首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) was used to study the distribution and density of the projections that originate from four identified subdivisions of the pericruciate cortex (namely, the forelimb and hind limb representations of area 4, area 6aβ, and area 6aγ) and that terminate in the pontomedullary brainstem in the cat. Injections of PHA-L in all areas of the pericruciate cortex labelled numerous fibers and their terminal swellings in the brainstem. The major target regions of all four cortical areas were the pontine nuclei and the pontomedullary reticular formation (PMRF). Injections into both the forelimb and hind limb representations of area 4 and into area 6aβ resulted in a dense pattern of terminal labelling in restricted regions of the medial and lateral parts of the ipsilateral pontine nuclei. The labelling following the area 6aβ injection was spatially distinct from that seen following the area 4 injections. Injections into the forelimb representation of area 4 as well as into area 6aβ and 6aγ resulted in the labelling of numerous terminal swellings bilaterally in the PMRF; in contrast, there were few labelled terminal swellings in the PMRF following injections into the hind limb representation of area 4. Terminal swellings on individual corticoreticular fibers were far less densely aggregated than those in the pontine nuclei. The dense pattern of innervation to restricted regions of the pontine nuclei supports previous suggestions that the corticopontine projections retain a high degree of topographical specificity that could be used in the control of discrete voluntary movements. In contrast, the more diffuse pattern of the projections to the PMRF may facilitate the selection and activation of the complex postural patterns that accompany voluntary movement. J. Comp. Neurol. 389:617–641, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Motor performance depends on somatosensory feedback, and consistent with this finding, primary somatosensory (SI) cortex projects to several regions involved in motor control. Although the pathways mediating sensorimotor integration are known, few studies have compared their projection patterns. Therefore, in each animal, we injected two anterograde tracers into SI barrel cortex and compared the relative density and spatial extent of the labeled projections to the primary motor (MI) cortex, neostriatum, superior colliculus, and basal pons. Quantitative analysis revealed that these projections terminated most extensively in the neostriatum, to a lesser extent in MI cortex, and innervated the least amount of neuropil in the superior colliculus and pontine nuclei. Tracer overlap in the pontine nuclei was significantly higher than in the other three brains regions, and was strongly correlated with overlap in the superior colliculus, presumably because some projections to these two brain regions represent collaterals of the same neurons. The density of labeled varicosities was highest in the pons and lowest in MI. As a proportion of total labeling, densely packed clusters of labeled terminals were most prevalent in the pons, less prevalent in neostriatum and superior colliculus, and least prevalent in MI cortex. These results are consistent with physiological evidence indicating strong coherence between SI barrel cortex and the cerebellum during whisking behavior.  相似文献   

4.
The efferent connections of the cerebral cortex to paramedial tegmental and basilar pons were studied in the monkey by using the retrograde and orthograde capabilities of the horseradish peroxidase (HRP) technique. Six capuchin monkeys (Cebus apella) received transcannular pontine HRP gel implants to retrogradely label the cells of origin of corticopontine projections. Four additional capuchin monkeys, one rhesus (Macaca mulatta), and one cynomolgus (Macaca fascicularis) monkey, received HRP gel implants in premotor (area 6), frontal eye field (FEF, area 8), superior (area 5), and inferior (area 7) parietal lobules to orthogradely label the course and termination of corticopontine projections, and thus to confirm the retrograde studies. The brains were processed according to the tetramethylbenzidine (TMB) protocol of Mesulam ('78) and studied with darkfield microscopy. Premotor (area 6) frontal cortex and FEF (area 8) were found to be the main sources of cortical inputs to the ipsilateral paramedian basilar pons, whereas FEF, dorsal prefrontal convexity, and dorsal medial prefrontal (granular frontal association) cortex were the main sources of bilateral projections to the paramedian pontine tegmentum. The medial portion of the nucleus reticularis tegmenti pontis (NRTP), considered to be a tegmental extension of the basilar pontine gray, also received its principal cortical input from the frontal lobe. Parietal cortex, on the other hand, was observed to project to lateral NRTP and lateral basilar pons. Although the possibility exists of convergence of frontal and parietal eye field efferents in the NRTP, the frontal eye field and prefrontal cortex appear to be the principal source of cortical projections to the paramedian pontine tegmentum, which contains the physiologically defined PPRF (paramedian pontine reticular formation), an important preoculomotor center. The results are discussed primarily with regard to their significance for potential cortical influence on the oculomotor system.  相似文献   

