首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spectrum of action of flupirtine includes analgesic, muscle-relaxant and neuroprotective properties. The substance's mechanism of action has yet to be fully explained. Over the past few years, however, evidence has accumulated that flupirtine interacts with the glutamatergic N-Methyl-D-Aspartate (NMDA) receptor. Although it was not possible to demonstrate a direct effect on the NMDA receptor, all of the findings pointed to an indirect influence on the NMDA receptor in the sense of a functional NMDA antagonism. It was thus postulated that a site of action "up- or downstream" of the NMDA receptor is influenced. Such a site of action proved to be the G-protein-activated inwardly rectifying K+ channels (GIRK), the opening of which leads to a stabilization of the resting membrane potential of neuronal cells and thus causes an indirect inhibition of the NMDA receptor. At therapeutically relevant concentrations, flupirtine is a neuronal potassium channel opener. This mechanism may explain the spectrum of action of flupirtine. Selective neuronal potassium channel opening (SNEPCO) thus proves to be a new principle of action, making flupirtine the prototype of a new substance class with analgesic, muscle-relaxant and neuroprotective properties. The experimental basis for this working hypothesis and the resulting model concepts are presented from the perspective of a four-stage approach.  相似文献   

2.
The effects of estrogen on the response of hypothalamic arcuate neurons to mu-opioid and GABAB agonists were investigated. Intracellular recordings were made from arcuate neurons in slices prepared from ovariectomized guinea pigs that were pretreated with estrogen or vehicle. Estrogen shifted the dose-response curve to the mu-opioid agonist DAMGO (Tyr-D-Ala-Gly-MePhe-Gly-ol) by 3.4-fold; the EC50 for DAMGO was 240 +/- 25 nM in estrogen-treated females versus 70 +/- 12 nM in the controls. The maximal hyperpolarization induced by DAMGO was equivalent in neurons from both groups. The Ke for the naloxone antagonism of the DAMGO response was similar in both groups, which would indicate that the affinity of the mu-receptor was unchanged. To explore where in the receptor/G-protein/K+ channel cascade estrogen may be acting to attenuate the mu-opioid-mediated hyperpolarization, the response to the GABAB agonist baclofen was also tested. Estrogen treatment also shifted the dose-response curve for the baclofen-induced hyperpolarization by 3.3-fold without altering the maximum hyperpolarization; the EC50 shifted from 11.0 +/- 4.0 microM to 36.0 +/- 5.0 microM. All of the neurons were identified after linking the intracellular biocytin with streptavidin-FITC, and a subpopulation of cells in both groups were immunoreactive for beta-endorphin. We conclude that estrogen decreases the functional coupling of the mu-opioid and GABAB receptors to the inwardly rectifying K+ channel possibly through an action on the G-protein.  相似文献   

3.
A Drosophila melanogaster G-protein-coupled receptor (NPFR76F) that is activated by neuropeptide F-like peptides has been expressed in Xenopus oocytes to determine its ability to regulate heterologously expressed G-protein-coupled inwardly rectifying potassium channels. The activated receptor produced inwardly rectifying potassium currents by a pertussis toxin-sensitive G-protein-mediated pathway and the effects were reduced in the presence of proteins, such as the betaARK 1 carboxy-tail fragment and alpha-transducin, which bind G-protein betagamma-subunits. Short Drosophila NPF-like peptides were more potent than long NPF-like peptides at coupling the receptor to the activation of inwardly rectifying potassium channels. The putative endogenous short Drosophila NPF-like peptides showed agonist-specific coupling depending on whether their actions were assessed as the activation of the inwardly rectifying potassium channels or as the activation of endogenous inward chloride channels through a co-expressed promiscuous G-protein, Galpha16. As inwardly rectifying potassium channels are known to be encoded in the Drosophila genome and the NPFR76F receptor is widely expressed in the Drosophila nervous system, the receptor could function to control neuronal excitability or slow wave potential generation in the Drosophila nervous system.  相似文献   

