首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
目的:应用Ansys DesignXplorer模块,研究圆柱形种植体直径和长度同时连续变化对Ⅰ类骨质的颌骨应力影响,为临床选择和设计种植体提供理论依据。方法:建立包含圆柱状种植体的下颌骨Ⅰ类骨质骨块的三维有限元模型,设定种植体直径(D)变化范围为3.0~5.0mm,种植体长度(L)变化范围为6.0~16.0mm,观察D和L变化对颌骨Von Mises应力峰值的影响。同时进行颌骨Von Mises应力峰值对变量的敏感度分析。结果:随着D和L的增加,垂直向加载时,皮、松质骨的EQV应力峰值分别降低了54.5%和70.2%,颊舌向加载时,皮、松质骨的EQV应力峰值分别降低了73.5%和75.1%;当D大于3.8mm同时L大于9.0mm时,应力峰值的响应曲线的切斜率位于-1和0之间;在垂直向加载和颊舌向加载时,变量D比L更易影响皮质骨的EQV应力峰值。结论:种植体的直径比长度更易影响皮质骨的应力大小。从生物力学角度而言,对于Ⅰ类骨质,在临床上选择种植体时,种植体的直径应不小于3.8mm,种植体的长度应不小于9.0mm。  相似文献   

2.
种植体直径和长度在Ⅳ类骨质中的优化选择   总被引:1,自引:0,他引:1  
目的:应用Ansys DesignXplorer模块,进行圆柱形种植体直径和长度同时连续变化时对Ⅳ类骨质的颌骨应力影响的分析。方法:建立了包含圆柱状种植体的下颌骨Ⅳ类骨质的骨块三维有限元模型,设定种植体直径(D)变化范围为3.0~5.0mm,种植体长度(L)变化范围为6.0~16.0mm,观察D和L变化对颌骨Von Mises应力峰值的影响。同时进行颌骨Von Mises应力峰值对变量的敏感度分析。结果:随着D和L的增加,垂直向加载时,皮质骨、松质骨的EQV应力峰值分别降低了63.9%和87.9%,颊舌向加载时,皮质骨、松质骨的EQV应力峰值分别降低了76.2%和92.7%;当D>4.0mmL>11.0mm时,应力峰值的响应曲线的切斜率位于-1~0之间;在垂直向加载和颊舌向加载时,变量L和D分别对皮质骨的EQV应力峰值的影响更明显。结论:颊舌向力的力学分布更易受种植体参数影响;松质骨的应力更易受种植体参数影响;种植体直径增加更有利于改善颌骨颊舌向加载下的应力分布,种植体长度的增加更有利于改善皮质骨垂直加载下的应力分布。从生物力学角度而言,对于Ⅳ类骨质在临床上选择种植体时,种植体的直径应≥4.0mm,种植体的长度应≥11.0mm。  相似文献   

3.
目的 研究圆柱形种植体直径和长度同时连续变化对下颌骨Ⅱ类骨质的颌骨应力的影响.方法 应用Ansys Workbench DesignXplorer模块,建立包含圆柱状种植体的下颌骨Ⅱ类骨质的骨块三维有限元模型,设定种植体直径(D)变化范围为3.00~5.00 mm,种植体长度(L)变化范围为6.00~16.00 mm,观察D和L变化对下颌骨Von Mises应力峰值的影响.同时进行下颌骨Von Mises应力峰值对变量的敏感度分析.结果 随着D和L的增加,垂直向加载时,皮、松质骨的EQV应力峰值分别降低67.9%和75.0%,颊舌向加载时,皮、松质骨的EQV应力峰值分别降低64.9%和65.4%;当D大于3.85 mm同时L大于9.00 mm时,应力峰值的响应曲线的切斜率位于-1和0之间;在垂直向加载和颊舌向加载时,变量D比L更易影响皮质骨的EQV应力峰值.结论 种植体的直径比长度更易影响皮质骨的应力大小.从生物力学角度而言,对于下颌骨Ⅱ类骨质,在临床上选择种植体时,直径应不小于3.85 mm,长度应不小于9.00 mm.  相似文献   

