首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pelkonen O  Rautio A  Raunio H  Pasanen M 《Toxicology》2000,144(1-3):139-147
Coumarin 7-hydroxylation is catalysed by a high-affinity CYP2A6 enzyme in human liver microsomes. CYP2A6 is the only enzyme catalysing this reaction and consequently the formation of 7-hydroxycoumarin can be used as 'an in vitro and in vivo probe' for CYP2A6. CYP2A6 is a major contributor to the oxidative metabolism of nicotine and cotinine, and it also contributes, to a larger or smaller extent, to the metabolism of a few pharmaceuticals (e.g. fadrozole), nitrosamines, other carcinogens (e.g. aflatoxin B1) and a number of coumarin-type alkaloids. CYP2A6 may be inducible by antiepileptic drugs and it is decreased in alcohol-induced severe liver cirrhosis. Several mutated or deleted CYP2A6 alleles have been characterized. Although CYP2A6 represent up to 15% of human microsomes P450 proteins, it is still one of the less well characterised cytochrome P450 enzymes.  相似文献   

2.
Genotypes of CYP2A6, namely CYP2A6(*)1 (wild-type), CYP2A6(*)2, and CYP2A6(*)3, were examined in liver DNA of 39 Japanese and 43 Caucasians using two-step polymerase chain reaction (PCR) methods. We first amplified a DNA fragment (1725 bp) located between near middle of exon 1 and end of exon 4 of the CYP2A6 gene and further amplified using a forward primer 't' or 'mut' (middle of exon 3) and a reverse primer 'E3R' (middle of intron 3) for the detection of CYP2A6(*)2-genetic polymorphism. The 1725 bp fragment was also used for the amplification between exon 3 and near middle of intron 3 of the CYP2A6 gene and the fragment thus obtained digested with XcmI or DdeI to detect and confirm the CYP2A6(*)2- and CYP2A6(*)3-types, respectively. Only one DNA sample from a Japanese origin (J18) was not amplified by CYP2A6-specific primers; liver microsomes from this individual had very low activity of coumarin 7-hydroxylation and were devoid of protein(s) immunoreactive to anti-CYP2A6 antibody. Thus, this individual was suggested to be due to the gene deletion in CYP2A6. By analyzing the remaining 38 Japanese and 43 Caucasians, we found that there were no cases of CYP2A6(*)3-type polymorphism in the samples examined in this study, and no cases of CYP2A6(*)2-type polymorphism in the Japanese samples. Of Caucasians studied two individuals were classified into heterozygous CYP2A6(*)1/(*)2-type. Liver microsomal coumarin 7-hydroxylation activities in these two Caucasians were found to be lower than those of the other 41 Caucasians. Kinetic analysis showed that two CYP2A6(*)1/(*)2 individuals had a very low ratio of V(max) to K(m) for nicotine C-oxidation as well as coumarin 7-hydroxylation in liver microsomes, compared with those of homozygous CYP2A6(*)1-type. These results suggest that among 39 Japanese and 43 Caucasians examined one Japanese is classified to be CYP2A6 gene deletion and two Caucasians are heterozygous CYP2A6(*)1/(*)2-genotype. Thus the race-related differences in the occurrence of CYP2A6 genetic polymorphisms were supported.  相似文献   