4.
Background Interstitial cells of Cajal (ICC) associated with the myenteric plexus of the small intestine express maxi chloride channels. Our aim was to investigate whether or not these channels would be activated by increases in intracellular Ca2+, as that would strengthen evidence for their potential role in ICC pacemaking. A further aim was to examine whether inwardly and outwardly rectifying maxi chloride currents signify different channels. Methods We used Fluo‐4 AM Ca2+ imaging and patch clamp electrophysiology (cell‐attached and inside‐out) on isolated ICC in short term culture. Key Results Increasing intracellular Ca2+ by three functionally distinct mechanisms (blocking sarcoplasmic reticulum Ca2+ refilling, creating membrane Ca2+ pores and a solution designed to block plasmalemmal Ca2+ extrusion) was followed by inwardly rectifying maxi chloride channel activation assessed in the cell‐attached configuration. Furthermore, in the inside‐out configuration, increased outwardly rectifying maxi‐chloride channel activity followed an increase in Ca2+ to 2 mmol L?1 at the cytoplasmic face of the channel. Conclusions & Inferences Increase in intracellular Ca2+ will activate the maxi chloride channels. Maxi chloride currents are inwardly rectifying in the cell‐attached patch clamp configuration under physiological conditions and are outwardly rectifying in the inside‐out configuration. The same channel is responsible for both currents. Ca2+ does not appear to regulate the rectification.  相似文献   

5.
Retigabine (N-(2-amino-4-(4-fluorobenzylamino)-phenyl) carbamic acid ethyl ester, D-23129) is a broad acting anticonvulsant currently undergoing phase II clinical trials. An opening effect on leakage conductance K+ channels, potentiation of GABA induced currents and a weak blocking effect on Na+ and Ca++ channels were previously reported. The goal of this study was to investigate whether retigabine is capable of blocking epileptiform discharges in the low Ca++ and low Mg++ model in the hippocampal slice preparations and whether the anti-burst activity can be related to the K+ channel opening effect. In the low Ca++ model, synaptic transmission is blocked and discharges evolve from ephaptically-coupled neurons. Compounds which directly interfere with the threshold for action potential induction via alteration of ion channel function (i.e. Na+ channel blocker) may alter the discharges, while compounds interfering with synaptic transmission are not active. Retigabine suppressed the discharges in a concentration-dependent manner. A significant reduction in frequency without effect on amplitude was observed after application of 1 microM, and a full block of all discharges after application of 25 microM. The opener of the ATP sensitive K+ channels cromakalim was also active. Application of 300 microM cromakalim yielded to a lower frequency with no effects on the amplitude of discharges. Treatment with phenytoin and carbamazepine resulted in a marked reduction in amplitude accompanied by a rise in frequency; only at higher concentrations was a full block observed. The effect of retigabine therefore differs from sodium channel blockers and can be related to the K+ channel opening effect. In the low Mg++ model, excitatory neurotransmission is augmented by reducing the Mg++ block of NMDA channels. This results in development of interictal-like epileptiform activity in area CA1 in isolated hippocampal slices. Treatment with retigabine 10 microM resulted in a significant reduction of the discharges, and discharges were fully blocked after application of 25 microM. Qualitatively similar effects were observed with cromakalim and valproate, albeit at higher concentrations. The data indicate that retigabine exerts potent broad spectrum activity making it an interesting candidate for treatment of drug resistant patients.  相似文献   

