首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Drug efflux by the membrane transporter P-glycoprotein (P-gp) plays a key role in multidrug resistance (MDR). In order to bypass P-gp, thus overcoming MDR, a hybrid peptide comprising a cell penetrating peptide (Tat) and a drug binding motif (DBM) has been developed to noncovalently bind and deliver doxorubicin (Dox) into MDR cells. The uptake of Dox into the leukemia cell line K562 and its P-gp overexpressing subline KD30 increased in the presence of DBM-Tat peptide. Confocal microscopy indicated that DBM-Tat associated Dox was directed to a perinuclear area of KD30 cells, while this was not observed in parent K562 cells. When KD30 cells were pretreated with the endosomotropic agent chloroquine (CLQ), peptide associated Dox redistributed into the cytosol, indicating that endocytosis was the predominant uptake route. Altered drug uptake kinetics observed by cellular accumulation assay also supported an endocytic uptake. In the presence of CLQ, DBM-Tat was able to enhance the cytotoxicity of Dox by 68.4% at 5?µM peptide concentration in KD30 cells but there were only minor effects on Dox cytotoxicity in K562 cells even in the presence of CLQ. Thus, combining Dox with DBM-Tat reduces P-gp mediated drug efflux, without a requirement for drug modification or inhibiting P-gp function.  相似文献   

3.
Acquired resistance to chemotherapy is a major problem during cancer treatment. One mechanism for drug resistance is overexpression of the MDR (multidrug resistance)1 gene encoding the transmembrane efflux pump, P-glycoprotein (P-gp). Calcium channel blockers such as verapamil, nifedipine and nicardipine have been shown to reverse cellular drug resistance by inhibiting P-gp drug efflux. This study evaluated whether a new calcium channel blocker, lomerizine, influenced doxorubicin (Dox) cytotoxicity and P-gp activity in a P-gp-expressing cell line compared to a non-expressing subline. Verapamil, and even more markedly, lomerizine, increased cellular uptake of calcein transported by P-gp in a P-gp-expressing erythroleukemia cell line, K562-Dox. Ten microM of lomerizine reduced the IC50 of doxorubicin in the K562-Dox from 60000 ng/ml to 800 ng/ml, whereas the IC50 of doxorubicin in the K562 subline was only marginally affected by these drugs. Lomerizine showed greater reduction in P-gp efflux than verapamil at an equimolar concentration. These results suggest that lomerizine has the clinical potential to reverse tumor MDR involving the efflux protein P-gp.  相似文献   

4.
The overexpression of P-glycoprotein (P-gp) is associated with multidrug resistance (MDR) of tumor cells to a number of chemotherapeutic drugs. P-gp inhibitors have been shown to effectively reverse P-gp-mediated MDR in both in vitro and in vivo. Our previous studies demonstrated that E6, a novel synthetic calmodulin inhibitor, exhibited potent inhibitory effect on P-gp in rat brain microvessel endothelial cells (RBMECs). In the present study, the effect of E6 on MDR in a K562 MDR cell line (K562/DOX) highly expressing P-gp was studied and compared with that of a conventional P-gp inhibitor, verapamil (VER). E6 at concentrations of 1, 3, 10, 30 microM reduced the IC50 value of doxorubicin in K562/DOX cells from 79.19 microM to 35.18, 21.86, 6.31 and 1.97 microM, respectively. However, the IC50 value of doxorubicin in K562 sensitive subline was not significantly changed by E6. Using a DNA content analysis and an annexin V binding assay, the effects of E6 on doxorubicin-induced apoptosis were also examined. The results indicated that E6 effectively reversed the resistance to doxorubicin-induced apoptosis in K562/DOX cells. In addition, co-treatment of E6 and doxorubicin resulted in a remarkably G2/M blocking effect in K562/DOX cells. Furthermore, the treatment of K562/DOX cells with 10 microM E6 led to increased intracellular accumulation and decreased efflux of doxorubicin. Overall, the pharmacological effects of E6 on P-gp-mediated MDR is much stronger than that of positive control drug VER. These results suggested that E6 is a novel and potent MDR reversal agent and may be a potential adjunctive agent for tumor chemotherapy.  相似文献   

