首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.

Background:

MicroRNAs (miRNAs) are small noncoding RNAs that have important roles in numerous cellular processes. Recent studies have shown aberrant expression of miRNAs in prostate cancer tissues and cell lines. On the basis of miRNA microarray data, we found that miR-145 is significantly downregulated in prostate cancer.

Methods and results:

We investigated the expression and functional significance of miR-145 in prostate cancer. The expression of miR-145 was low in all the prostate cell lines tested (PC3, LNCaP and DU145) compared with the normal cell line, PWR-1E, and in cancerous regions of human prostate tissue when compared with the matched adjacent normal. Overexpression of miR-145 in PC3-transfected cells resulted in increased apoptosis and an increase in cells in the G2/M phase, as detected by flow cytometry. Investigation of the mechanisms of inactivation of miR-145 through epigenetic pathways revealed significant DNA methylation of the miR-145 promoter region in prostate cancer cell lines. Microarray analyses of miR-145-overexpressing PC3 cells showed upregulation of the pro-apoptotic gene TNFSF10, which was confirmed by real-time PCR and western analysis.

Conclusion:

One of the genes significantly upregulated by miR-145 overexpression is the proapoptotic gene TNFSF10. Therefore, modulation of miR-145 may be an important therapeutic approach for the management of prostate cancer.  相似文献   

2.
Nie J  Liu L  Zheng W  Chen L  Wu X  Xu Y  Du X  Han W 《Carcinogenesis》2012,33(1):220-225
Deregulated microRNAs participate in carcinogenesis and cancer progression, but their roles in cancer development remain unclear. In this study, miR-365 expression was found to be downregulated in human colon cancer tissues as compared with that in matched non-neoplastic mucosa tissues, and its downregulation was correlated with cancer progression and poor survival in colon cancer patients. Functional studies revealed that restoration of miR-365 expression inhibited cell cycle progression, promoted 5-fluorouracil-induced apoptosis and repressed tumorigenicity in colon cancer cell lines. Furthermore, bioinformatic prediction and experimental validation were used to identify miR-365 target genes and indicated that the antitumor effects of miR-365 were probably mediated by its targeting and repression of Cyclin D1 and Bcl-2 expression, thus inhibiting cell cycle progression and promoting apoptosis. These results suggest that downregulation of miR-365 in colon cancer may have potential applications in prognosis prediction and gene therapy in colon cancer patients.  相似文献   

3.
The aplysia ras homolog member I (ARHI) is a tumor suppressor gene and is downregulated in various cancers. The downregulation of ARHI was regulated by miR-221 in prostate cancer cell lines. However, it has not been reported whether ARHI is regulated by miR-221 in breast cancer. Here, we reported that the ARHI protein level was downregulated in breast cancer tissues and breast cancer cell lines. The overexpression of ARHI could inhibit cell proliferation and invasion and induce cell apoptosis. To address whether ARHI is regulated by miR-221 in breast cancer cell lines, the results in this study showed that a significant inverse correlation existed between ARHI and miR-221. MiR-221 displayed an upregulation in breast cancer tissues and breast cancer cell lines. The inhibition of miR-221 induced a significant upregulation of ARHI in MCF-7 cells. To prove a direct interaction between miR-221 and ARHI mRNA, ARHI 3′UTR, which includes the potential target site for miR-221, was cloned downstream of the luciferase reporter gene of the pMIR-REPORT vector to generate the pMIR-ARHI-3′UTR vector. The results confirmed a direct interaction of miR-221 with a target site on the 3′UTR of ARHI. In conclusion, ARHI is a tumor suppressor gene that is downregulated in breast cancer. The overexpression of ARHI could inhibit breast cancer cell proliferation and invasion and induce cell apoptosis. This study demonstrated for the first time that the downregulation of ARHI in breast cancer cells could be regulated by miR-221.  相似文献   

4.
ARHI is an imprinted tumor suppressor gene and is downregulated in various malignancies. However, ARHI expression, function, and mechanisms of action in prostate cancer have not been reported. Here, we report that ARHI mRNA and protein levels were downregulated in prostate cancer tissues compared with adjacent normal tissues. Overexpression of ARHI inhibited cell proliferation, colony formation, invasion, and induced apoptosis. Further studies on a new mechanism of ARHI downregulation showed a significant inverse relationship between ARHI and miR-221 and 222, which were upregulated in prostate cancer cell lines. Transfection of miR-221 and 222 inhibitors into PC-3 cells caused a significant induction of ARHI expression. A direct interaction of miR-221 or 222 with a target site on the 3'UTR of ARHI was confirmed by a dual luciferase pMIR-REPORT assay. Finally, we also found that genistein upregulates ARHI by downregulating miR-221 and 222 in PC-3 cells. In conclusion, ARHI is a tumor suppressor gene downregulated in prostate cancer, and overexpression of ARHI can inhibit cell proliferation, colony formation, and invasion. This study demonstrates for the first time that prostate cancer cells have decreased level of ARHI which could be caused by direct targeting of 3'UTR of ARHI by miR221/222. Genistein, a potential nontoxic chemopreventive agent, restores expression of ARHI and may be an important dietary therapeutic agent for treating prostate cancer.  相似文献   