6.
Farnesol, a C(15) natural isoprenoid, exerts complex modulating effects on the membrane permeability of human retinal glial (Müller) cells. Several glial cationic currents were examined. At low micromolar concentrations, farnesol reduced the amplitudes of all fast and depolarization-activated membrane currents expressed by Müller cells, that is, currents through 1) transient low-voltage-activated (LVA; IC(50) = 2.2 microM), 2) sustained high-voltage-activated Ca(2+) channels (HVA; IC(50) = 1.2 microM), 3) fast Na(+) channels (IC(50) = 9.0 microM), and 4) transient (A-type) K(+) channels (IC(50) = 4.7 microM). Furthermore, farnesol shifted the activation of LVA and HVA currents to more depolarized potentials by 21.3 +/- 7.4 mV and 8.3 +/- 4.5 mV, respectively. On the other hand, neither inwardly rectifying nor iberiotoxin-sensitive calcium-activated K(+) currents were affected by farnesol. Therefore, farnesol is assumed to be a biologically active substance that regulates ion channel activity in the glial cell membrane. Depressing rapid changes of the membrane potential and supporting a stable hyperpolarized status of the glial cells may enhance the efficiency of crucial glial functions such as extracellular K(+) clearance and neurotransmitter uptake.  相似文献   

7.
Chiou LC  Yeh GC  Fan SH  How CH  Chuang KC  Tao PL 《Neuroreport》2003,14(2):239-242
The present study has investigated the possible supraspinal adaptive changes induced by prenatal administration of morphine, including morphine-induced supraspinal antinociception in vivo, the density and binding affinity of mu-opioid receptors in the brain and the cellular action of morphine in brain slices in vitro. The cellular action of morphine was assessed by its activation of K+ channels in the ventrolateral periaqueductal gray (PAG), a crucial area for the supraspinal analgesic effect of morphine. Female rats were treated with morphine 7 days before mating at 2 mg/kg. The treatment was continued during pregnancy and after delivery at doses which increased by 1 mg/kg every 2 weeks. Experiments were conducted in the offspring at p14 days. Prenatal morphine exposure induced tolerance to supraspinal morphine-induced tail-flick response. The binding affinity and maximal binding of [(3)H]DAMGO in whole brain were not significant different between the morphine- or saline-treated dams. Autoradiographic analysis shows that the mu-opioid receptor density was decreased in the striatum, thalamus and amygdala but not in the midbrain, nucleus accumbens, hippocampus or cortex in morphine offspring. In ventrolateral PAG neurons, morphine activated inwardly rectifying K+ channels in 59% of recorded neurons of morphine offspring. Neither the magnitude of K channel activation nor the percentage of sensitive neurons was different between the saline- and morphine-treated offspring. It is concluded that prenatal morphine exposure induces tolerance to supraspinal analgesia and this tolerance is not attributed to a change in the mu-opioid receptor density or the receptor-function coupling efficiency in the midbrain periaqueductal gray.  相似文献   

8.
Potassium (K+) channels are the most heterogeneous and widely distributed class of ion channels. K(+) channels are dynamic pore-forming transmembrane proteins known to play important roles in all cell types underlying both normal and pathophysiological functions. Essential for such diverse physiological processes as nerve impulse propagation, muscle contraction, cellular activation and the secretion of biologically active molecules, various K(+) channels are recognized as potential therapeutic targets in the treatment of multiple sclerosis, Alzheimer's disease, Parkinson's disease, epilepsy, stroke, brain tumors, brain/spinal cord ischemia, pain and schizophrenia, migraine, as well as cardiac arrhythmias, pulmonary hypertension, diabetes, cervical cancer, urological diseases and sepsis. In addition to their importance as therapeutic targets, certain K(+) channels are gaining attention for their beneficial roles in anesthesia, neuroprotection and cardioprotection. The K(+) channel gene families (subdividing into multiple subfamilies) include voltage-gated (K(v): K(v)1-K(v)12 or KCNA-KCND, KCNF-KCNH, KCNQ, KCNS), calcium-activated (K(Ca): K(Ca)1-K(Ca)5 or KCNM-KCNN), inwardly rectifying (K(ir): K(ir)1-K(ir)7 or KCNJ) and background/leak or tandem 2-pore (K(2P): K(2P)1-K(2P)7, K(2P)9-K(2P)10, K(2P)12-K(2P)13, K(2P)15-K(2P)18 or KCNK) K(+) channels. Worldwide, the pharmaceutical industry is actively developing better strategies for targeting ion channels, in general, and K(+) channels, in particular, already generating over $6 billion in sales per annum from drugs designed to block or modulate ion channel function. This review provides an overview of recent patents on emerging K(+) channel blockers and activators (openers) with potential for development as new and improved nervous system therapeutic agents.  相似文献   