5.
The organization of pontocerebellar projections to the paravermis and hemisphere of the posterior cerebellum of the rat was studied in relation to the organization of climbing fibers. Small injections of cholera toxin subunit B were placed in the cerebellar cortex at locations predetermined by evoked climbing fiber potentials from selected body parts or based on coordinates. The injection site was characterized with respect to the zebrin pattern and by the distribution of retrogradely labeled neurons in the inferior olive. The following zones were studied: hindlimb-related zones C1 and C2 of lobule VIII; forelimb-related zones C1, C2, and D0/D1 of the paramedian lobule; and face-related zones A2 of the paramedian lobule and C2 and D0 of crus 2B. The results show that the distribution of pontine neurons is closely related to the climbing fiber somatotopy. Injections centered on face-related zones result in distribution of pontine neurons within the pontine core region. Forelimb regions surround this core, whereas hindlimb regions are mostly supplied by caudal pontine regions and by a single patch of more rostrally located neurons. This distribution fits well with published data on the somatotopy of the corticopontine projection from the rat primary somatosensory cortex. However, apart from differences in the participation of ipsilaterally projecting cells, the distribution of pontine neurons does not change significantly when the injection covers different zones of the same lobule such as C1 and C2 of lobule VIII; C1, C2, and D0/D1 of the paramedian lobule; A2 of the paramedian lobule; and C2 and D0 of crus 2B.  相似文献   

6.
Orthograde axonal transport tracing methods were used to describe the projections to the basilar pontine nuclei (BPN) which arise within the face representation of motor or somatosensory cerebral cortex. Injections centered in motor face (MF) cortex resulted in the labeling of several corticopontine terminal fields which exhibit a rostrocaudal columnar arrangement within the ipsilateral BPN. The location of such terminal zones is consistent with the somatotopic pattern of termination previously described for limb sensorimotor cortices. In contrast, the projections from somatosensory face (SF) cortical regions largely terminate in BPN areas separate from those receiving either limb sensorimotor or MF inputs. Both MF and SF cortices also give rise to projections to the contralateral BPN; those from SF cortex are less extensive than those of MF origin. In addition to their relationship with limb sensorimotor corticopontine terminations, the MF projections to the BPN also seem to partially overlap the projection zones of the cerebellopontine system, particularly the regions projected upon by the lateral cerebellar nucleus. The SF projections, on the other hand, appear to terminate in BPN areas that also receive input from either the dorsal column nuclei or the spinal trigeminal complex. There is only minimal potential overlap between MF and SF projections in the BPN. With regard to the pontocerebellar system, the projections from MF cortex terminate among BPN neurons which project to the cerebellar hemispheres, particularly lobus simplex, crus I and crus II. The SF projections also overlap BPN neurons which project to the lateral hemispheres in addition to the paraflocculus and vermal lobules VII and IXa,b. Taken together these observations suggest that subsets of BPN neurons might exist such that some receive convergent inputs from systems whose function can generally be regarded as motor (sensorimotor cortex, cerebellopontine) while another population of BPN neurons might integrate signals from systems which transmit somatosensory information (dorsal column nuclei, spinal trigeminal).  相似文献   