4.
目的应用Ansys DesignXplorer模块,进行圆柱形种植体直径和长度的双目标稳健分析,为临床选择和设计种植体提供理论依据。方法建立包含圆柱状种植体的颌骨骨块三维有限元模型,设定种植体的直径(D)为2.5~5.0 mm,种植体长度(L)为6.0~16.0 mm,观察D和L变化对颌骨Von Mises应力峰值的影响,同时进行颌骨VonMises应力峰值对变量的敏感度分析。结果在一个变量取中间值时,垂直向加载情况下,随着D的增加,皮、松质骨的EQV应力峰值分别降低了44.66%和51.45%,随着L的增加,皮、松质骨的EQV应力峰值分别降低45.97%和52.15%;颊舌向加载情况下,随着D的增加,皮、松质骨的EQV应力峰值分别降低71.32%和58.50%,随着L的增加,皮、松质骨的EQV应力峰值分别降低21.66%和37.75%。在两种加载情况下,当D>3.7 mm且L>10.0 mm时,颌骨的EQV应力峰值对D和L的响应曲线曲率位于- 1和0之间;变量D比L对颌骨的EQV应力峰值的影响更明显。结论种植体直径的增大有利于改善颊舌向力的力学分布,长度的增大有利于改善垂直向力的力学分布;临床选择种植体时,只要骨量允许,种植体直径应不小于3.7 mm,长度应不小于10.0 mm;相对于长度而言,应更重视圆柱形种植体直径的选择和设计,而改善颌骨的宽度比改善颌骨的高度在缓和颌骨的应力分布中可能更有意义。  相似文献   

5.
目的应用Ansys DesignXplorer模块,分析圆柱形种植体直径和长度同时连续变化时对Ⅲ类骨质的颌骨应力的影响,为临床选择和设计种植体提供理论依据。方法建立包含圆柱状种植体的下颌骨Ⅲ类骨质的骨块三维有限元模型,设定种植体直径变化范围为3.0~5.0mm,种植体长度变化范围为6.0~16.0mm,观察直径和长度变化对颌骨Von Mises应力峰值的影响。同时进行颌骨Von Mises应力峰值对变量的敏感度分析。结果随着直径和长度的增加,垂直向加载时,皮、松质骨的EQV应力峰值分别降低了65.3%和76.8%;颊舌向加载时,皮、松质骨的VonMises应力峰值分别降低了76.1%和78.0%;当直径大于3.95mm,同时长度大于10.5mm时,应力峰值响应曲线的切斜率位于-1和0之间;在垂直向加载和颊舌向加载时,长度和直径分别对皮质骨EQV应力峰值的影响更明显。结论种植体直径增加更有利于改善颌骨颊舌向加载下的应力分布,种植体长度的增加更有利于改善颌骨垂直加载下的应力分布。从生物力学角度而言,对于m类骨质在临床上选择种植体时,种植体的直径应不小于3.95mm。种植体的长度应不小于10.5mm。  相似文献   

6.
不同长度微种植体支抗应力差异的三维有限元研究   总被引:14,自引:3,他引:11  
目的 分析不同长度微型种植体在承载不同方向4 0 0g正畸力时的应力分布和大小。方法 利用三维有限元软件ANSYS建立不同长度的微型支抗种植体-骨有限元非线性分析模型,在加载侧方力(与种植体长轴成4 5°和90°)的条件下进行分析计算。结果 ①在两种加载条件下,不同长度的微型种植体应力值(包括单元应力和节点应力)呈规则分布,均显示8mm长度时,应力值最小,并且随着微种植体长度的增加或减小,应力值都呈增加趋势;②种植体颈部为应力集中区。结论 在承受非轴向力的作用下,8mm微种植体颈部的应力值最低,并且随微种植体长度的变化,应力都呈上升趋势。  相似文献   

7.
目的探索微螺钉型种植体支抗的长度及直径对种植体周围骨组织内应力分布的影响。方法建立简单的上颌骨及不同长度直径的微螺钉型种植体的三维有限元模型,模拟临床实际情况,记录不同尺寸的种植体在相同的加载条件下周围骨组织内应力分布的情况,并进行比较。结果随着种植体直径的增加,骨组织内的应力明显降低;种植体长度的增加对降低应力没有明显作用。结论在所研究的尺寸范围内,种植体的直径对应力分布有重要影响,而种植体的长度对应力分布影响不大。  相似文献   

8.
支抗种植体直径对骨界面应力分布的影响   总被引:13,自引:0,他引:13  
目的 :研究不同直径支抗种植体对骨界面应力分布的影响 ,以供临床筛选合适的种植体。方法 :用三维有限元方法给种植体施加 1.47N(150 g)近远中方向的载荷 ,分别对直径为 3 .0、3 .75、5.0mm的支抗种植体 骨界面进行应力分析。结果 :3种直径种植体颈部的Von Mises应力值分别为 0 .80 7、0 .53 3、1.0 80 ;位移值分别为 0 .2 3 2、0 .163、0 .111μm。结论 :在选择正畸支抗种植体时 ,直径为 3 .75mm的种植体较适宜作正畸支抗体  相似文献   