9.
Gabapentin is a clinically effective anticonvulsant with an unclear mechanism of action. It was described as a GABA(B(1a,2)) receptor subtype-selective agonist, activating postsynaptic K(+) currents and inhibiting postsynaptic Ca(2+) channels in CA1 pyramidal cells, but without presynaptic actions. These activities appeared controversial and we therefore sought to further clarify gabapentin actions in rat hippocampal slices by characterizing K(+) currents and Ca(2+) channels targeted by gabapentin using whole-cell recording and multiphoton Ca(2+) imaging. 1) We found that gabapentin and baclofen induced inwardly rectifying K(+) currents (K(Gbp) and K(Bac), respectively), sensitive to Ba(2+) and Cs(+). 2) A constitutively active K(IR) current, independent of GABA(B) receptor activation and sensitive to Ba(2+) and Cs(+) was also present. 3) K(Gbp), K(Bac), and K(IR) currents showed some differences in sensitivity to Ba(2+) and Cs(+), indicating the possible activation of distinct Kir3 currents, independent of K(IR), by gabapentin and baclofen. 4) Gabapentin inhibition of Ca(2+) channels was abolished by omega-conotoxin GVIA, but not by omega-agatoxin IVA and nimodipine, indicating a predominant action of gabapentin on N-type Ca(2+) channels. 5) Gabapentin actions were linked to activation of pertussis toxin-sensitive G-proteins since N-ethylmaleimide (NEM) blocked K(Gbp) activation and Ca(2+) channel inhibition by gabapentin. 6) Finally, gabapentin reduced epileptiform discharges in slices via GABA(B) receptor activation. The anticonvulsant actions of gabapentin in hippocampal cells may thus involve GABA(B) receptor coupling to G-proteins and modulation of Kir3 and N-type Ca(2+) channels. Moreover, gabapentin and baclofen activation of GABA(B) receptors may couple to distinct cellular targets.  相似文献   

10.
Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons.   总被引:16,自引:0,他引:16  
Recent data have indicated that the divalent cation Zn2+ can selectively block central neuronal excitation mediated by N-methyl-D-aspartate (NMDA) receptors. The present experiments were conducted to determine the action of Zn2+ at the single-channel level. Outside-out membrane patches were prepared from cultured murine cortical neurons. Glutamate, 3 microM, in the presence of 5 microM glycine activated channels with a main conductance state of about 50 pS which were blocked in a voltage-dependent manner by Mg2+. Zn2+ appeared to have 2 effects on these NMDA receptor-activated channels. First, at concentrations as low as 1-10 microM, Zn2+ produced a concentration-dependent reduction in channel open probability, insensitive to membrane voltage between -60 and +40 mV; about 50% reduction in open probability was produced by 3 microM Zn2+. This reduction was mostly due to a decrease in opening frequency and only weakly mimicked by Mg2+. Second, at higher concentrations (10-100 microM) and negative membrane voltages, Zn2+ additionally produced an apparent reduction in single-channel amplitude, associated with an increase in channel noise, suggestive of a fast channel block. The amplitude reduction was voltage-dependent, with a delta of 0.51; amplitude distribution analysis suggested that this voltage dependence was primarily contributed by the "on" blocking rate constant, with little contribution from the "off" rate constant. The channel block produced by Zn2+ was faster than that of Mg2+, which at 100 microM and negative membrane voltages induces flickering of the NMDA receptor-activated channel without changing apparent channel amplitude.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Huntington's disease (HD) is caused by a polyglutamine expansion that results in atrophy of the striatum and frontal cortex during disease progression. HD-susceptible striatal neurons are affected chronologically with initial degeneration of the striatopallidal neurons then the striatonigral projections, whereas large aspiny striatal interneurons (LAN) survive. Two classes of critical membrane proteins were evaluated in transgenic mouse models to determine their association with HD susceptibility, which leads to dysfunction and death in selected striatal neuron populations. We examined potassium (K+) channel protein subunits that form membrane ionophores conducting inwardly and outwardly rectifying K+ currents. K+ channel protein staining was diminished substantially in the HD striatal projection neurons but was not expressed in the HD-resistant LAN. Because loss of K+ channel subunits depolarizes neurons, other voltage-gated ionophores will be affected. N-methyl-D-aspartate (NMDA) receptors and their phosphorylation by cyclic AMP were studied as a mechanism contributing to excitotoxic vulnerability in striatal projection neurons that would lose voltage regulation after diminished K+ channels. NR1 subunits showed significant elevation in the HD transgenic projection systems but were expressed at very low levels in LAN. NR1 subunit phosphorylation by cyclic AMP also was enhanced in striatal projection neurons but not in LAN. Cyclic AMP-driven phosphorylation of NMDA receptors increases the channel open time and elevates neuronal glutamate responsiveness, which may lead to excitotoxicity. Together our data suggest that changes in these proteins and their modification may predispose striatal projection neurons to dysfunction and then degeneratation in HD and provide a mechanism for LAN resistance in the disease.  相似文献   