7.
The whisker region in rat primary motor (MI) cortex projects to several brainstem regions, but the relative strength of these projections has not been characterized. We recently quantified the MI projections to bilateral targets in the forebrain (Alloway et al. [2009] J Comp Neurol 515:548-564), and the present study extends those findings by quantifying the MI projections to bilateral targets in the brainstem. We found that both the whisker and forepaw regions in MI project most strongly to the basal pons and superior colliculus. While the MI forepaw region projects mainly to the ipsilateral basilar pons, the MI whisker region has significantly more connections with the contralateral side. This bilateral difference suggests that corticopontine projections from the MI whisker region may have a role in coordinating bilateral whisker movements. Anterograde tracer injections in MI did not reveal any direct projections to the facial nucleus, but retrograde tracer injections in the facial nucleus revealed some labeled neurons in MI cortex. The number of retrogradely labeled neurons in MI, however, was dwarfed by a much larger number of labeled neurons in the superior colliculus and other brainstem regions. Together, our anterograde and retrograde tracing results indicate that the superior colliculus provides the most effective route for transmitting information from MI to the facial nucleus.  相似文献   

8.
Collateral axonal branching from the medial or lateral mammillary nuclei to the anterior thalamus, Gudden's tegmental nuclei, the nucleus reticularis tegmenti pontis, and the medial pontine nucleus was studied using the fluorescent retrograde double-labeling method. One day after injection of Fast Blue into the anterior thalamic nuclei or Gudden's tegmental nuclei, Nuclear Yellow was injected into Gudden's tegmental nuclei or the nucleus reticularis tegmenti pontis and the medial pontine nucleus. Following 1 day survival, single- and double-labeled neurons were examined in the mammillary nuclei. The lateral mammillary nucleus contains neurons whose collateral fibers project to both the dorsal tegmental nucleus of Gudden and the ipsilateral or contralateral anterodorsal thalamic nucleus, to both the medial pontine nucleus and the anterodorsal thalamic nucleus, and to both the dorsal tegmental nucleus of Gudden and the medial pontine nucleus. The pars medianus and pars medialis of the medial mammillary nucleus contain neurons whose collateral fibers project to both the anteromedial thalamic nucleus and the ventral tegmental nucleus of Gudden, to both the anteromedial thalamic nucleus and the medial part of the nucleus reticularis tegmenti pontis, and to both the ventral tegmental nucleus of Gudden and the medial part of the nucleus reticularis tegmenti pontis. The dorsal half of the pars posterior of the medial mammillary nucleus contains a few neurons whose collateral fibers project to both the anteromedial thalamic nucleus and the rostral part of the ventral tegmental nucleus of Gudden, and to both the caudal part of the anteroventral thalamic nucleus and the rostral part of the ventral tegmental nucleus of Gudden, while the pars lateralis of the medial mammillary nucleus contains no double-labeled neurons and projects only to the anteroventral thalamic nucleus.  相似文献   

9.
This study aimed to investigate the trajectory of fibres from the pontine nuclei that reach the two sides of the cerebellum. Injections of biotinylated dextran amine (BDA) were made within the basilar pontine nuclei (BPN) and the nucleus reticularis tegmenti pontis (NRTP) in one side of rats with electrolytic injury of the middle cerebellar peduncle (MCP), ipsilateral or contralateral to the side of injection. Fibres were traced from the pontine nuclei (BPN and NRTP) to both sides of the cerebellum passing through the respective MCPs. The study carried out in rats with injury to one peduncle showed projections segregated to the half-side of the cerebellum innervated by the intact peduncle. The laterality observed was confirmed by a retrograde tracer study. In fact, injections of different fluorescent tracers in rats with injury of single MCP showed that in the pontine nuclei only cell bodies stained by the tracer injected in the half-cerebellum ipsilateral to the intact peduncle. Finally, similar injections (i.e. different fluorescent tracers in symmetric areas of the cerebellar cortex) in the cerebellum of intact brain rats showed that BPN and NRTP differ for the laterality of their projections. In fact, 82% of BPN cells project contralaterally and 18% ipsilaterally, whereas 60% of NRTP cells project contralaterally and 40% ipsilaterally. In conclusion, this study showed that the MCPs receive fibres from the pontine nuclei of both sides and project to the ipsilateral half of the cerebellum and that different contingents of projections to the two sides of the cerebellum arise from BPN and NRTP.  相似文献   

