首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Momburg F  Tan P 《Molecular immunology》2002,39(3-4):217-233
MHC class I molecules are loaded with peptides that mostly originate from the degradation of cytosolic protein antigens and that are translocated across the endoplasmic reticulum (ER) membrane by the transporter associated with antigen processing (TAP). The ER-resident molecule tapasin (Tpn) is uniquely dedicated to tether class I molecules jointly with the chaperone calreticulin (Crt) and the oxidoreductase ERp57 to TAP. As learned from the study of a Tpn-deficient cell line and from mice harboring a disrupted Tpn gene, the transient association of class I molecules with Tpn and TAP is critically important for the stabilization of class I molecules and the optimization of the peptide cargo presented to cytotoxic T cells. The different functions of molecular domains of Tpn and the highly coordinated formation of the TAP-associated peptide loading complex will also be discussed in this review.  相似文献   

2.
The assembly of MHC class I molecules is regulated by a multi-protein complex in the endoplasmic reticules (ER) termed the loading complex. Tapasin is suggested to be one of the molecules forming this complex on the basis of its interaction with both the transporter associated with antigen processing (TAP) and MHC class I molecules. To address whether TAP is indispensable for the processing of the assembly of tapasin-associated MHC class I molecules, we studied the association of MHC class I molecules with tapasin, the assembly of tapasin-associated MHC class I with peptides and the peptide-mediated dissociation of MHC class I from tapasin in TAP-mutant T2 cells. In the absence of TAP, MHC class I heavy chain and beta(2)-microglobulin dimers were found to be properly associated with tapasin. The stable MHC class I dimer was required for its association with tapasin in the ER. In the absence of TAP, tapasin retained MHC class I molecules much longer in the ER than in the presence of TAP. This low off-rate of MHC class I from tapasin was due to the absence of high-affinity peptides in the ER of TAP-mutant cells but not to the absence of TAP per se. The introduction of peptides into permeabilized microsomes of TAP-mutant cells led to effective loading of the peptides onto tapasin-associated MHC class I and to the subsequent dissociation of MHC class I from tapasin. These results demonstrate that regulation of the assembly of tapasin-associated MHC class I is independent of the interaction of tapasin with TAP, but is dependent upon the peptides transported by TAP.  相似文献   

3.
4.
Prior to loading antigenic peptides, assembled major histocompatibility complex (MHC) class I molecules associate with the transporter associated with antigen processing (TAP) in a complex which also includes calreticulin and a recently described component, tapasin. The interaction of MHC class I molecules has been characterized as occurring exclusively with the TAP1 chain of the TAP heterodimer. In contrast, as described here, in the TAP-deficient human cell line T2, MHC class I molecules interact with a transfected rat TAP2 polypeptide in addition to rat TAP1. Furthermore, this interaction with TAP2 also involves calreticulin and tapasin. An association with both TAP polypeptides would presumably further enhance the efficiency of peptide loading of MHC class I molecules by allowing more than one MHC class I allele proximity to the site of peptide supply on each TAP complex.  相似文献   

5.
The discovery of tapasin has shed new light on the mechanisms of major histocompatibility complex (MHC) class I assembly in the endoplasmic reticulum (ER). Tapasin appears to play an important role in the stable assembly of class I molecules with peptide, however, the precise function of tapasin remains elusive. The pursuit of tapasin function is complicated by the observation that tapasin is not required for successful antigen presentation by all class I molecules. In addition, current data suggest that the putative role of tapasin as a bridging molecule between transporter associated with antigen presentation (TAP) and class I is only of minor importance in tapasin action, and tapasin’s major role appears to be as an active cofactor in the assembly of class I. Furthermore, it is clear that class I molecules can follow multiple pathways for successful assembly in the ER. These pathways may or may not include the interaction of class I molecules with the accessory proteins tapasin, calreticulin, ERp57, or TAP. I would like to suggest that the particular pathway utilized by a given class I molecule depends more upon the availability of appropriate peptides rather than on an intrinsic property of the class I molecule, and that tapasin may serve a peptide editing function.  相似文献   