9.
螺纹种植体螺距的优化设计和应力分析   总被引:8,自引:2,他引:8       下载免费PDF全文
目的应用Ansys Workbench DesignXplorer优化设计模块,探讨圆柱状V形螺纹种植体螺距变化对颌骨和
种植体应力大小的影响,为临床设计和选择最佳的螺纹参数提供理论依据。方法建立了包含圆柱状V形螺纹种植
体的颌骨骨块三维有限元模型,设定螺纹螺距( P)范围为0.5~1.6 mm,观察P变化对颌骨和种植体Equivale(nt EQV)
应力峰值的影响。结果在垂直向加载中皮质骨、松质骨和种植体的EQV应力峰值增幅分别为7.1%、123.4%和
28.7%;在颊舌向加载中皮质骨、松质骨和种植体的EQV增幅分别为2.8%、28.8%和14.9%;在各种加载情况下,当
变量P大于0.8 mm时,对颌骨及种植体的EQV应力峰值响应曲线曲率位于- 1和1之间。结论松质骨的应力大小更
易受到螺距的影响;螺纹对垂直加载时的力学传递影响更明显;螺距在保护种植体垂直受力时起着更为重要的作
用;圆柱状螺纹种植体螺距最佳设计应不小于0.8 mm,但同时应避免过大的螺距。  相似文献   

10.
正畸支抗种植体的三维有限元研究进展   总被引:2,自引:1,他引:1  
三维有限元分析法作为一种力学分析技术,已成功地应用到牙颌组织的生物力学研究中。近20年来,国内外学者用有限元法对种植体、种植义齿设计中的诸多力学因素进行了大量的研究。本文将从支抗种植体的建模方法、支抗种植体稳定性的影响因素、支抗种植体的临床应用研究等,对近几年三维有限元分析在正畸支抗种植体研究领域的应用作一综述。  相似文献   

11.
This study aimed to create a 3D finite element model for continuous variation of implant diameter and length, thereby identifying their optimal range in type IV bone under biomechanical consideration. Implant diameter ranged from 3.0 to 5.0 mm, and implant length ranged from 6.0 to 14.0 mm. The results suggest that under axial load, the maximum Von Mises stresses in cortical and cancellous bones decrease by 50% and 27%, respectively; and under buccolingual load, by 52% and 60%, respectively. Under these two loads, the maximum displacements of implant-abutment complex decrease by 39% and 43%, respectively. These results indicate that in type IV bone, implant length is more crucial in reducing bone stress and enhancing the stability of implant-abutment complex than implant diameter. Biomechanically, implant diameter exceeding 4.0 mm and implant length exceeding 9.0 mm are the combination with optimal properties for a screwed implant in type IV bone.  相似文献   

12.
微型种植体长度对骨界面应力分布的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 探讨微型种植体长度对骨组织内应力分布的影响.方法建立直径1.6mm,长度分别为6、8、10、12 mm的种植体-下颌骨三维有限元模型,垂直植入种植体,给以1.96 N的水平向前及前上方向的载荷,记录并分析不同情况下的应力分布.结果 种植体水平向前载荷的应力峰值范围为3.500~3.765 MPa,位移峰值范围为1...  相似文献   

13.
微小种植体支抗的三维有限元分析   总被引:1,自引:0,他引:1  
刘鑫  刘岚  刘遥  高锋 《口腔医学》2010,30(9):520-522
目的 利用三维有限元进行微小种植体应力分析,寻找最适合正畸临床使用的微小种植体。方法 利用ANSYS软件建立10mm×20mm×30mm的颌骨骨块三维有限元模型;同时建立的长度为7mm、9mm、11mm,螺纹顶角为30°、60°、90°的9种圆柱状有螺纹微小种植体三维有限元模型;模拟微小种植体植入颌骨内并建立植入后模型,对微小种植体骨界面进行应力分析。结果 经ANSYS软件对微小种植体骨界面的应力分析,在不同角度的微小种植体中,螺纹顶角为60°的微小种植体三维有限元模型周边最大应力值最小,最适于临床使用。不同长度的微小种植体中,长度为7mm的微小种植体三维有限元模型周边最大应力值明显大于其他两种,不适用于正畸临床。9mm和11mm微小种植体三维有限元模型周边最大应力值差别不大,11mm微小种植体三维有限元模型周边最大应力值略小于9mm微小种植体三维有限元模型周边最大应力值。结论 螺纹顶角为60°,9mm以上的微小种植体适于正畸临床做为支抗使用。  相似文献   