10.
Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions.  相似文献   

11.
We investigated the topographic and laminar organization of the efferent cortical projections of the perirhinal and parahippocampal cortices. Area 36 of the perirhinal cortex projects preferentially to areas TE and TEO, whereas area TF of the parahippocampal cortex projects preferentially to the posterior parietal cortex and area V4. Area TF projects to many regions of the frontal lobe, whereas area 36 projects mainly to the orbital surface. The insular and cingulate cortices receive projections from areas 36 and TF, whereas only area TF projects to the retrosplenial cortex. Projections to the superior temporal gyrus, including the dorsal bank of the superior temporal sulcus, arise predominantly from area TF. Area 36 projects only to rostral levels of the superior temporal gyrus. Area TF has, in general, reciprocal connections with the neocortex, whereas area 36 has more asymmetric connections. Area 36, for example, projects to more restricted regions of the frontal cortex and superior temporal sulcus than it receives inputs from. In contrast, it projects to larger portions of areas TE and TEO than it receives inputs from. The efferent projections of areas 36 and TF are primarily directed to the superficial layers of the neocortex, a laminar organization consistent with connections of the feedback type. Projections to unimodal visual areas terminate in large expanses of the cortex, but predominantly in layer I. Projections to other sensory and polymodal areas, in contrast, terminate in a columnar manner predominantly in layers II and III. In all areas receiving heavy projections, the projections extend throughout most cortical layers, largely avoiding layer IV. We discuss these findings in relation to current theories of memory consolidation.  相似文献   

12.
The basilar pontine nuclei in the opossum are composed of two general categories of neurons, intrinsic cells and the principal or projection neurons. Observations from Golgi material indicate that principal neurons whose primary axons project to the cerebellar cortex may also give rise to recurrent branches distributing within the pontine gray. Such collaterals were observed to arise near the soma and at some distance from the cell body of the parent axon. The electron microscopic correlate of such a system was identified in the basilar pontine neuropil in animals subjected to lesions of the cerebellar cortex. These lesions destroyed mossy terminals and their parent axons and thus initiated a retrograde reaction in basilar pontine projection neurons which manifested itself in the form of morphologic alterations observed in somata, dendrites, and a class of axonal boutons. Similar altered axon terminals were not observed in control material and did not correspond to the terminals of cerebello-pontine axons described in previous work. It was therefore suggested that such boutons represented the terminals of the recurrent collateral system observed in Golgi material.  相似文献   

13.
The organization of axonal projections from the basomedial nucleus of the amygdala (BMA) was examined with the Phaseolus vulgaris leucoagglutinin (PHAL) method in adult male rats. The anterior and posterior parts of the BMA, recognized on cytoarchitectonic grounds, display very different projection patterns. Within the amygdala, the anterior basomedial nucleus (BMAa) heavily innervates the central, medial, and anterior cortical nuclei. In contrast, the posterior basomedial nucleus (BMAp) sends a dense projection to the lateral nucleus, and to restricted parts of the central and medial nuclei. Extra-amygdalar projections from the BMA are divided into ascending and descending components. The former end in the cerebral cortex, striatum, and septum. The BMAa mainly innervates olfactory (piriform, transitional) and insular areas, whereas the BMAp also innervates inferior temporal (perirhinal, ectorhinal) and medial prefrontal (infralimbic, prelimbic) areas and the hippocampal formation. Within the striatum, the BMAa densely innervates the striatal fundus, whereas the nucleus accumbens receives a heavy input from the BMAp. Both parts of the BMA send massive projections to distinct regions of the bed nuclei of the stria terminalis. Descending projections from the BMA end primarily in the hypothalamus. The BMAa sends a major input to the lateral hypothalamic area, whereas the BMAp innervates the ventromedial nucleus particularly heavily. Injections were also placed in the anterior cortical nucleus (COAa), a cell group superficially adjacent to the BMAa. PHAL-labeled axons from this cell group mainly ascend into the amygdala and olfactory areas, and descend into the thalamus and lateral hypothalamic area. Based on connections, the COAa and BMAa are part of the same functional system. The results suggest that cytoarchitectonically distinct anterior and posterior parts of the BMA are also hodologically distinct and form parts of distinct anatomical circuits probably involved in mediating different behaviors (for example, feeding and social behaviors vs. emotion-related learning, respectively). © 1996 Wiley-Liss, Inc.  相似文献   

