rat MTN neurons might not be involved in the synaptic transmission.  相似文献   

18.
K Z Shen  S W Johnson 《Neuroscience》2001,108(3):431-436
Effects of baclofen on synaptic transmission were studied in rat subthalamic neurons using whole-cell patch clamp recording from brain slices. Focal electrical stimulation of the brain slice evoked GABAergic inhibitory postsynaptic currents and glutamatergic excitatory postsynaptic currents. Baclofen reduced the amplitude of evoked inhibitory postsynaptic currents in a concentration-dependent manner with an IC(50) of 0.6+/-0.2 microM. Evoked excitatory postsynaptic currents were also reduced by baclofen concentration-dependently (IC(50) of 1.6+/-0.2 microM), but baclofen was more potent at reducing the GABA(A) receptor inhibitory postsynaptic currents. The GABA(B) receptor antagonist CGP 35348 blocked these inhibitory effects of baclofen on evoked inhibitory and excitatory postsynaptic currents. Baclofen increased the paired-pulse ratios of evoked inhibitory and excitatory postsynaptic currents. Furthermore, baclofen reduced the frequency of spontaneous miniature excitatory postsynaptic currents, but had no effect on their amplitude.These results provide evidence for presence of presynaptic GABA(B) receptors that modulate both GABA and glutamate release from afferent terminals in the subthalamus.  相似文献   

19.
The ratiometric indicators 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein and Fura-2 were employed to examine, respectively, intracellular pH (pHi) and calcium ([Ca2+]i) changes evoked by anoxia in cultured postnatal rat hippocampal neurons at 37 degrees C. Under both HCO3-/CO2- and HEPES-buffered conditions, 3-, 5- or 10-min anoxia induced a triphasic change in pHi consisting of an initial fall in pHi, a subsequent rise in pHi in the continued absence of O2 and, finally, a further rise in pHi upon the return to normoxia, which recovered towards preanoxic steady-state pHi values if the duration of the anoxic insult was < or = 5 min. In parallel experiments performed on sister cultures, anoxia of 3, 5 or 10 min duration evoked rises in [Ca2+]i which, in all cases, commenced after the start of the fall in pHi, reached a peak at or just following the return to normoxia and then declined towards preanoxic resting levels. Removal of external Ca2+ markedly attenuated increases in [Ca2+]i, but failed to affect the pHi changes evoked by 5 min anoxia. The latency from the start of anoxia to the start of the increase in pHi observed during anoxia was increased by perfusion with media containing either 2 mM Na+, 20 mM glucose or 1 microM tetrodotoxin. Because each of these manoeuvres is known to delay the onset and/or attenuate the magnitude of anoxic depolarization, the results suggest that the rise in pHi observed during anoxia may be consequent upon membrane depolarization. This possibility was also suggested by the findings that Zn2+ and Cd2+, known blockers of voltage-dependent proton conductances, reduced the magnitude of the rise in pHi observed during anoxia. Under HCO3-/CO2-free conditions, reduction of external Na+ by substitution with N-methyl-D-glucamine (but not Li+) attenuated the magnitude of the postanoxic alkalinization, suggesting that increased Na+/H+ exchange activity contributes to the postanoxic rise in pHi. In support, rates of pHi recovery from internal acid loads imposed following anoxia were increased compared to control values established prior to anoxia in the same neurons. In contrast, rates of pHi recovery from acid loads imposed during anoxia were reduced, suggesting the possibility that Na+/H+ exchange is inhibited during anoxia. We conclude that the steady-state pHi response of cultured rat hippocampal neurons to transient anoxia is independent of changes in [Ca2+]i and is characterized by three phases which are determined, at least in part, by alterations in Na+/H- exchange activity and, possibly, by a proton conductance which is activated during membrane depolarization.  相似文献   

20.
GABA(A) receptors (GABA(A)Rs) and glycine receptors (GlyRs) expressed in developing neurons (P3-8) of the rat inferior colliculus (IC) were investigated using fast application of transmitters on nucleated patches and whole-cell patch-clamp recordings. At a holding potential of -60 mV and an E(Cl) close to 0 mV GABA and glycine activated inward currents with a half-maximal activation concentration of 127 microM and 353 microM, respectively. GABA(A)Rs activated and deactivated significantly faster than GlyRs (20-80% rise-time: 0.71 ms for GABA(A)Rs and 1.31 ms for GlyRs; amplitude-weighted decay time constant, tau(w), 22.4+/-1.3 ms for GABA(A)Rs and 108.7+/-32.9 ms for GlyRs). The tau(w) values for receptor desensitization were 26.8+/-1.9 ms for GABA(A)Rs and 177.9+/-47.2 ms for GlyRs. Recovery from desensitization was significantly faster for GlyRs (tau=334 ms) than for GABA(A)Rs (tau1=82 ms; tau2=3783 ms). The tau(w) values of GABA(A)R-mediated spontaneous and miniature inhibitory postsynaptic currents were not significantly different from those of GABA(A)Rs activated by fast application, but significantly different to the tau(w) of GlyRs activated by fast application. The different properties of GABA(A)Rs and GlyRs expressed in the same IC neuron suggest a distinct functional contribution to the development of inhibitory synapses in the IC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号