3.
CYP2C9 is an important member of the cytochrome P450 enzyme superfamily with some 12 CYP2C9 alleles (*1-*12) being previously reported. Recently, we identified a new CYP2C9 allele with a Leu90Pro mutation in a Chinese poor metabolizer of lornoxicam [Si D, Guo Y, Zhang Y, Yang L, Zhou H, and Zhong D (2004) Pharmacogenetics 14:465-469]. The new allele, designated CYP2C9*13, was found to occur in approximately 2% of the Chinese population. To examine enzymatic activity of the CYP2C9*13 allele, kinetic parameters for lornoxicam 5'-hydroxylation were determined in COS-7 cells transiently transfected with pcDNA3.1 plasmids carrying wild-type CYP2C9*1, variant CYP2C9*3, and CYP2C9*13 cDNA. The protein levels of cDNA-expressed CYP2C9*3 and *13 in postmitochondrial supernatant (S9) from transfected cells were lower than those from wild-type CYP2C9*1. Mean values of Km and Vmax for CYP2C9*1, *3, and *13 were 1.24, 1.61, and 2.79 microM and 0.83, 0.28, and 0.22 pmol/min/pmol, respectively. Intrinsic clearance values (Vmax/Km) for variant CYP2C9*3 and CYP2C9*13 on the basis of CYP2C9 protein levels were separately decreased to 28% and 12% compared with wild type. In a subsequent clinical study, the AUC of lornoxicam was increased by 1.9-fold and its oral clearance (CL/F) decreased by 44% in three CYP2C9*1/*13 subjects, compared with CYP2C9*1/*1 individuals. This suggests that the CYP2C9*13 allele is associated with decreased enzymatic activity both in vitro and in vivo.  相似文献   

4.
Cytochrome P450 2A6 is the main human nicotine metabolizing enzyme coded for by a highly polymorphic gene, CYP2A6. CYP2A6*7, CYP2A6*8 and CYP2A6*10 are variant alleles common to Asian ethnicities. The CYP2A6*7 and CYP2A6*8 alleles each contain a non-synonymous single nucleotide polymorphism (SNP) 6558T>C and 6600G>T, respectively, whereas the CYP2A6*10 haplotype allele contains both. We have developed the first haplotyping assay; it can unambiguously distinguish the CYP2A6*7, CYP2A6*8 and CYP2A6*10 alleles. The allele frequencies of these three variants were assessed using the novel haplotyping assay in Chinese-Canadian (n=112), Chinese-American (n=221), Taiwanese (n=319), Korean-American (n=207) and Japanese-Canadian (n=64) populations, as well as in Caucasian (n=110) and African-Canadian (n=113) populations. Our new method demonstrated higher frequencies of CYP2A6*7 and CYP2A6*10, and a lower frequency of CYP2A6*8 in Asian populations, but no significant change of allele frequencies in Caucasian or African-Canadian populations.  相似文献   

5.
Genetic polymorphisms of CYP2A6 gene are known as a causal factor of the interindividual differences in nicotine metabolism. We found three novel CYP2A6 alleles. The CYP2A6(*)18A allele has a single nucleotide polymorphism (SNP) of A5668T (A1175T, Y392F) in exon 8. The CYP2A6(*)18B allele has synonymous SNPs of G51A (G51A), T5684C (T1191C), and T5702C (T1209C) in addition to A5668T (A1175T, Y392F). The CYP2A6(*)19 allele has the SNPs of A5668T (A1175T, Y392F), T6354C (intron 8), and T6558C (T1412C, I471T) as well as the conversion with the CYP2A7 sequence in the 3'-untranslated region, in which the latter two changes correspond to CYP2A6(*)7. Ethnic differences in the frequencies of these alleles were observed between whites, African-Americans, Japanese, and Koreans. Wild or variant CYP2A6 (CYP2A6(*)18, CYP2A6(*)19, and CYP2A6(*)7) were expressed in Escherichia coli. For coumarin 7-hydroxylation and 5-fluorouracil formation from tegafur, the K(m) values were increased, and V(max) values were decreased in CYP2A6.18 compared with those in CYP2A6.1, resulting in decreased clearance to 50 and 35% of that of the wild type, respectively. The K(m) and V(max) values for nicotine C-oxidation were both increased, resulting in no change of clearance. In CYP2A6.19, the effects on the coumarin 7-hydroxylation and 5-fluorouracil formation (increased K(m) and decreased V(max)) were prominent, resulting in decreased clearance to 8% of those of the wild type. For nicotine C-oxidation, the K(m) and V(max) values were both decreased, resulting in decreased clearance to 30% of that of the wild type. The changes of the kinetics in CYP2A6.19 were similar to those in CYP2A6.7. In vivo nicotine metabolism was evaluated in whites (n = 56) and Koreans (n = 40). Although the CYP2A6(*)18 and CYP2A6(*)19 alleles were found only heterozygously, a subject with CYP2A6(*)7/CYP2A6(*)19 showed a lower cotinine/nicotine ratio of the plasma concentration compared with homozygotes of the CYP2A6(*)1A, supporting the in vitro results that the CYP2A6(*)19 allele leads to decreased enzymatic activity.  相似文献   