5.
6.
Rhamnose-binding lectin from catfish (Silurus asotus) eggs (SAL) has the ability to induce externalization of phosphatidylserine (PS), followed by cell shrinkage in globotriaosylceramide (Gb3)-expressing Burkitt's lymphoma Raji cells. Because phospholipid scramblase and aminophospholipid translocase did not participate in SAL-induced PS externalization, we examined the relationship of ATP-binding cassette (ABC) transporters, such as multidrug resistance (MDR) 1 P-glycoprotein (MDR1 P-gp) and MDR-associated protein 1 (MRP1), for translocation of PS. Since cyclosporin A (MDR1 P-gp inhibitor) but not MK571 (MRP1 inhibitor) inhibited SAL-induced PS externalization, it was suggested that MDR1 P-gp is involved in this phenomenon. On the other hand, SAL activated both of the ABC transporters for efflux of rhodamine123 (MDR1 P-gp substrate, Rho123) and 5-carboxyfluorescein diacetate (MRP1 substrate, 5-CFDA) in Raji cells. In contrast, SAL did not activate these two transporters in Gb3-negative cell lines, such as K562 and doxorubicin-resistant K562 cells, involving not only PS externalization but also efflux of Rho123 or 5-CFDA. Since Gb3 and both transporters in Raji cells are located in the glycosphingolipid-enriched microdomain (GEM), it is suggested that the binding of SAL to Gb3 localized in the GEM specifically induces MDR1 P-gp activation in Raji cells.  相似文献   

7.
Resistance to chemotherapeutic drugs is one of the major problems in the treatment of cancer. P-glycoprotein (P-gp) encoded by the mdr gene is a highly conserved protein, acts as a multidrug transporter, and has a major role in multiple drug resistance (MDR). Targeting of P-gp by naturally occurring compounds is an effective strategy to overcome MDR. Indole-3-carbinol (I3C), a glucosinolates present in cruciferous vegetables, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic, and antiestrogenic properties in experimental studies. In the present investigation, the potential of I3C to modulate P-gp expression was evaluated in vinblastine (VBL)-resistant K562 human leukemic cells. The resistant K562 cells (K562/R10) were found to be cross-resistant to vincristine (VCR), doxorubicin (DXR), and other antineoplastic agents. I3C at a nontoxic dose (10 x 10(-3) M) enhanced the cytotoxic effects of VBL time dependently in VBL-resistant human leukemia (K562/R10) cells but had no effect on parent-sensitive cells (K562/S). The Western blot analysis of K 562/R 10 cells showed that I3C downregulates the induced levels of P-gp in resistant cells near to normal levels. The quantitation of immunocytochemically stained K562/R10 cells showed 24%, 48%, and 80% decrease in the levels of P-gp by I3C for 24, 48, and 72 h of incubation. The above features thus indicate that I3C could be used as a novel modulator of P-gp-mediated multidrug resistance in vitro and may be effective as a dietary adjuvant in the treatment of MDR cancers.  相似文献   

8.
Multidrug resistance (MDR) in model systems is known to be conferred by two different integral proteins, the 170-kDa P-glycoprotein (P-gp) and the 190-kDa multidrug resistance-associated protein (MRP1), both of which pump drugs out of MDR cells. The presence of a nitrogen atom, charged at physiological pH, has frequently been considered to be a hallmark of P-gp substrates and inhibitors. The present study was aimed at investigating the role of nitrogen in the ability of the pump to recognise substrate. We measured the kinetics of active efflux of seven new anthracycline derivatives in P-gp-expressing K562/ADR cells and in MRP1-expressing GLC4/ADR cells. Six of these compounds represent analogues of daunorubicin in which the amino sugar nitrogen is bound to an amino- or a nitro-substituted benzyl moiety, the seventh is a doxorubicin derivative in which benzyl group is bound with 4'-oxygen. We found that the compounds with a nitro group on the benzyl ring were poor substrates for P-gp despite the presence of a secondary amine that can be protonated. In contrast, compounds that have a free amino group were very good substrates even though this amine is not protonated in the pH range studied (pK approximately 3). These results show that the nitrogen atom does not interact with P-gp in a charged form but rather as an electron donating group.  相似文献   