13.
Sarcolemmal vesicles were produced from adult mouse extensor digitorum longus muscle (EDL) by treating swollen muscle fibres with collagenase. Vesicles formed from dystrophic (C57BL/6J dy/dy) and phenotypically normal animals were patch clamped and the single channel activity was recorded. Three types of K+ channel were observed in excised patches taken from normal and dystrophic muscle. A large conductance (300 pS) Ca2(+)-dependent K+ channel (KCa) was the most frequently observed of the K+ channels in both types of muscle preparation. In a number of patches taken from dystrophic muscle the open probability-voltage relationship for the KCa channel was markedly different from that in normal muscle, suggesting a possible reduction in Ca2+ sensitivity. An ATP-sensitive K+ channel (90 pS) was common to both normal and dystrophic muscle vesicles and was present in a large number of patches. An inwardly rectifying K+ channel (40 pS) was also observed in both types of sarcolemmal vesicles. The properties of all three K+ channels types were broadly consistent with other observations of skeletal muscle K+ channels, though all had higher conductances than had previously been noted in other species.  相似文献   

14.
A 'leak' potassium (K+) conductance (gK(Leak)) modulated by amine neurotransmitters is a major determinant of neonatal rat facial motoneuron excitability. Although the molecular identity of gK(Leak) is unknown, TASK-1 and TASK-3 channel mRNA is found in facial motoneurons. External pH, across the physiological range (pH 6-8), and noradrenaline (NA) modulated a conductance that displayed a relatively linear current/voltage relationship and reversed at the K+ equilibrium potential, consistent with inhibition of gK(Leak). The pH-sensitive current (I(pH)), was maximal around pH 8, fully inhibited near pH 6 and was described by a modified Hill equation with a pK of 7.1. The NA-induced current (I(NA)) was occluded at pH 6 and enhanced at pH 7.7. The TASK-1 selective inhibitor anandamide (10 microM), its stable analogue methanandamide (10 microM), the TASK-3 selective inhibitor ruthenium red (10 microM) and Zn2+ (100-300 microM) all failed to alter facial motoneuron membrane current or block I(NA) or I(pH). Isoflurane, a volatile anaesthetic that enhances heteromeric TASK-1/TASK-3 currents, increased gK(Leak). Ba2+, Cs+ and Rb+ blocked I(NA) and I(pH) voltage-dependently with maximal block at hyperpolarized potentials. 4-Aminopyridine (4-AP, 4 mM) voltage-independently blocked I(NA) and I(pH). In summary, gK(Leak) displays some of the properties of a TASK-like conductance. The linearity of gK(Leak) and an independence of activation on external [K+] suggests against pH-sensitive inwardly rectifying K+ channels. Our results argue against principal contributions to gK(Leak) by homomeric TASK-1 or TASK-3 channels, while the potentiation by isoflurane supports a predominant role for heterodimeric TASK-1/TASK-3 channels.  相似文献   