14.
15.
It is now established that stimulation of the ventrolateral midbrain periaqueductal grey (PAG) evokes inhibition of nociceptive spinal neurons, which results in analgesia and a powerful attenuation of pain behaviour. It is postulated that the PAG exerts this inhibitory effect on spinal nociceptive functions through the activation of descending serotonergic and noradrenergic pathways that arise from the rostral ventromedial medulla (RVM) and pontine noradrenergic nuclei. To investigate the neuroanatomical substrate of this functional link between the PAG and RVM, as well as the pontine noradrenergic nuclei in the rat, we labelled axons that project from the ventrolateral PAG to various regions of the pons and medulla oblongata using the anterograde tracing substance, Phaseolus vulgaris leucoagglutinin. We demonstrated that some of PAG efferents really do terminate in the RVM and pontine noradrenergic nuclei, but a substantial proportion of them project to the intermediate subdivision of the pontobulbar reticular formation. Combining the axonal tracing with serotonin- and tyrosine-hydroxylase-immunohistochemistry, we also found that, in contrast to previous results, PAG efferents make relatively few appositions with serotonin- and tyrosine-hydroxylase-immunoreactive neurons in the RVM and pontine noradrenergic nuclei; most of them terminate in nonimmunoreactive territories. The results suggest that the ventrolateral PAG may activate a complex pontobulbar neuronal assembly including neurons in the intermediate subdivision of the pontobulbar reticular formation, serotonin- and tyrosine-hydroxylase-immunoreactive and nonimmunoreactive neurons in the RVM and pontine noradrenergic nuclei. This pontobulbar neural circuitry, then, may mediate the PAG-evoked activities towards the spinal dorsal horn resulting in the inhibition of spinal nociceptive functions.  相似文献   

16.
The vestibulocerebellar projection in the rabbit has been investigated by the anterograde axonal transport of tritiated leucine, wheat germ-agglutinated horseradish peroxidase, and Phaseolus vulgaris leucoagglutinin. Mossy fiber terminals originating from all vestibular nuclei, with the exception of the lateral vestibular nucleus of Deiters, were found bilaterally in the lobules X, IX, and VIII of the caudal vermis, without a clear difference in laterality. Most of the vestibular mossy fiber terminals in the caudal vermis originated in the superior and caudal medial vestibular nuclei. Application of the different tracers led to similar results. The labeled terminals were always most numerous in the lobules X and IXd. Small to moderate numbers of mossy fiber terminals were found in the lobules IXa, b, c, and lobule VIII. The greatest change in the density of terminals occurred in most cases around the apex of lobule IXd and not in the depth of the posterolateral fissure between lobules X and IX. The mossy fiber terminals were not distributed equally over the cortex but showed a preference for the proximal parts of the individual lobules. In all experiments, the terminals exhibited a certain degree of clustering in the mediolateral direction, but the clusters were not arranged in longitudinal zones continuous over successive folia.  相似文献   