9.
Purpose Following extracellular drug clearance, we analyzed the rate of doxorubicin efflux from the nucleus of three human leukemic cells (K562, Molt4 and CCRF-CEM) and related it to their differential sensitivity to this drug, after a short drug pulse. Results For many pulse-chase regimes, K562 cell viability was least affected by doxorubicin. In K562 cells, nuclear drug accumulation was greatest, but nuclear drug egress was also greatest. P-glycoprotein over-expression in a doxorubicin-resistant, K562/DOX sub-line did not facilitate doxorubicin efflux from the nucleus. In K562 cells, doxorubicin accumulated in multivesicular bodies (MVBs) through a pH-dependent mechanism. Inhibiting drug sequestration in MVBs did not affect nuclear efflux. The rates of doxorubicin efflux from the nuclei of live and digitonin-permeabilized K562 cells were similar. However, extracting cytoplasmic membranes with Triton X-100 significantly inhibited nuclear drug efflux following extracellular drug clearance. Conclusion Our results are consistent with drug efflux from the nucleus being primarily mediated by an ATP-independent, passive diffusion mechanism. The effect of membrane extraction suggests that nonspecific drug absorption to cytoplasmic membranes plays a role in facilitating nuclear efflux in K562 cells, perhaps by lowering the concentration of free doxorubicin from a perinuclear diffusion boundary layer.  相似文献   

10.
目的研究洛美利嗪衍生物CJZ3对K562/DOX细胞阿霉素耐药的逆转作用。方法应用流式细胞仪和MTT法观察了CJZ3对K562/DOX细胞P-糖蛋白(P-glycoprotein,P-gp)的抑制作用及对K562/DOX细胞阿霉素耐药的逆转作用。结果CJZ3能剂量相关性地增加K562/DOX细胞对罗丹明123(rhodamine123,Rh123)的摄取以及细胞内罗丹明Rh123的累计,明显抑制P-gp介导的Rh123外排,增强阿霉素对K562/DOX细胞的细胞毒作用,提高阿霉素诱导的K562/DOX细胞凋亡率,提高细胞Caspase-3活性,增加K562/DOX细胞内阿霉素水平。结论洛美利嗪衍生物CJZ3体外能明显抑制P-gp的外排功能,逆转P-gp介导的K562/DOX细胞的多药耐药性。  相似文献   

11.
目的: 探讨姜黄素衍生物C15对人白血病K562/A02细胞多药耐药(multidrug resistance,MOR)的逆转作用及其作用机制。方法: 四甲基偶氮唑蓝(MTT)法检测细胞增殖;流式细胞术检测P-糖蛋白(P-gp)外排泵功能和细胞周期;免疫印迹法检测蛋白表达;P-gp-GloTM Assay System试剂盒检测P-gp ATP水解酶(ATPase)活性。结果: C15对K562/A02细胞半数抑制浓度(IC50)大于50 μmol·L-1。对K562/A02细胞无明显细胞毒的浓度为2.5,5.0,10.0 μmol·L-1的C15逆转对K562/A02细胞对阿霉素(ADR)耐药的倍数分别为2.60,5.39,11.39,对长春新碱(vincristine, VCR)耐药的倍数分别为4.50,18.07,124.35,但是对非P-gp底物的化疗药物顺铂(cisplatin, CIS)和敏感细胞K562基本无逆转效果。2.5,5.0,10.0 μmol·L-1 C15可以增加耐药细胞K562/A02胞内罗丹明123(Rh-123)的蓄积量分别为1.93,2.30,2.47倍。C15增加阿霉素(adriamycin, ADR)在K562/A02细胞中的蓄积水平,降低P-gp介导的Rh-123外排速率。2.5,10.0 μmol·L-1 C15与300 nmol·L-1VCR联合作用后,可使K562/A02细胞的G2/M期比例从9.36%增加到67.57%和69.38%。C15对P-gp蛋白和ATPase的活性没有抑制作用。结论: C15可能是P-gp的非衣物型抑制剂,且具有逆转K562/A02细胞MDR的作用,该作用与其抑制细胞P-gp的外排泵功能有关。  相似文献   