6.
1. The structural requirements for a compound to be a potent inhibitor for mouse CYP2A5 and human CYP2A6 enzymes catalysing coumarin 7-hydroxylase activity have been studied. 2. The IC50 of 28 compounds for the pyrazole-treated male DBA/2 mouse and human liver microsomal coumarin 7-hydroxylation were determined at 10 microm coumarin concentration 15 times over Km of coumarin. 3. The three most potent inhibitors for CYP2A5 were gamma-nonanoic lactone, gamma-decanolactone and gamma-phenyl-gamma-butyrolactone with an IC50 = 1.9+/-0.4, 2.1+/-0.2 and 2.4+/-0.3 microM and for CYP2A67-methylcoumarin, butylcyclohexane and indan with an IC50. = 30+/-3.2, 43+/-9 and 50+/-11 microM. 4. Among the 28 compounds studied, only 2-benzoxazolinone, 2-indanone and gamma-valerolactone showed similar inhibitory activity in both species. Indan had a lower IC50 for human than for mouse coumarin 7-hydroxylation, whereas the IC50 of 24 other compounds was higher for human than for mouse coumarin 7-hydroxylation. 5. The largest difference in IC50 between mouse and human activity was observed with 5-substituted phenyl, pentyl, hexyl, heptyl or octyl gamma-lactones or 6-substituted delta-lactones. IC50 of gamma-undecanolactone and gamma-decanolactone was 500 times lower for mouse than human coumarin 7-hydroxylation. 6. The difference in the IC50 between human and mouse coumarin 7-hydroxylation decreased substantially with the corresponding compounds without the lactone ring. 7. It is concluded that certain 5- or 6-position substituted gamma- and delta-lactones are potent inhibitors for mouse CYP2A5 but not for the orthologous human CYP2A6 and that the active site of CYP2A6 could be smaller than the active site of CYP2A5.  相似文献   

7.
1. The structural requirements for a compound to be a potent inhibitor for mouse CYP2A5 and human CYP2A6 enzymes catalysing coumarin 7-hydroxylase activity have been studied. 2. The IC50 of 28 compounds for the pyrazole-treated male DBA/2 mouse and human liver microsomal coumarin 7-hydroxylation were determined at 10 muM coumarin concentration 15 times over Km of coumarin. 3. The three most potent inhibitors for CYP2A5 were gamma-nonanoic lactone, gamma-decanolactone and gamma-phenyl-gamma-butyrolactone with an IC50=1.9 +/- 0.4, 2.1 +/- 0.2 and 2.4 +/- 0.3 muM and for CYP2A6 7-methylcoumarin, butylcyclohexane and indan with an IC50=30 +/- 3.2, 43 +/- 9 and 50 +/- 11 muM. 4. Among the 28 compounds studied, only 2-benzoxazolinone, 2-indanone and gamma- valerolactone showed similar inhibitory activity in both species. Indan had a lower IC50 for human than for mouse coumarin 7-hydroxylation, whereas the IC50 of 24 other compounds was higher for human than for mouse coumarin 7-hydroxylation. 5. The largest difference in IC50 between mouse and human activity was observed with 5-substituted phenyl, pentyl, hexyl, heptyl or octyl gamma-lactones or 6-substituted delta-lactones. IC50 of gamma-undecanolactone and gamma-decanolactone was 500 times lower for mouse than human coumarin 7-hydroxylation. 6. The difference in the IC50 between human and mouse coumarin 7-hydroxylation decreased substantially with the corresponding compounds without the lactone ring. 7. It is concluded that certain 5- or 6-position substituted gamma- and delta -lactones are potent inhibitors for mouse CYP2A5 but not for the orthologous human CYP2A6 and that the active site of CYP2A6 could be smaller than the active site of CYP2A5.  相似文献   

