首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim: The aim of this study was to provide a more extensive evaluation of the effects of chronic aerobic exercise on various components of the insulin signalling cascade in normal rodent skeletal muscle because of the limited body of literature that exists in this area of investigation. Methods: Male Sprague–Dawley rats were assigned to either control (n = 7) or chronic aerobic exercise (n = 7) groups. Aerobic exercise animals were run 3 day week?1 for 45 min on a motor‐driven treadmill (32 m min?1, 15% grade) for a 12 week period. Following the training period, all animals were subjected to hind limb perfusion in the presence of 500 μU mL?1 insulin to determine what effect chronic aerobic training had on various components of the insulin signalling cascade, c‐Cbl protein concentration and c‐Cbl phosphorylation. Results: Twelve weeks of aerobic training did not alter skeletal muscle Akt 1/2 protein concentration, Akt Ser 473 phosphorylation, Akt Thr 308 phosphorylation, Akt 1 activity, aPKC‐ζ protein concentration, aPKC‐λ protein concentration or c‐Cbl protein concentration. In contrast, chronic aerobic exercise increased insulin‐stimulated phosphatidylinositol 3‐kinase, Akt 2 kinase and aPKC‐ζ/λ kinase activities, as well as c‐Cbl tyrosine phosphorylation, in a fibre type specific response to aerobic training. In addition, chronic aerobic exercise enhanced insulin‐stimulated plasma membrane glucose transporter 4 (GLUT4) protein concentration. Conclusion: Collectively, these findings suggest that chronic aerobic exercise enhances components of both the classical and novel insulin signalling cascades in normal rodent skeletal muscle, which may contribute to an increased insulin‐stimulated plasma membrane GLUT4 protein concentration.  相似文献   

2.
The major purpose of this study was to elucidate mechanisms by which decreasing enhanced physical activity induces decreased insulin sensitivity in skeletal muscle. Rats with access to voluntary running wheels for 3 weeks had their wheels locked for 5 h (WL5), 29 h (WL29), or 53 h (WL53); a separate group of rats never had wheel access (sedentary, SED). Relative to WL5, submaximal insulin-stimulated 2-deoxyglucose uptake into the epitrochlearis muscle was lower in WL53 and SED. Insulin binding, insulin receptor β-subunit (IRβ) protein level, submaximal insulin-stimulated IRβ tyrosine phosphorylation, and glucose transporter-4 protein level were each lower in both WL53 and SED than in WL5 and WL29. Akt/protein kinase B Ser473 phosphorylation was lower in WL53 and SED than in WL5. Protein levels of protein tyrosine phosphatase-1B, Src homology phosphatase-2, and protein kinase C-θ did not vary among groups. The amount of protein tyrosine phosphatase-1B, Src homology phosphatase-2, and protein kinase C-θ associated with IRβ in insulin-stimulated muscle also did not differ among the four groups. The mean of SED and WL53 had a significantly higher IRβ-associated protein tyrosine phosphatase-1B than the mean of WL5 and WL29. The enclosure of multiple changes (decreases in insulin binding, IRβ protein, IRβ tyrosine phosphorylation, and glucose transporter-4 protein) in the epitrochlearis muscle within the 29th to 53rd hour after cessation of voluntary wheel running raises the possibility that a single regulatory event could be responsible for the coordinated decrease.  相似文献   

3.
The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism and insulin signalling transduction remain elusive. We believe that one of the reasons is that the role of intracellular compartmentalization as a regulator of metabolic pathways and signalling transduction has been rather ignored. This paper briefly reviews the literature to discuss the role of intracellular compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss the role of skeletal muscle transverse tubules as potential modulators of tissue insulin responsiveness.  相似文献   

4.
5.
6.
7.
We analysed the effects of resistance exercise upon the phosphorylation state of proteins associated with adaptive processes from the Akt/PKB (protein kinase B) and the mitogen-activated protein kinase (MAPK) pathways. Nine healthy young men (21.7 +/- 0.55 year) performed 10 sets of 10 leg extensions at 80% of their 1-RM (repetition maximum). Muscle biopsies were taken from the vastus lateralis at rest, within the first 30 s after exercise and at 24 h post-exercise. Immediately post exercise, the phosphorylation states of Akt/PKB on Thr308 and Ser473 and 4E-BP1 on Thr37/46 (eukaryotic initiation factor 4E-binding protein 1) were decreased (-60 to -90%, P < 0.05). Conversely, the phosphorylation of p70(s6k) (p70 ribosomal S6 kinase) on Thr421/Ser424 was increased more than 20-fold (P < 0.05), and this was associated with a 10- to 50-fold increase in the phosphorylation of p38 and ERK1/2 (extracellular signal-regulated kinase) (P < 0.05). Twenty-four hours post-exercise the phosphorylation state of Akt/PKB on Thr308 was depressed, whereas the phosphorylation of p70(s6k) on Thr421/Ser424 and sarcoplasmic ERK1/2 were elevated. The present results indicate that high-intensity resistance exercise in the fasted state inhibits Akt/PKB and 4E-BP1 whilst concomitantly augmenting MAPK signalling and p70(s6k) on Thr421/Ser424.  相似文献   