12.
P-glycoprotein (P-gp) mediated multidrug resistance (MDR) is one of the main obstacles in tumour chemotherapy. A promising approach to reverse MDR is the combined use of nontoxic and potent P-gp inhibitor with conventional anticancer drugs. We have examined the potential of a newly synthesized tetrahydroisoquinoline derivative B3 as a MDR-reversing agent. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to examine the effect of B3 on the cytotoxicity in K562/A02 and MCF-7/ADM cells caused by doxorubicin (adriamycin). Accumulation and efflux of P-gp substrate rhodamine123 in K562/A02 and primary cultured rat brain microvessel endothelial cells (RBMECs) were measured to evaluate the inhibitory effect of B3 on P-gp. The K562/A02 xenograft model in nude mice was established to examine MDR-reversing efficacy of B3 in-vivo. The results indicated that co-administration of B3 resulted in an increase on chemosensitivity of K562/A02 and MCF-7/ADM cells to doxorubicin in a dose-dependent manner. Rhodamine123 accumulation in K562/A02 cells and RBMECs were significantly enhanced after the incubation with various concentrations of B3. Furthermore, B3 inhibited the efflux of rhodamine123 from RBMECs. Co-administration of B3 with doxorubicin significantly decreased weight and volume of tumour in nude mice. In conclusion, B3 is a novel and potent MDR reversal agent with the potential to be an adjunctive agent for tumour chemotherapy.  相似文献   

13.
A major problem with anti-cancer drug treatment is the development of acquired multidrug resistance (MDR) of the tumor cells. Verotoxin-1 (VT-1) exerts its cytotoxicity by targeting the globotriaosylceramide membrane receptor (Gb3), a glycolipid associated with multidrug resistance. Gb3 is overexpressed in many human tumors and tumor cell lines with inherent or acquired MDR. Gb3 is co-expressed and interplays with the membrane efflux transporter P-gp encoded by the MDR1 gene. P-gp could act as a lipid flippase and stimulate Gb3 induction when tumor cells are exposed to cancer chemotherapy. Recent work has shown that apoptosis and inherent or acquired multidrug resistance in Gb3-expressing tumors could be affected by VT-1 holotoxin, a sub-toxic concentration of the holotoxin concomitant with chemotherapy or its Gb3-binding B-subunit coupled to cytotoxic or immunomodulatory drug, as well as chemical manipulation of Gb3 expression. The interplay between Gb3 and P-gp thus gives a possible physiological approach to augment the chemotherapeutic effect in multidrug resistant tumors.  相似文献   

14.
Overexpression of a 170kD membrane glycoprotein, P-glycoprotein (Pgp), which acts as an energy dependent efflux pump for cytotoxic drugs is believed to be one of the factors that is responsible for clinical drug resistance. Recent studies suggest that Pgp is also responsible for the intracellular transport of cholesterol from the plasma membrane to the endoplasmic reticulum. Leukemic cells from patients with acute myelogenous leukemia have an elevated uptake of low density lipoprotein (LDL) when compared with white blood cells from healthy individuals. Since elevated LDL receptor expression and multidrug resistance are both common events in leukemic cells, we investigated LDL receptor expression in sensitive and drug resistant human leukemic cell lines. We found a 2- to 10-fold higher uptake of LDL in five out of five drug resistant K562 cell lines. All three drug resistant HL60 cell lines studied also had higher uptake than the parental cells. The LDL receptor expression in vincristine resistant Pgp positive K562 cells was less sensitive to downregulation by sterols than in parental cells. There was no selective effect of the Pgp inhibitor PSC-833 or other Pgp modulators on LDL receptor activity in Pgp positive cells. Since also resistant Pgp, multidrug resistance protein 1, and breast cancer resistance protein negative cells exhibited an elevated LDL receptor activity, we conclude that overexpression of these proteins is not the mechanism behind the elevated LDL uptake in the drug resistant leukemic cell lines. The findings are of interest for the concept of using lipoproteins as carriers of cytotoxic drugs in cancer treatment.  相似文献   