8.
During the course of investigating the frequency of a CYP2A6 whole deletion-type polymorphism (CYP2A6*4C) in Japanese, an unexpectedly large population of heterozygotes for CYP2A6*4C and the wild-type (CYP2A6*1A) was found. Cloning of a cDNA encoding CYP2A6 from the liver of individuals judged as heterozygotes for CYP2A6*4C and the CYP2A6*1A was carried out to identify the causal allele(s) responsible for a possible overestimation. A clone isolated from the liver cDNA library possessed 58 bp sequences in the 3'-untranslated region, which was replaced with the corresponding region of the CYP2A7 gene. The same gene conversion existed in the genomic DNA, indicating that the replacement was not a cloning artifact. Based on the gene structure of the allele (CYP2A6*1B), this variant was thought to be one of the causal alleles responsible for overestimation of heterozygotes for CYP2A6*4C and CYP2A6* A. To investigate this further, we developed a genotyping method which could distinguish the CYP2A6*A, CYP2A6*1B and CYP2A6*4C alleles from each other. The results clearly showed that CYP2A6*1B was the sole allele responsible for the overestimation. We conclude that the new genotyping method allows determination of six genotypes of the CYP2A6 gene, simultaneously and precisely, in both Oriental and Caucasian populations.  相似文献   

9.
The effects of allelic variants of CYP2C9 (CYP2C9*2 and CYP2C9*3) on lornoxicam 5'-hydroxylation were studied using the corresponding variant protein expressed in baculovirus-infected insect cells and human liver microsomes of known genotypes of CYP2C9. The results of the baculovirus expression system showed that CYP2C9.3 gives higher K(m) and lower V(max) values for lornoxicam 5'-hydroxylation than does CYP2C9.1. In contrast, K(m) and V(max) values of CYP2C9.1 and CYP2C9.2 for the reaction were comparable. Lornoxicam 5'-hydroxylation was also determined in liver microsomes of 12 humans genotyped for the CYP2C9 gene (*1/*1, n = 7; *1/*2, n = 2; *1/*3, n = 2; *3/*3, n = 1). A sample genotyped as *3/*3 exhibited 8- to 50-fold lower intrinsic clearance for lornoxicam 5'-hydroxylation than did samples genotyped as *1/*1. However, the values for intrinsic clearance for *1/*3 were within the range of values exhibited by samples of *1/*1. In addition, no appreciable differences were observed in kinetic parameters for lornoxicam 5'-hydroxylation between *1/*1 and *1/*2. In conclusion, this study showed that lornoxicam 5'-hydroxylation via CYP2C9 was markedly decreased by the substitution of Ile359Leu (CYP2C9.3), whereas the effect of the substitution of Arg144Cys (CYP2C9.2) was nonexistent or negligible. Additional in vivo studies are required to confirm that individuals with homologous CYP2C9*3 allele exhibit impaired lornoxicam clearance.  相似文献   

10.
1. We have shown earlier that pilocarpine strongly inhibits mouse and human liver coumarin 7-hydroxylase activity of CYP 2A and pentoxyresorufin O-deethylase activity of CYP 2B in vitro. Since pilocarpine, like coumarin, contains a lactone structure we have studied in more detail its inhibitory potency on mouse and human liver coumarin 7-hydroxylation. 2. Pilocarpine was a competitive inhibitor of coumarin 7-hydroxylase in vitro both in mouse and human liver microsomes although it was not a substrate for CYP 2A5. Ki values were similar, 0.52 +/- 0.22 microM in mice and 1.21 +/- 0.51 microM in human liver microsomes. 3. Pilocarpine induced a type II difference spectrum in mouse, human and recombinant CYP 2A5 yeast cell microsomes, with Ka values of 3.7 +/- 1.6, 1.6 +/- 1.1 and 1.5 +/- 0.1 microM, respectively. 4. Increase in pH of the incubation medium from pH 6 to 7.5 increased the potency of inhibition of coumarin 7-hydroxylation by pilocarpine. 5. Superimposition of pilocarpine and coumarin in such a way that their carbonyls, ring oxygens and the H-7' of coumarin and N-3 of pilocarpine overlap yielded a common molecular volume of 82%. 6. The results indicate that pilocarpine is a competitive inhibitor and has a high affinity for mouse CYP 2A5 and human CYP 2A6. In addition the immunotype nitrogen of pilocarpine is coordinated towards the haem iron in these P450s.  相似文献   