6.
Tapasin: an ER chaperone that controls MHC class I assembly with peptide   总被引:2,自引:0,他引:2  
The stable assembly of MHC class I molecules with peptides in the endoplasmic reticulum (ER) involves several accessory molecules. One of these accessory molecules is tapasin, a transmembrane protein that tethers empty class I molecules to the peptide transporter associated with antigen processing (TAP). Here, evidence is presented that tapasin retains class I molecules in the ER until they acquire high-affinity peptides.  相似文献   

7.
The expression of major histocompatibility complex (MHC) class I molecules on the cell surface is critical for recognition by cytotoxic T lymphocytes (CTL). This recognition event leads to destruction of cells displaying MHC class I—viral peptide complexes or cells displaying MHC class I—mutant peptide complexes. Before they can be transported to the cell surface, MHC class I molecules must associate with their peptide ligand in the endoplasmic reticulum (ER) of the cell. Within the ER, numerous proteins assist in the appropriate assembly and folding of MHC class I molecules. These include the heterodimeric transporter associated with antigen processing (TAP1 and TAP2), the heterodimeric chaperone-oxidoreductase complex of tapasin and ERp57 and the general ER chaperones calreticulin and calnexin. Each of these accessory proteins has a well-defined role in antigen presentation by MHC class I molecules. However, alternate splice forms of MHC class I heavy chains, TAP and tapasin, have been reported suggesting additional complexity to the picture of antigen presentation. Here, we review the importance of these different accessory proteins and the progress in our understanding of alternate splicing in antigen presentation.  相似文献   

8.
The nature of the MHC class I peptide loading complex   总被引:14,自引:0,他引:14  
Summary: Peptide binding to major histocompatibility complex (MHC) dass I molecules occurs in the endoplasmic reticulum (ER). Efficient peptide binding requires a number of components in addition co the MHC class I-β2 microglobulin dimer (β2m). These include the two subunits of the transporter associated with antigen presentation (TAP1 and TAP2), which are essential for introducing peptides into the ER from the cytosol, and tapasin, an MHC-encoded membrane protein. Prior to peptide binding, MHC class I-β2m dimers form part of a large multisubnnit ER complex which includes TAP and tapasin. In addition to these specialized components two soluble 'house-keeping' proteins, the chaperone calreticulin and the thiol oxidoreductase ERp57, are also components of this complex. Our current understanding of the nature and function of the MHC class I peptide loading complex is the topic of this review.  相似文献   

9.
Bangia N  Cresswell P 《Immunology》2005,114(3):346-353
The assembly of major histocompatibility complex (MHC) class I molecules with their peptide ligands in the endoplasmic reticulum (ER) requires the assistance of many proteins that form a multimolecular assemblage termed the 'peptide-loading complex'. Tapasin is the central stabilizer of this complex, which also includes the transporter associated with antigen processing (TAP), MHC class I molecules, the ER chaperone, calreticulin, and the thiol-oxidoreductase ERp57. In the present report, we investigated the requirements of these interactions for tapasin protein stability and MHC class I dissociation from the peptide-loading complex. We established that tapasin is stable in the absence of either TAP or MHC class I interaction. In the absence of TAP, tapasin interaction with MHC class I molecules is long-lived and results in the sequestration of existing tapasin molecules. In contrast, in TAP-sufficient cells, tapasin is re-utilized to interact with and facilitate the assembly of many MHC class I molecules sequentially. Furthermore, chemical cross-linking has been utilized to characterize the interactions within this complex. We demonstrate that tapasin and MHC class I molecules exist in a 1 : 1 complex without evidence of higher-order tapasin multimers. Together these studies shed light on the tapasin protein life cycle and how it functions in MHC class I assembly with peptide for presentation to CD8(+) T cells.  相似文献   