17.
The gracile nucleus (GN) and lateral part of rostral dorsal accessory olive (rDAO) are important relays for indirect, postsynaptic dorsal column, and direct ascending pathways, respectively, that terminate as climbing fibers in the “hindlimb‐receiving” parts of the C1 and C3 zones in the cerebellar cortex. While the spinal cells of origin of that project to GN and rDAO are from largely separate territories in the spinal cord, previous studies have indicated that there could be an area of overlap between these two populations in the medial dorsal horn. Given the access of these two ascending tracts to sensory (thalamic) versus sensorimotor (precerebellar) pathways, the present study therefore addresses the important question of whether or not individual neurons have the potential to contribute axons to both ascending pathways. A double‐fluorescent tracer strategy was used in rats (red Retrobeads and Fluoro‐Ruby or green Retrobeads and Fluoro‐Emerald) to map the spatial distribution of cells of origin of the two projections in the lumbar spinal cord. The two pathways were found to receive input from almost entirely separate territories within the lumbar cord (levels L3–L5). GN predominantly receives input from lamina IV, while rDAO receives its input from three cell populations: medial laminae V–VI, lateral lamina V, and medial laminae VII–VIII. Cells that had axons that branched to supply both GN and rDAO represented only about 1% of either single‐labeled cell population. Overall, the findings therefore suggest functional independence of the two ascending pathways. J. Comp. Neurol. 522:2179–2190, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The projections from the rat medial prefrontal cortex to the amygdaloid complex were investigated using retrograde transport of fluorescent dyes and anterograde transport of horseradish peroxidase-WGA. The ventral anterior cingulate, prelimbic, infralimbic and medial orbital areas and the taenia tecta were found to project to the amygdaloid complex. The projections from the prelimbic area arose bilaterally. The medial orbital, prelimbic and anterior cingulate areas send convergent projections to the basolateral nucleus. The prelimbic area has additional projections to the posterolateral cortical nucleus and amygdalo-hippocampal area. The infralimbic area does not project to the basolateral nucleus and cortico-amygdaloid projections from this area are focussed on the anterior cortical nucleus and the anterior amygdaloid area. Both prelimbic and infralimbic areas project to an area situated between the central, medial and basomedial nuclei. Based on similar projections, this area appears to be a caudal continuation of the anterior amygdaloid area. The results indicate that the medial prefrontal component of the "basolateral limbic circuit" is restricted to the anterior cingulate and prelimbic areas. No evidence was obtained to support the existence of a medial prefronto-amygdaloid component of the "visceral forebrain".  相似文献   

19.
Projections from the hippocampal formation to the medial prefrontal cortex are well known. In this report we used two retrogradely transported tracers to show that a small but significant subpopulation of pyramidal neurons in area CA1 and subiculum of the hippocampal formation projects to the lateral prefrontal cortex. About half of these neurons also possess collateral projections to the medial prefrontal cortex. The neurons projecting only to the lateral PFC are found in the intermediate hippocampal formation and in the most ventral part of the temporal subdivision. On the other hand, most of the neurons projecting to the medial prefrontal cortex only are present in the temporal and ventral intermediate hippocampal formation, and their number decreases in the dorsal intermediate subdivision. The distribution of neurons having collateral projections is comparable to that of neurons projecting to the medial prefrontal cortex only. In view of proposed functional differences between the septal one-third and the temporal two-third of the hippocampal formation, it is of interest that the neurons projecting to the prefrontal cortex are only present in the temporal two-thirds. Hippocampus 7:397–402, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The somatotopic distribution of dorsal column nuclear projections within the basilar pontine gray was examined in relation to the massive corticopontine projection system that emanates most heavily from motor and somatosensory cortex. The distribution patterns of these two systems were compared by combining autoradiographic and degeneration axonal tracing methods within individual animals. Stereotaxic injections of tritiated leucine (50 microCi/microliter) and lesions by aspiration were made in animals under ketamine hydrochloride anesthesia. The forelimb cortical injections (0.1-0.3 microliter) were centered in either sensory or motor cortical regions as determined by intracortical microstimulation and multiunit recording techniques. Because sensory and motor hindlimb cortical areas overlap extensively in the rat, hindlimb cortical injections (0.1-0.3 microliter) were limited to a single hindlimb sensorimotor cortical region. The corresponding contralateral dorsal column nucleus, cuneatus or gracilis, was then aspirated. A somatotopic distribution of fore- and hindlimb corticopontine fibers were found in discrete regions of the ipsilateral pontine gray. Hindlimb sensorimotor corticopontine fibers distributed caudal to forelimb projections. Similarly, pontine afferents from the dorsal column nuclei terminated somatotopically in the caudal half of the contralateral pontine gray in that gracilopontine fibers distributed caudal to cuneopontine fibers. Within individual animals, partially overlapping terminations were seen from nucleus cuneatus and the forelimb sensory cortical area as well as from nucleus gracilis and the hindlimb sensorimotor cortical area. No overlap existed in the pontine terminations from nucleus cuneatus and the forelimb motor cortical area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号