11.
CYP2C9 is involved in metabolism of nearly 25% of clinically used drugs. Coding region polymorphisms CYP2C9*2 and *3 contribute to interperson variability in drug dosage and clinical outcomes, whereas the role of a regulatory polymorphism remains uncertain. Measuring allelic RNA expression in 87 human liver samples, combined with genotyping, sequencing, and reporter gene assays, we identified a promoter variable number tandem repeat polymorphism (pVNTR) that fully accounted for allelic CYP2C9 mRNA expression differences. Present in three different variant forms [short (pVNTR-S), medium (pVNTR-M), and long (pVNTR-L)], only the pVNTR-S allele reduced the CYP2C9 mRNA level compared with the pVNTR-M (reference) allele. pVNTR-S is in linkage disequilibrium with *3, with linkage disequilibrium r(2) of 0.53 to 0.75 in different populations. In patients who were taking a maintenance dose of warfarin, the mean warfarin dose was associated with the copies of pVNTR-S (p = 0.0001). However, in multivariate regression models that included the CYP2C9*3, pVNTR-S was no longer a significant predictor of the warfarin dose (p = 0.60). These results indicate that although pVNTR-S reduced CYP2C9 mRNA expression, the in vivo effects of pVNTR-S on warfarin metabolism cannot be separated from the effects of *3. Therefore, it is not necessary to consider pVNTR-S as an additional biomarker for warfarin dosing. Larger clinical studies are needed to define whether the pVNTR-S has a minimal effect in vivo, or whether the effect attributed to *3 is really a combination of effects on expression by the pVNTR-S along with effects on catalytic activity from the nonsynonymous *3 variant.  相似文献   

12.
The relationships between catalytic activity of cytochrome P450 2A6 (CYP2A6), polymorphism of CYP2A6 gene, gender and levels of body iron stores were analysed in a sample group of 202 apparently healthy Thais, aged 19-47 years. Eleven individuals were found to have high activity of CYP2A6, judged by the relatively large amounts (11.2-14.6 mg) of 7-hydroyxcoumarin (7-OHC) excreted 3 h following administration of 15 mg of coumarin. Ten individuals, however, did not excrete any 7-OHC. Of these 10, four were found to have no CYP2A6 gene (whole gene deletion; CYP2A6*4 allele). The frequency of the CYP2A6 alleles; *1A, *1B and *4 in the whole sample group was 52, 40 and 8% while the frequency of the CYP2A6 gene types; *1A/*1A, *1A/*1B, *1B/*1B, *1A/*4, *1B/*4, *4/*4 was 29, 41, 16, 7, 5 and 2%. Subjects having CYP2A6*1A/*1B gene-type group were found to have higher rates of coumarin 7-hydroxylation compared with those of the CYP2A6*1B/*1B and CYP2A6*1A/*4 gene types. The inter-individual variability in CYP2A6 catalytic activity was therefore attributed in part to the CYP2A6 genetic polymorphism. Variation in CYP2A6 activity in this sample group was not associated with gender but, interestingly, it did show an inverse association with plasma ferritin; an indicator of body iron stores. Higher rates of coumarin 7-hydroxylation were found in individuals with low body iron stores (plasma ferritin < 20 microg/l) compared with subjects having normal body iron store status. Subjects (n = 16) with iron overload (plasma ferritin > 300 microg/l) also tended to have elevated rates of coumarin 7-hydroxylation. These results suggest an increased CYP2A6 expression in subjects who have excessive body iron stores. Further investigations into the underlying factors that may lead to increased expression of CYP2A6 in association with abnormal body iron stores are currently in progress in our laboratory.  相似文献   