10.
To investigate how early events in antigen processing affect the repertoire of peptides presented by MHC class I molecules, we compared the presentation of the influenza A nucleoprotein epitope 265 – 273 by HLA-A3 class I molecules in human and mouse cells. Mouse cells that express HLA-A3 failed to present the NP265 – 273 peptide when contained within the full-length nucleoprotein, to HLA-A3-restricted human cytotoxic T lymphocytes. However, when the epitope was generated directly in the cytosol using a recombinant vaccinia virus that expressed the nonamer peptide, mouse cells were recognized by HLA-A3-restricted CTL. Poor transport of the peptide by mouse TAP was not responsible for the defect as co-infection of mouse cells with recombinant vaccinia viruses encoding the full-length nucleoprotein and the human TAP1 and TAP2 peptide transporter complex failed to restore presentation. These results therefore demonstrate a differential processing of the influenza nucleoprotein in mouse and human cells. This polymorphism influences the repertoire of peptides presented by MHC class I molecules at the cell surface.  相似文献   

11.
The B cell line 721.174 has lost the ability to present intracellular antigens to major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTL). This phenotype results from a homozygous deletion in the MHC that includes the peptide transporter genes TAP1 and TAP2, and the proteasome subunits LMP2 and LMP7. Recent work has shown that such cells transfected with TAP genes load their class I molecules with endogenous peptides, and present several viral epitopes to class I-restricted CTL. These data implied that the LMP2 and LMP7 genes were not required for the presentation of most epitopes through class I molecules. By contrast, while confirming the previous reports, we have identified several epitopes that appear to require genes in the MHC in addition to the TAP for their presentation. Further analysis localizes the defect to proteolysis in the cytosol. In one case, presentation could be partially restored by re-expression of full-length LMP7. Control experiments with LMP7, from which the putative pro-region had been removed, failed to restore presentation, and this lack of effect correlated with failure of the shortened LMP7 to incorporate into the proteasome. These results suggest a role for LMP7 in the generation of a viral epitope, but leave open the possibility that additional genes within the .174 deletion are required for full restoration of antigen presentation.  相似文献   

12.
The major histocompatibility complex (MHC)-encoded transporter associated with antigen processing (TAP) translocates peptides from the cytosol into the lumen of the endoplasmic reticulum. This step precedes the binding of peptides to MHC class I molecules and is essential for cell surface expression of the MHC class I/peptide complex. TAP has a broad sequence specificity and a preference for peptides of around 9 amino acids. To synthesize inhibitors for TAP, we studied various alterations of the peptide substrate. The results indicate that TAP is stereospecific and that peptide bonds engineered into isosteric structures can improve translocation of the peptide. Furthermore, TAP is able to translocate peptides with large side chains that correspond to a peptide of ~ 21 amino acids in extended conformation. Peptides with longer side chains compete for the peptide binding site of TAP but fail to be translocated. Therefore, they represent the first rationally designed inhibitors of TAP.  相似文献   