15.
The effect of N-methyl-D-aspartate (NMDA) on the glycine (Gly) response was examined in neurons acutely dissociated from the rat sacral dorsal commissural nucleus (SDCN) using the nystatin-perforated patch-recording configuration under voltage-clamp conditions. The application of 100 microM NMDA to SDCN neurons reversibly potentiated Gly-activated Cl- currents (IGly) without affecting the Gly binding affinity and the reversal potential of IGly. A selective NMDA receptor antagonist, APV (100 microM), blocked the NMDA-induced potentiation of IGly, whereas 50 microM CNQX, a non-NMDA receptor antagonist, did not. The potentiation effect was reduced when NMDA was applied in a Ca2+-free extracellular solution or in the presence of BAPTA AM, and was independent of the activation of voltage-dependent Ca2+ channels. Pretreatment with KN-62, a selective Ca2+-calmodulin-dependent protein kinase II (CaMKII) inhibitor, abolished the NMDA action. Inhibition of calcineurin (CaN) further enhanced the NMDA-induced potentiation of IGly. In addition, the GABAA receptor-mediated currents were suppressed by NMDA receptor activation in the SDCN neurons. The present results show that Ca2+ entry through NMDA receptors modulates the Gly receptor function via coactivation of CaMKII and CaN in the rat SDCN neurons. This interaction may represent one of the important regulatory mechanisms of spinal nociception. The results also suggest that GABAA and Gly receptors may be subject to different intracellular modulatory pathways.  相似文献   

16.
We have used whole-cell and single-channel recording techniques to investigate the electrophysiological properties of cultured ovine oligodendrocytes (OLGs). Our studies have led to the following conclusions. (1) Cultured mature OLGs express a variety of voltage-dependent K+ conductances including an outward current that consists of a transient component and a steady-state component, as well as an inwardly rectifying K+ current. (2) These conductances are expressed sequentially as a function of development in culture. The inwardly rectifying K+ current appears later than the outward current. (3) Although process extension may influence the expression of the ion channels, the majority of the K+ channels are located in the soma of OLGs, probably concentrated in the basal plasma membrane. (4) Finally, the activation of K+ channels in OLGs can be inhibited by two distinct second messengers, cAMP acting through protein kinase A and diacylglycerol acting through protein kinase C, the effects of which perhaps converge at the level of a common phosphorylated enzyme or regulatory protein. Both cAMP and diacylglycerol have been implicated as factors important in controlling the induction of a myelinogenic metabolism associated with OLG substratum attachment. Thus, membrane ion channels may provide an important intermediate step linking cellular substratum attachment to the eventual induction of myelinogenesis.  相似文献   

17.
The effects of brief anoxic episodes on intracellularly recorded CA3 pyramidal neurons have been studied in the hippocampal slice preparation. Anoxia induced a depolarization occasionally preceded by a transient hyperpolarization associated with a fall in input resistance. The anoxic depolarization was due to the release of glutamate from presynaptic terminals since it was blocked by tetrodotoxin (TTX) (1 microM) or by the broad spectrum excitatory amino acid antagonist kynurenate (1 mM). In the presence of TTX (1 microM) or kynurenate (1 mM), anoxia only induced a hyperpolarization which was due to activation of a K+ conductance. The anoxic depolarization was blocked by galanin, a hormone which activates ATP sensitive K+ (K+ATP) channels. Anoxic depolarization was increased by the potent sulfonylurea agent glibenclamide (GLIB) which blocks K+ATP channels. Bath applications of these agents had little effect when applied in oxygenated Krebs solution suggesting that their action may be mediated by K+ATP channels. Since excessive release of glutamate during anoxia is neurotoxic, agents such as galanin which activate K+ATP channels may provide tissue specific protection against anoxic damage.  相似文献   