8.
This study investigated the effect of heat stress (HS) on mammalian target of rapamycin (mTOR) signaling involved in translation initiation after resistance exercise in human skeletal muscle. Eight young male subjects performed four sets of six maximal repetitions of knee extension exercises, with or without HS, in a randomized crossover design. HS was applied to the belly of the vastus lateralis by using a microwave therapy unit prior to and during exercise. Muscle biopsies were taken from the vastus lateralis before, immediately after, and 1 h after exercise. HS significantly increased the phosphorylation of Akt/PKB, mTOR, and ribosomal protein S6 at 1 h after exercise (P < 0.05), and the 4E-BP1 phosphorylation level, which had initially decreased with exercise, had recovered by 1 h after exercise with HS. In addition, the phosphorylation of ribosomal S6 kinase 1 was significantly increased immediately after exercise with HS (P < 0.05). These results indicate that HS enhances mTOR signaling after resistance exercise in human skeletal muscle.  相似文献   

9.
High-fat feeding activates components of the pro-inflammatory pathway and increases co-immunoprecipitation of suppressor of cytokine signalling (SOCS)-3 with both the insulin receptor (IR)-β subunit and IRS-1, which together contribute to keeping PI-3 kinase from being fully activated. However, whether aerobic training reverses these impairments is unknown. Sprague-Dawley rats were fed a chow (CON, n = 8) or saturated high-fat (n = 16) diets for 4 weeks. High-fat-fed rats were then allocated (n = 8/group) to either sedentary (HF) or aerobic exercise training (HFX) for an additional 4 weeks after which all animals underwent hind limb perfusions. Insulin-stimulated red quadriceps 3-O-methylglucose transport rates and PI-3 kinase activity were greater (p < 0.05) in CON and HFX compared to HF. IRS-1 tyrosine phosphorylation was increased (p < 0.05) and IRS-1 serine 307 phosphorylation was decreased (p < 0.05) in HFX compared to HF. IR-β subunit co-immunoprecipitation with IRS-1 was increased in HFX compared to HF. SOCS-3 co-immunoprecipitation with both the IR-β subunit and IRS-1 was decreased (p < 0.05) in HFX compared to HF. IKKα/β serine phosphorylation, and IκBα serine phosphorylation were decreased (p < 0.05) while IκBα protein concentration was increased in HFX compared to HF. By decreasing the association of SOCS-3 with both the IR-β subunit and IRS-1 the interaction between IRS-1 and the IR-β subunit was normalized in the HFX, and may have contributed to skeletal muscle PI-3 kinase being fully activated by insulin. Additionally, the reduction in IKKα/β serine phosphorylation in HFX may have contributed to decreasing IRS-1 serine phosphorylation, and in turn, promoted the normalization of insulin-stimulated activation of PI-3 kinase.  相似文献   

10.
The role of Ca2+ in mediating effects of insulin on skeletal muscle has been widely debated. It is believed that in skeletal muscle Ca2+ has a permissive role, necessary but not of prime importance in mediating the stimulatory actions of insulin. In this review, we present evidence that insulin causes a localized increase in the concentration of Ca2+. Specifically, insulin induces a rise in near‐membrane Ca2+ but not the bulk Ca2+ in the myoplasm. The rise in near‐membrane Ca2+ is because of an influx through channels that can be blocked by L‐type Ca2+ channel inhibitors. Calcium appears to exert some of its subsequent effects via calmodulin‐dependent processes as calmodulin inhibitors block the translocation of glucose transporters and other enzymes as well as the insulin‐stimulated increase in glucose transport.  相似文献   

11.
12.
The insulin resistance associated with aging is improved by exercise, but the molecular mechanisms of this improvement are not fully understood. We investigated whether the improvement in insulin action, associated with acute exercise in old rats is dependent on the modulation of pIRS-1Ser307, JNK, IkBα and PTP-1B. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the exercise, the rats were killed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the reduction in glucose disappearance rate (Kitt), observed in aged rats, was restored at 16 h after exercise. Aging led to an increase in Ser307 phosphorylation of IRS-1, and this was reversed by exercise in the skeletal muscle, in parallel with a reduction in pJNK and IkBα degradation. Moreover, aging induced an increase in the expression of PTP-1B and attenuated insulin signaling in the muscle of rats, a phenomenon that was reversed by exercise. Interestingly, the decrease in PTP-1B expression in the muscle of exercised old rats was accompanied by an increase in SIRT1 expression. These results provide new insights into the mechanisms by which exercise restores insulin sensitivity during aging.  相似文献   