15.
The present study was aimed to overcome the multidrug resistance (MDR) of tumor cells which accounts for the failure of clinical chemotherapy. A novel doxorubicin (DOX)-loaded composite micelle consisting of polyethylene glycol (PEG)-polycaprolactone (PCL)/Pluronic P105 has been developed and was proved to inhibit the drug resistance of human myelogenous leukemia (K562/ADR) cells. The modulation mechanism that DOX-loaded the composite micelle inhibited MDR was for the first time investigated at cell levels. Results indicated that the cytotoxicity in K562/ADR cells treated by DOX-loaded PEG-PCL/P105 composite micelle was about 4 times higher than DOX solution at 12 μg/mL of DOX. Confocal images showed that the DOX-loaded composite micelles gradually entered into cytoplasm and nucleus, and stayed in intracellular much longer than DOX solution. All the micelles (PEG-PCL micelle, P105 micelle and PEG-PCL/P105 composite micelle) did not change Pgp expression on the surface of K562/ADR cells. However, further study revealed that micelle containing of P105 (P105 or PEG-PCL/P105 composite micelle) significantly decreased ATP level, and consequently restricted the activity of Pgp by down-regulation of mitochondrial membrane potential. On the other hand, the PEG-PCL micelle had no effect on both mitochondrial membrane potential and ATP level of the K562/ADR cells, but its access to K562/ADR cells through endocytic pathway avoided the recognition of Pgp. The PEG-PCL/P105 composite micelle was designed based on the combination of P105-mediated down regulation of mitochondrial membrane potential the malignant cells and PEG-PCL-mediated internalization effect. Therefore, the novel composite micelle is a promising drug delivery system for anticancer drug to overcome MDR.  相似文献   

16.
洛美利嗪逆转K562/ADM细胞多药耐药性   总被引:1,自引:0,他引:1  
目的研究洛美利嗪(lomerizine,Lom)逆转K562/ADM细胞多药耐药性的作用及机制。方法MTT法检测细胞毒作用,流式细胞仪研究Lom对ADM和长春新碱(vincristine,VCR)的K562/ADM细胞凋亡诱导作用的影响及对罗丹明123(rhodamine 123,Rh123)外排和P-糖蛋白(P-glycoprotein,P-gp)表达的作用。结果Lom明显提高ADM对K562/ADM多药耐药细胞的细胞毒作用及ADM和VCR的凋亡诱导作用,3,10和30 μmol·L-1 Lom使K562/ADM对ADM的IC50值由79.03 μmol·L-1分别降至28.14,8.16和3.16 μmol·L-1。Lom增加胞内ADM的蓄积浓度并抑制Rh123外排;但作用72 h后对K562/ADM细胞P-gp表达无影响。结论Lom通过抑制P-gp的活性逆转K562/ADM细胞的多药耐药性。  相似文献   

17.
Overexpression of ATP-dependent efflux pump P-glycoprotein (P-gp) is the main cause of multidrug resistance (MDR) and chemotherapy failure in cancer treatment. Inhibition of P-gp-mediated drug efflux is an effective way to overcome cancer drug resistance. The present study investigated the reversal effect of the novel tetrandrine derivative W6 on P-gp-mediated MDR. KBv200, MCF-7/adr and their parental sensitive cell lines KB, MCF-7 were used for reversal study. The intracellular accumulation with P-gp substrates of doxorubicin was determined by flow cytometry. The expression of P-gp and ERK1/2 was investigated by western blot and real-time-PCR (RT-PCR) analysis. ATPase activity of P-gp was performed by P-gp-GloTM assay systems. In comparison with P-gp-negative parental cells, W6 produced a favorable reversal effect in the MDR cells, as determined using the MTT assay. W6 significantly and dose-dependently increased intracellular accumulation of P-gp substrate doxorubicin (DOX) in P-gp overexpressing KBv200 cells, and also inhibited the ATPase activity of P-gp. W6 inhibited P-gp expression in KBv200 cells in a time-dependent manner, but it had no effect on MDR1 expression. In addition, W6 significantly decreased the ERK1/2 activation in KBv200 cells. Our results showed that W6 effectively reversed P-gp-mediated MDR by inhibiting the transport function and expression of P-gp, demonstrating the potential clinical utility of W6.  相似文献   