18.
The ability to artificially express a particular receptor protein in the postsynaptic sites of neurons in the central nervous system (CNS) would be useful for the study of synaptic function of cloned receptor genes as well as for gene therapy of neurological disorders caused by dysfunction of postsynaptic receptors. In this study, we aimed to express the cDNA of unedited GluR2 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor that forms inwardly rectifying and Ca2+-permeable channel in CNS neurons by using adenoviral-mediated gene transfer. For this purpose, we have constructed a recombinant adenovirus bearing an expression-switching unit, where the unedited GluR2 cDNA can be activated by the Cre recombinase-mediated excisional deletion of a stuffer DNA interposed between the promotor and the coding region. When PC12 cells were infected with this recombinant adenovirus together with an adenovirus expressing Cre recombinase, the inwardly rectifying and Ca2+-permeable AMPA receptor channels were expressed in nearly 100% of infected cells. Two days after co-infection of cultured rat hippocampal neurons with these adenoviruses, fast excitatory neurotransmission in the glutamatergic synapse was mediated predominantly by the inwardly rectifying and Ca2+-permeable AMPA receptor channels. This indicates that the native AMPA receptors in the postsynaptic sites of the glutamatergic synapse are replaced rapidly with recombinant receptors newly produced by the viral-mediated gene transfer.  相似文献   

19.
Chiou LC  Chuang KC  Fan SH  How CH  Chen JK 《Neuroreport》2002,13(1):163-165
G-protein coupled inwardly rectifying K+ (GIRK) channels have been reported to be targets of ethanol actions. We investigated if ethanol affects native GIRK channels in rat brain tissues at clinically relevant concentrations using brain slices containing the ventrolateral periaqueductal gray (PAG), an area related to pain regulation. Ethanol did not affect the membrane current elicited by hyperpolarization ramps at concentrations up to 150 mM. However, at 200-300 mM, which is above the lethal level, it activated a barium-sensitive GIRK current in 30-57% of neurons. In neurons unresponsive to ethanol, baclofen, the mu-opioid or nociceptin successfully activated GIRK channels. It is suggested that GIRK channels of the ventrolateral PAG are unlikely to be targets of the analgesic action of ethanol.  相似文献   

20.
Activation of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors in cerebellar granule cells during perforated-patch whole-cell recordings activated an inward current at negative voltages which was followed, after a delay, by the inhibition of an outward potassium current at voltages positive to -20 mV. The activated inward current was inwardly rectifying suggesting that the AMPA receptors were Ca2+-permeable. This was confirmed by direct measurements of intracellular calcium where Ca2+ rises were seen following AMPA receptor activation in Na+-free external solution. Ca2+ rises were equally large in the presence of 100 microM Cd2+ to block voltage-gated Ca2+ channels. Specific voltage-protocols, allowing selective activation of the delayed rectifier potassium current (KV) and the transient A current (KA), showed that kainate inhibited KV, but not to any great extent KA. The inhibition of KV was blocked by the AMPA receptor antagonist CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) and was no longer observed when the KV current was abolished with high concentrations of Ba2+. The responses to kainate were not altered by pre-treating the cells with pertussis toxin, suggesting that the AMPA receptor stimulation of the G-protein Gi cannot account for the effects observed. Replacing extracellular Na+ with choline did not alter the inhibition of KV by kainate, however, removing extracellular Ca2+ reduced the kainate response. The inhibition of KV by kainate was unaffected by the presence of 100 microM Cd2+. The guanylyl cyclase inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), did not alter kainate inhibition of KV. It is concluded that ion influx (particularly Ca2+ ions) through AMPA receptor channels following receptor activation leads to an inhibition of KV currents in cerebellar granule neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号