13.
Cytochrome P450 2A13 (CYP2A13) is responsible for the metabolism of chemical compounds such as nicotine, coumarin, and tobacco-specific nitrosamine. Several of these compounds have been recognized as procarcinogens activated by CYP2A13. We recently showed that CYP2A13*2 contributes to inter-individual variations observed in bladder cancer susceptibility because CYP2A13*2 might cause a decrease in enzymatic activity. Other CYP2A13 allelic variants may also affect cancer susceptibility. In this study, we performed an in vitro analysis of the wild-type enzyme (CYP2A13.1) and 8 CYP2A13 allelic variants, using nicotine and coumarin as representative CYP2A13 substrates. These CYP2A13 variant proteins were heterologously expressed in 293FT cells, and the kinetic parameters of nicotine C-oxidation and coumarin 7-hydroxylation were estimated. The quantities of CYP2A13 holoenzymes in microsomal fractions extracted from 293FT cells were determined by measuring reduced carbon monoxide-difference spectra. The kinetic parameters for CYP2A13.3, CYP2A13.4, and CYP2A13.10 could not be determined because of low metabolite concentrations. Five other CYP2A13 variants (CYP2A13.2, CYP2A13.5, CYP2A13.6, CYP2A13.8, and CYP2A13.9) showed markedly reduced enzymatic activity toward both substrates. These findings provide insights into the mechanism underlying inter-individual differences observed in genotoxicity and cancer susceptibility.  相似文献   

14.
A 1.57kb BamH1 fragment containing a full-length human debrisoquine 4-hydroxylase cytochrome P450 (CYP2D6) cDNA was inserted into the BglII site of the yeast expression plasmid pMA91 and the resulting recombinant plasmid, PELT1, introduced into Saccharomyces cerevisiae strain AH22. Microsomes prepared from AH22/pELT1 cells gave an absorption maximum at 448 nm and a P450 content of 67 +/- 31 pmol/mg of microsomal protein. No P450 was detectable in microsomes prepared from AH22/pMA91 control cells. A western blot of microsomes prepared from yeast transformed with pELT1 were probed with a monoclonal antibody to CYP2D6 and revealed a strong band with a molecular mass consistent with that of CYP2D6 from human liver microsomes. No corresponding band was observed with microsomes from control yeast transformed with pMA91 alone. Microsomes from AH22/pELT cells showed catalytic activity towards metoprolol (alpha-hydroxylation and O-demethylation, 0.17 and 0.78 nmol/mg protein/h, respectively); and towards sparteine (2- and 5-dehydrogenation, 1.82 and 0.59 nmol/mg protein/h, respectively). The inhibition of metoprolol metabolism by quinidine (Qd) was 200 times more potent than that of quinine (Qn), both for alpha-hydroxylation (Qd IC50 = 0.05 microM; Qn IC50 = 4 microM) and O-demethylation (Qd IC50 = 0.05 microM; Qn IC50 = 4 microM). Negligible metabolism of tolbutamide and S-mephenytoin, substrates of the 2C sub-family, and of p-nitrophenol, a substrate of CYP2E1, was detected, although a trace of the N-deethylated metabolite of lignocaine, thought to be metabolised by CYP3A4, was detected with microsomes from CYP2D6-expressing yeast cells. The results indicate that yeast cells containing human CYP2D6 cDNA express a functionally active form of the enzyme, the immunochemical and catalytic properties of which are consistent with those of human liver.  相似文献   