13.
Malignant transformation is often associated with genetic alterations providing tumor cells with mechanisms for escape from immune surveillance. Human and murine tumors of various origin as well as in vitro models of viral and oncogenic transformation express reduced levels of major histocompatibility complex (MHC) class I antigens resulting in decreased sensitivity to MHC class I-restricted cytotoxic T lymphocyte (CTL)-mediated lysis. We here investigate whether the suppressed MHC class I surface expression of ras-transformed fibroblasts is due to dysregulation of the genes of the antigen-processing machinery, the peptide transporters TAP-1 and TAP-2 and the proteasome subunits LMP-2 and LMP-7, and whether it can be restored by gene transfer. In comparison to parental NIH3T3 cells, the ras oncogenic transformants revealed reduced TAP and LMP mRNA expression and impaired function of these genes, leading to deficient peptide transport and peptide loading of MHC class I molecules resulting in instable expression of the MHC class I complex on the cell surface. Enhanced H-2 surface expression due to stabilization of the MHC class I complex could be achieved by culturing ras transformants at low, unphysiological temperature (26 °C) or by loading these cells with either exogenous human β2-microglobulin or MHC class I-binding peptide alone or in combination. Furthermore, interferon-γ treatment was capable to enhance the expression of TAP, LMP and MHC class I molecules in both parental as well as ras-transformed fibroblasts. Stable transfection of the human TAP-1 cDNA into ras transformants caused a partial reconstitution of the peptide transport and an enhancement of the MHC class I surface expression, whereas the level of MHC class I biosynthesis was not affected by TAP-1 overexpression in parental cells. Together these results point to the existence of an association between oncogenic transformation and deficiencies in the MHC class I antigen-restricted immunosurveillance, suggesting intervention strategies involving specific MHC class I-binding peptides or transfection of the LMP and/or TAP genes to overcome the expression of the immune escape phenotype.  相似文献   

14.
Tapasin mediates the binding of MHC class I molecules to the transporter associated with antigen processing (TAP). Deletion mutants of tapasin were used to examine the effect of tapasin on interactions within the MHC class I complex. Binding to TAP is mediated by the C-terminal region of tapasin. Michaelis-Menten analysis of peptide transport shows that this interaction is sufficient to increase TAP levels without significantly affecting the intrinsic translocation rate. Weak interactions exist between MHC class I molecules and TAP in the absence of tapasin, and between free heavy chains and TAP-tapasin complexes in the absence of beta2-microglobulin. The N-terminal 50 residues of tapasin constitute the key element which converts the sum of these weak interactions into a stable complex.  相似文献   

15.
The murine gamma-herpesvirus-68 MK3 protein has an intricate interaction with the peptide loading complex that involves MK3 stabilization, a rapid degradation of MHC class I heavy chains, and a slower degradation of TAP. Here we have used tapasin chimeras to distinguish functionally the different immune evasion mechanisms of MK3. Tapasin was cloned in two alternatively spliced forms that differed by a single transmembrane valine residue. Each restored antigen presentation and MK3 function in tapasin-deficient cells. The transmembrane/cytoplasmic portion of tapasin, linked to the extracellular domain of CD8, also restored TAP stability and MK3 stability in tapasin-deficient cells. MK3 did not associate with or degrade MHC class I in these cells, which lacked the endoplasmic reticulum domain of tapasin, but degraded TAP at least as efficiently as when full-length tapasin was present. The un-degraded MHC class I consequently showed impaired maturation. The fact that MK3 required intact tapasin to degrade MHC class I but only the transmembrane/cytoplasmic portion of tapasin to degrade TAP indicated that these two immune evasion functions operate independently.  相似文献   

16.
Virus subversion of the MHC class I peptide-loading complex   总被引:3,自引:0,他引:3  
Many viral proteins modulate class I expression, yet, in general, their mechanisms of specific class I recognition are poorly understood. The mK3 protein of gamma(2)-Herpesvirus 68 targets the degradation of nascent class I molecules via the ubiquitin/proteasome pathway. Here, we identify cellular components of the MHC class I assembly machinery, TAP and tapasin, that are required for mK3 function. mK3 failed to regulate class I in TAP- or tapasin-deficient cells, and mK3 interacted with TAP/tapasin, even in the absence of class I. Expression of mK3 resulted in the ubiquitination of TAP/tapasin-associated class I, and mutants of class I incapable of TAP/tapasin interaction were unaffected by mK3. Thus, mK3 subverts TAP/tapasin to specifically target class I molecules for destruction.  相似文献   