18.
P‐glycoprotein‐mediated drug efflux can yield a multidrug‐resistance (MDR) phenotype that is associated with a poor response to cancer chemotherapy. The development of safe and effective MDR‐reversing agents is an important approach in the clinic. The aim of this study was to examine the effects of CJZ3, a lomerizine derivative, on the inhibition of P‐gp function and P‐gp‐mediated MDR in K562/DOX cells and parental K562 cells. Incubation of K562/DOX cells with CJZ3 caused a marked increase in accumulation and uptake and a notable decrease in efflux of Rh123, No such results were found in parental K562 cells. The inhibitory effect of the agent on P‐gp function was reversible, but it persisted for at least 90 min after removal of 2.5 &µM CJZ3 from the incubation medium. The doxorubicin‐induced cytotoxicity, apoptosis, and cell‐cycle perturbations were significantly potentiated by CJZ3. The intracellular accumulation of doxorubicin was enhanced in the presence of various concentrations of CJZ3. The CJZ3 exhibited potent effects in vitro in the reversal of P‐gp‐mediated MDR, suggesting that the compound may be an effective MDR reversing agent in cancer chemotherapy. Drug Dev. Res. 67:862–869, 2006. © 2007 Wiley‐Liss, Inc.  相似文献   

19.
Herbal drugs were screened for their activity in reversing multidrug resistance (MDR) in P-glycoprotein (P-gp) over-expressing cancer cells. Through bio-assay guided fractionation an active compound was isolated from Rhizoma Alismatis, the underground part of Alisma orientale and the chemical structure of the isolate compound was confirmed by HPLC, LC-MS and NMR as Alisol B 23-acetate (ABA). ABA restored the sensitivity of MDR cell lines HepG2-DR and K562-DR to anti-tumor agents that have different modes of action but are all P-gp substrates. It restored the activity of vinblastine, a P-gp substrate, in causing G2/M arrest in MDR cells. In a dose-dependent manner, ABA increased doxorubicin accumulation and slowed down the efflux of rhodamin-123 from MDR cells. ABA inhibited the photoaffinity labeling of P-gp by [125I]iodoarylazidoprazosin and stimulated the ATPase activity of P-gp in a concentration-dependent manner, suggesting that it could be a transporter substrate for P-gp. In addition, ABA was also a partial non-competitive inhibitor of P-gp when verapamil was used as a substrate. Our results suggest that ABA may be a potential MDR reversal agent and could serve as a lead compound in the development of novel drugs.  相似文献   

20.
The human multidrug resistance gene MDR1 encodes the protein product P-glycoprotein (P-gp). P-gp is an integral membrane protein which mediates ATP-dependent substrate efflux. We recently discovered a novel G --> T variant at 1199 nucleotide position of MDR1 which exhibits a 2.3% allelic frequency in leukemia patients. The functional effects of this MDR1-G1199T variant were evaluated with recombinant HEK cells that stably express the wild-type, G1199A, or G1199T variant of the MDR1 protein, P-gp, at comparable levels. A panel of cytotoxic P-gp substrates comprising doxorubicin, vinblastine, vincristine, paclitaxel, or topotecan (a poor P-gp substrate) was used to evaluate the functional impact of G1199 variations. Compared to MDR1(wt), MDR1(G1199A) exhibited an increased resistance to doxorubicin, paclitaxel, vinblastine, and vincristine. In contrast, MDR1(G1199T) reduced resistance to (1/4) that of MDR1(wt) for all drugs except topotecan. Expression of MDR1 exhibits some degree of resistance to topotecan, but 1199 variation has no impact. These data were consistent with the variation in intracellular doxorubicin concentrations measured in MDR1 recombinant cells. Our results suggest that patients with the novel MDR1-G1199T variant may exhibit a lower degree of MDR1 dependent chemoresistance, and those with the G1199A polymorphism may exhibit a higher degree of resistance, compared with MDR1 wild-type patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号