15.
The human UDP-glucuronosyltransferase, UGT1A9, catalyses glucuronidations of various endobiotics and xenobiotics. In the present study, all exons, exon-intron junctions, and the 5'-flanking region (-273 bp) of the UGT1A9 gene in a Japanese subject were sequenced. One base insertion of thymidine in a promoter region of the UGT1A9 gene resulting in A(T)10AT was identified compared to the reference sequence of AF297093 (A(T)9AT). The allele was termed UGT1A9*22. A polymerase chain reaction-single strand conformation polymorphism method was developed to genotype the allele. The allele frequencies of the mutation in 87 Japanese, 50 Caucasian and 50 African-American subjects were 60%, 39% and 44%, respectively. The significance of the polymorphism was investigated by the construction of luciferase reporter plasmids containing 170 bp of the 5'-flanking region of the gene transfected into human hepatoma HepG2 cells. The luciferase activity of the promoter construct containing the A(T)10AT sequence was 2.6-fold higher than that of the construct containing the A(T)9AT sequence. In conclusion, the mutant allele with one base insertion in the promoter region of the UGT1A9 gene would alter the level of enzyme expression and the metabolism of those drugs that are substrates of UGT1A9.  相似文献   

16.
We analyzed CYP2D6 in two individuals characterized by impaired sparteine oxidation (intermediate metabolizer phenotype) and genotype 2D62/4 (1661G>C; 2850C>T; 4180G>C) usually associated with normal function. Full genomic sequencing and haplotype analysis confirmed the previously identified silent mutation 2939G>A in exon 6 (former allele variant 2D62J, now termed 2D659), as well as an additional novel 2291G>A change in intron 4. Transient expression in Huh7 hepatoma cells of the entire CYP2D6 gene of constructs carrying either both or only the 2939G>A change resulted in about three-fold reduced levels of mRNA, immunoreactive 2D6 protein and propafenone hydroxylase activity. These data demonstrate profound effects of a silent mutation on expression and function of CYP2D6, resulting in impaired drug oxidation phenotype. The 2939G>A single nucleotide polymorphism in exon 6 was present heterozygously in two individuals out of 308 (0.65%), corresponding to an allele frequency of 0.3%. Genotyping for this mutation thus improves phenotype-genotype correlation for CYP2D6 and may help to predict adverse drug treatment events.  相似文献   

17.
目的对中国汉族、回族健康人群细胞色素P450(CYP)3A4、CYP2C9、CYP2C19及CYP2D6进行基因多态性分析,比较汉族和回族健康人群基因表型和基因频率分布。方法多聚酶链反应-限制性片段长度多态性(PCR-RFLP)法,对300名志愿者的几种基因进行分型。结果汉族、回族CYP3A4*5等位基因频率均为0,CYP3A4*18等位基因频率分别为0.18,0.19;汉族、回族CYP2C9*2等位基因频率分别为0.01,0.05;CYP2C9*13等位基因频率均为0;汉族、回族CYP2C19*2等位基因频率分别为0.39,0.50;CYP2C19*3等位基因频率分别为0.05,0.05;汉族、回族CYP2D6*10等位基因频率分别为0.57,0.39。结论汉族、回族健康人群的CYP3A4*18、CYP2C9*2、CYP2C19*2、CYP2C19*3均没有显著性差异;在汉族、回族健康人群中未发现CYP3A4*5和CYP2C9*13突变;汉族、回族CYP2D6*10等位基因频率有显著性差异(P<0.01);回族人群CYP2D6中速代谢型(*10/*10)频率为13.4%,明显低于汉族的33.1%(P<0.01)。  相似文献   