17.
The heterodimeric peptide transporter associated with antigen processing (TAP) consisting of the subunits TAP1 and TAP2 mediates the transport of cytosolic peptides into the lumen of the endoplasmic reticulum (ER). In order to accurately define domains required for peptide transporter function, a molecular approach based on the construction of a panel of human TAP1 mutants and their expression in TAP1(-/-) cells was employed. The characteristics and biological activity of the various TAP1 mutants were determined, and compared to that of wild-type TAP1 and TAP1(-/-) control cells. All mutant TAP1 proteins were localized in the ER and were capable of forming complexes with the TAP2 subunit. However, the TAP1 mutants analyzed transported peptides with different efficiencies and displayed a heterogeneous MHC class I surface expression pattern which was directly associated with their susceptibility to cytotoxic T lymphocyte-mediated lysis. Based on this study, the TAP1 mutants can be divided into three categories: those expressing a similar phenotype compared to TAP1(-/-) or wild-type TAP1 cells respectively, and those representing an intermediate phenotype in terms of peptide transport rate, MHC class I surface expression and immune recognition. Thus, the results provide evidence that specific regions in the TAP1 subunit are crucial for the proper processing and presentation of cytosolic antigens to MHC class I-restricted T cells, whereas others may play a minor role in this process.  相似文献   

18.
In the class II region of the major histocompatibility complex (MHC), four genes implicated in MHC class I-mediated antigen processing have been described. Two genes (TAP 1 and TAP 2) code for multimembrane-spanning ATP-binding transporter proteins and two genes (LMP 2 and LMP 7) code for subunits of the proteasome. While TAP 1 and TAP 2 have been shown to transport antigenic peptides from the cytosol into the endoplasmic reticulum, where the peptides associate with MHC class I molecules, the role of LMP 2/7 in antigen presentation is less clear. Using antigen processing mutant T2 cells that lack TAP 1/2 and LMP 2/7 genes, it was recently shown that expression of TAP 1/2 alone was sufficient for processing and presentation of the influenza matrix protein M1 as well as the minor histocompatibility antigen HA-2 by HLA-A2. To understand if presentation of a broader range of viral antigens occurs in the absence of LMP 2/7, we transfected T2 cells with TAP 1, TAP 2 and either of the H-2Kb, Db or Kd genes and tested their ability to present vesicular stomatitis vires and influenza virus antigens to virus-specific cytotoxic T lymphocytes. We found that T2 cells, expressing TAP 1/2 gene products, presented all tested viral antigens restricted through either the H-2Kb, Db or Kd class I molecules. We conclude that the proteasome subunits LMP 2/7 as well as other gene products in the MHC class II region, except from TAP 1/2, are not generally necessary for presentation of a broader panel of viral antigens to cytotoxic T cells. However, the present results do not exclude that LMP 2/7 in a more subtle way may, or in rare cases completely, affect processing of antigen for presentation by MHC class I molecules.  相似文献   

19.
Major histocompatibility complex (MHC) class I molecules usually present endogenous peptides at the cell surface. This is the result of a cascade of events involving various dedicated proteins like the peptide transporter associated with antigen processing (TAP) and the ER chaperone tapasin. However, alternative ways for class I peptide loading exist which may be highly relevant in a process called cross-priming. Both pathways are described here in detail. One major difference between these pathways is that the proteases involved in the generation of peptides are different. How proteases and peptidases influence peptide generation and degradation will be discussed. These processes determine the amount of peptides available for TAP translocation and class I binding and ultimately the immune response.  相似文献   

20.
Prior to binding to antigenic peptide, the major histocompatibility complex (MHC) heavy chain associates with an assembly complex of proteins that includes calreticulin, tapasin, and the transporter associated with antigen processing (TAP). Our data show that calreticulin can bind weakly to Ld without tapasin's assistance, and that deglycosylation of the alpha1 domain results in a primary loss of binding to calreticulin rather than tapasin. We have also shown that high amounts of wild-type tapasin are still unable to associate with MHC class I in the absence of the MHC class I/calreticulin interaction, confirming the central role of calreticulin in the formation of the MHC class I assembly complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号