14.
The biomechanical influences of primary factors on titanium mini-implant, which is used as an anchorage for orthodontic tooth movement, were quantified using the three-dimensional finite element method. Six types of finite element models were designed to show various thread pitches from 0.5 to 1.5 mm. Three models were designed with abutment and three other models without abutment. A traction force of 2 N was applied to the head of the mini-implant or abutment to be at 45 degrees to the bone surface. No remarkable differences were observed in the stress distribution patterns regardless of thread pitch variance. However, the stress distribution was remarkably different between models with abutment and without abutment. The maximum stress of the model with abutment and thread pitch 0.5 mm was the least as compared with the other models. Areas of high-level stress were obviously smaller than in the models without abutment. The plots of the displacement distributions of the models with abutment also presented significant pattern differences as compared with the models without abutment. The high-level area was localized to the head of the implant and the abutment in models with abutment. Therefore, the existence of the abutment is significantly useful in decreasing the stress concentration on the bone, while the effect of thread pitch was uncertain.  相似文献   

15.
目的 探讨在不同力作用下,长度和直径同时连续变化情况下微种植体尺寸的优化设计,以期为临床上合理选择微种植体尺寸提供理论基础。方法 建立长度和直径连续变化的微种植体及周围颌骨组织的三维有限元模型,设定长度变化范围为6~12 mm,直径变化范围为1.2~2.0 mm,在微种植体头部的横槽内分别加载水平力(HF)和复合力( CF),观察长度和直径同时变化对周围颌骨等效应力峰值( Max EQV)及微种植体位移峰值( Max DM)的影响。结果 在两种力的作用下,随着长度和直径的增加,颌骨 Max EQV和微种植体 Max DM均下降,当长度大于 9 mm时,各评估指标值较小且变化幅度较小。灵敏度分析显示,直径对评估指标的影响较大。在 CF作用下,直径对评估指标的影响较 HF作用下显著。结论 在本研究所设定的参数范围内,微种植体的长度应不超过 9 mm,运用微种植体对牙齿进行转矩控制时,其直径应超过1.2 mm。  相似文献   

16.
目的:探讨圆柱状V形螺纹种植体螺纹参数变化对骨组织应力大小的影响,为临床设计和选择最佳的螺纹参数提供理论依据.方法:建立了包含圆柱状V形螺纹种植体的颌骨骨块三维有限元模型,设定螺纹齿高(H)范围为0.2~0.6 mm,螺纹宽度(W)范围为0.1~0.4 mm.在修复体正中分别进行垂直向100N和45°颊舌向50N的力学加载.观察H和W变化对颌骨平均主应力(EQV)峰值的影响,同时进行变量对颌骨的敏感度分析.结果:在垂直向加载中皮质骨和松质骨的EQV应力峰值增幅分别为4.3%和63.0%;在颊舌向加载中皮质骨和松质骨的增幅分别为19.3%和118%;在各种加载情况下,当变量H位于0.34~0.50mm,同时变量W位于0.18~0.30 mm之间时,对颌骨的EQV应力峰值响应曲线的切线斜率位于-1~1之间;变量H比W对颌骨的EQV应力峰值的影响更明显.结论:松质骨的应力大小更易受到螺纹的影响;螺纹对侧向力加载时的力学传递影响更明显;生物力学方面的考虑,圆柱状螺纹种植体最佳的螺纹设计为螺纹高度介于0.34~0.50 mm之间,螺纹宽度介于0.18~0.30 mm之间;在圆柱状螺纹种植体设计中,相对于螺纹宽度而言应更重视螺纹高度的设计.  相似文献   

17.
Background: Short implants present superior failure rates for everybody. Purpose: The aim of this theoretic study was to assess to what extent implant length and bicortical anchorage affect the way stress is transferred to implant components, the implant proper, and the surrounding bone. Materials and Methods: Stress analysis was performed using finite element analysis. A three‐dimensional linear elastic model was generated. All implants modeled were of the same diameter (3.75 mm) but varied in length, at 6, 7, 8, 9, 10, 11, and 12 mm (Branemark System®, Nobel Biocare AB, Gothenburg, Sweden). Each implant was modeled with a titanium abutment screw and abutment, a gold cylinder and prosthetic screw, and a ceramic crown. The implants were seated in a supporting bone structure consisting of cortical and cancellous bone. An occlusal load of 100 N was applied at a 30° angle to the buccolingual plane. Results: With the selected model and bone properties, the coronal cortical anchorage was dominating, and the bone stress concentrated to that area. Conclusions: The maximum bone stress was virtually constant, independent of implant length and bicortical anchorage. The maximum implant stress, however, increased somewhat with implant length and bicortical anchorage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号