18.
AIMS: We evaluated the involvement of cytochrome P450 (CYP) isoforms 2C9 and 2C19 in chlorpropamide 2-hydroxylation in vitro and in chlorpropamide disposition in vivo. METHODS: To identify CYP isoforms(s) that catalyse 2-hydroxylation of chlorpropamide, the incubation studies were conducted using human liver microsomes and recombinant CYP isoforms. To evaluate whether genetic polymorphisms of CYP2C9 and/or CYP2C19 influence the disposition of chlorpropamide, a single oral dose of 250 mg chlorpropamide was administered to 21 healthy subjects pregenotyped for CYP2C9 and CYP2C19. RESULTS: In human liver microsomal incubation studies, the formation of 2-hydroxychlorpropamide (2-OH-chlorpropamide), a major chlorpropamide metabolite in human, has been best described by a one-enzyme model with estimated K(m) and V(max) of 121.7 +/- 19.9 microm and 16.1 +/- 5.0 pmol min(-1) mg(-1) protein, respectively. In incubation studies using human recombinant CYP isoforms, however, 2-OH-chlorpropamide was formed by both CYP2C9 and CYP2C19 with similar intrinsic clearances (CYP2C9 vs. CYP2C19: 0.26 vs. 0.22 microl min(-1) nmol(-1) protein). Formation of 2-OH-chlorpropamide in human liver microsomes was significantly inhibited by sulfaphenazole, but not by S-mephenytoin, ketoconazole, quinidine, or furafylline. In in vivo clinical trials, eight subjects with the CYP2C9*1/*3 genotype exhibited significantly lower nonrenal clearance [*1/*3 vs.*1/*1: 1.8 +/- 0.2 vs. 2.4 +/- 0.1 ml h(-1) kg(-1), P < 0.05; 95% confidence interval (CI) on the difference 0.2, 1.0] and higher metabolic ratios (of chlorpropamide/2-OH-chlorpropamide in urine: *1/*3 vs.*1/*1: 1.01 +/- 0.19 vs. 0.56 +/- 0.08, P < 0.05; 95% CI on the difference - 0.9, - 0.1) than did 13 subjects with CYP2C9*1/*1 genotype. In contrast, no differences in chlorpropamide pharmacokinetics were observed for subjects with the CYP2C19 extensive metabolizer vs. poor metabolizer genotypes. CONCLUSIONS: These results suggest that chlorpropamide disposition is principally determined by CYP2C9 activity in vivo, although both CYP2C9 and CYP2C19 have a catalysing activity of chlorpropamide 2-hydroxylation pathway.  相似文献   

19.
AIMS: The cytochrome P450 enzyme CYP2C9 catalyses the 4'-hydroxylation of the nonsteroidal analgesic drug diclofenac in humans. We studied the influences of the known amino acid variants, CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu), on diclofenac pharmacokinetics after a 50-mg oral dose of diclofenac in healthy volunteers. As a surrogate marker of diclofenac activity, the ex vivo formation of prostaglandin E2 and thromboxane B2, which reflects COX-2 and COX-1 activity, was measured. METHODS: Genotyping was performed in 516 healthy volunteers to obtain 20 participants with all allelic combinations of the two CYP2C9 variants Arg144Cys (*2) and Ile359Leu (*3). Diclofenac and 4'-hydroxydiclofenac were quantified in plasma by reversed phase h.p.l.c. after oral intake of 50 mg diclofenac. Concentrations of thromboxane B2 (TxB2) and prostaglandin E2 (PGE2) were measured by immunoassays. RESULTS: There was no evidence of impaired metabolism of oral diclofenac in heterozygous and homozygous carriers of the CYP2C9 alleles *2 and *3 compared with the wild type (mean CL/F (95% CI) 20.5 (11, 30) l h-1 for *1/*1, 29.9 (19, 40) l h-1 for *1/*2, 30.0 (4, 56) l h-1 for *2/*2, 22.6 (12, 33) l h-1 for *1/*3, 23.5 (11, 37) l h-1 for *3/*3 and 37.3 (-15, 89) l h-1 in *2/*3). Furthermore, plasma concentrations of the metabolite 4'-hydroxydiclofenac were not lower in carriers of the CYP2C9 low-activity alleles *2 and *3 compared with carriers of the CYP2C9*1/*1 genotype. Marked diclofenac mediated inhibition of COX-1- and COX-2 activity was detected in all individuals independent of CYP2C9 genotype. CONCLUSIONS: Polymorphisms of the CYP2C9 gene had no discernible effect on the pharmacokinetics and pharmacodynamics of diclofenac. The question of whether enzymes other than CYP2C9 play a major role in diclofenac 4'-hydroxylation in vivo or whether 4'-hydroxylation is not a rate-limiting step in diclofenac elimination in vivo, or whether the effect of the CYP2C9 polymorphisms is substrate-dependent, needs further investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号