13.
背景:研究表明,胰岛素受体底物蛋白1(insulin receptor substrate 1,IRS1)的丝氨酸磷酸化和结节性硬化复合物蛋白2的表达及哺乳动物雷帕霉素靶蛋白/核糖体S6激酶1信号通路的异常可诱导机体产生胰岛素抵抗。 目的:观察有氧运动对小鼠骨骼肌结节性硬化复合物蛋白2基因表达及IRS1丝氨酸磷酸化的影响。 方法:将C57BL/6小鼠随机分为安静组和运动组,运动组进行6周的75%VO2max强度的有氧跑台运动,安静组不做任何干预。采用RT-PCR,Western blot和免疫荧光组织化学染色等方法检测各组大鼠骨骼肌结节性硬化复合物蛋白2,IRS1,pIRS1-Ser307和pIRS1-Ser636/639的表达和定位。 结果与结论:运动组结节性硬化复合物蛋白2 mRNA及蛋白表达高于安静组(P < 0.05),两组间胰岛素受体底物蛋白1 mRNA及蛋白表达差异无显著性意义。运动组胰岛素受体底物蛋白1的丝氨酸307和丝氨酸636/639位点的磷酸化明显低于安静组(P< 0.05)。结果提示,有氧运动可增强骨骼肌组织结节性硬化复合物蛋白2基因表达,进而抑制胰岛素受体底物蛋白1的丝氨酸磷酸化。  相似文献   

14.
15.
16.
The purpose of this investigation was to determine whether long-term, heavy resistance training would cause adaptations in rat skeletal muscle structure and function. Ten male Wistar rats (3 weeks old) were trained to climb a 40-cm vertical ladder (4 days/week) while carrying progressively heavier loads secured to their tails. After 26 weeks of training the rats were capable of lifting up to 800?g or 140% of their individual body mass for four sets of 12–15 repetitions per session. No difference in body mass was observed between the trained rats and age-matched sedentary control rats. Absolute and relative heart mass were greater in trained rats than control rats. When expressed relative to body mass, the mass of the extensor digitorum longus (EDL) and soleus muscles was greater in trained rats than control rats. No difference in absolute muscle mass or maximum force-producing capacity was evident in either the EDL or soleus muscles after training, although both muscles exhibited an increased resistance to fatigue. Individual fibre hypertrophy was evident in all four skeletal muscles investigated, i.e. EDL, soleus, plantaris and rectus femoris muscles of trained rats, but muscle fibre type proportions within each of the muscles tested remained unchanged. Despite an increased ability of the rats to lift progressively heavier loads, this heavy resistance training model did not induce gross muscle hypertrophy nor did it increase the force-producing capacity of the EDL or soleus muscles.  相似文献   

17.
18.
The role of Ca2+ in mediating effects of insulin on skeletal muscle has been widely debated. It is believed that in skeletal muscle Ca2+ has a permissive role, necessary but not of prime importance in mediating the stimulatory actions of insulin. In this review, we present evidence that insulin causes a localized increase in the concentration of Ca2+. Specifically, insulin induces a rise in near-membrane Ca2+ but not the bulk Ca2+ in the myoplasm. The rise in near-membrane Ca2+ is because of an influx through channels that can be blocked by L-type Ca2+ channel inhibitors. Calcium appears to exert some of its subsequent effects via calmodulin-dependent processes as calmodulin inhibitors block the translocation of glucose transporters and other enzymes as well as the insulin-stimulated increase in glucose transport.  相似文献   

19.
20.
Technical limitations have precluded measurement of the V(O(2)) profile within contracting muscle (mV(O(2))) and hence it is not known to what extent V(O(2)) dynamics measured across limbs in humans or muscles in the dog are influenced by transit delays between the muscle microvasculature and venous effluent. Measurements of capillary red blood cell flux and microvascular P(O(2)) (P(O(2)m)) were combined to resolve the time course of mV(O(2)) across the rest-stimulation transient (1 Hz, twitch contractions). mV(O(2)) began to rise at the onset of contractions in a close to monoexponential fashion (time constant, J = 23.2 +/- 1.0 sec) and reached it's steady-state value at 4.5-fold above baseline. Using computer simulation in healthy and disease conditions (diabetes and chronic heart failure), our findings suggest that: (1) mV(O(2)) increases essentially immediately (< 2 sec) following exercise onset; (2) within healthy muscle the J blood flow (thus O(2) delivery, J Q(O(2)m)) is faster than JmV(O(2)) such that oxygen delivery is not limiting, and 3) a faster P(O(2)m) fall to a P(O(2)m) value below steady-state values within muscle from diseased animals is consistent with a relatively sluggish Q(O(2)m) response compared to that of mV(O(2)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号