5.
6.
A disintegrin and metalloproteinase 17 (ADAM17) is a metalloprotease that is overexpressed in many cancer types, including renal cancers. However, the regulatory mechanisms of ADAM17 in cancer development and progression are poorly understood. In the present work, we provide evidence using overexpression and inhibition of microRNA 145 (miR-145) that miR-145 negatively regulates ADAM17 expression. Furthermore, we show that ADAM17 negatively regulates miR-145 through tumor necrosis factor-α, resulting in a reciprocal negative feedback loop. In this study, the expression of ADAM17 and miR-145 correlated negatively in renal cancer tumor tissues and cell lines, suggesting an important regulatory mechanism. Additionally, we showed that the regulation of ADAM17 is partly involved in the effects of miR-145 on proliferation and migration, whereas no involvement in chemosensitivity was observed. Importantly, in the healthy kidney, miR-145 was detected in different cell types including tubular cells, which are considered the origin of renal cancer. In renal cancer cell lines, miR-145 expression was strongly suppressed by methylation. In summary, miR-145 is downregulated in renal cancer patients, which leads to the up-regulation of ADAM17 in renal cancer. Importantly, miR-145 and ADAM17 are regulated in a reciprocal negative feedback loop.  相似文献   

7.
8.
目的:研究miR-613在人前列腺癌组织中的表达情况,探讨miR-613是否通过下调Wnt信号通路活性抑制前列腺癌细胞系细胞的增殖和侵袭能力。方法:收集临床前列腺癌组织及配对癌旁组织20例,通过实时荧光定量PCR(RT-qPCR)检测各组组织中miR-613的表达情况。进一步在细胞实验中,通过转染miR-613 mimic和miR-NC至离体培养的PC-3、DU-145细胞中,随后,采用MTT法、平板克隆实验检测细胞增殖和Matrigel侵袭实验测定前列腺癌细胞的侵袭情况,采用荧光素酶分析方法评估Wnt信号通路活性变化,采用实时荧光定量PCR(RT-qPCR)检测Wnt/β-catenin信号通路下游靶基因的转录(包括Cyclin D1和c-Myc),WB法检测细胞中β-catenin、c-Myc和Cyclin D1的表达量。结果:相比配对癌旁组织,miR-613在前列腺癌组织中的表达降低(P<0.01);在体外细胞实验中,相比于miR-NC组,转染miR-613 mimic后,PC-3、DU-145细胞增殖能力下降(P<0.05),PC-3、DU-145细胞的迁移侵袭能力下降(P<0.01);miR-613的过表达显著降低Wnt信号通路活性、β-catenin蛋白表达及Wnt信号下游靶基因Cyclin D1和c-Myc的转录及蛋白表达。结论:miR-613通过抑制Wnt/β-catenin信号通路来影响前列腺癌细胞的增殖与侵袭,为前列腺癌的潜在治疗靶点之一。  相似文献   

9.
10.
Previous studies have reported that miR-615 exerts a tumor suppressor role in some tumors, such as esophageal squamous cell carcinoma and non-small cell lung cancer. However, the role of miR-615 in prostate cancer has not been defined. Here we found that miR-615 was downregulated in prostate cancer tissues and cell lines. Overexpression of miR-615 in PC-3 cells significantly inhibited cellular proliferation, migration, and invasion. Moreover, overexpression of miR-615 delayed tumor growth in vivo. In terms of mechanism, we found that cyclin D2 (CCND2) is a target gene of miR-615 in prostate cancer. We showed that miR-615 could bind to the 3 -UTR region of CCND2 mRNA and inhibit its expression. There was a negative correlation between the expression of miR-615 and CCND2 in prostate cancer tissues. Moreover, restoration of cyclin D2 abolished the inhibitory effects of miR-615 on the proliferation, migration, and invasion of prostate cancer cells. Taken together, our study identified miR-615 as a tumor suppressor by targeting cyclin D2 in prostate cancer.  相似文献   

11.
Background: MicroRNA-145-5p (miR-145-5p) reportedly inhibits hepatocellular carcinoma (HCC) by targeting ARF6, SPATS2, CDCA3, KLF5, and NRAS, indicating that miR-145-5p plays an important role in the occurrence and development of HCC by regulating the expression of various genes. In this study, we aimed to explore novel downstream targets of miR-145-5p and elucidate the potential mechanism of miR-145-5p in HCC. Materials and Methods: A bioinformatics analysis was performed to determine the clinical significance of miR-145-5p and alpha/beta hydrolase domain-containing protein 17C (ABHD17C) in patients with HCC. The ability of Hep3B cells to proliferate, migrate, and invade was examined after overexpression of miR-145-5p and ABHD17C or knockdown of ABHD17C. Tumorigenesis of Hep3B cells overexpressing miR-145 was detected using in vivo experiments. Results: miR-145-5p was downregulated in HCC tissues, and this was associated with poor prognosis in patients with HCC. Based on the bioinformatics analysis, miR-145-5p was predicted to target ABHD17C, as demonstrated by a luciferase reporter assay. ABHD17C downregulation inhibited cell viability, migration, and invasion and arrested the cell cycle. Overexpression of miR-145-5p significantly reduced the expression of ABHD17C. Moreover, ABHD17C expression was elevated in HCC tissues, which was associated with an unfavorable prognosis. Re-expressing ABHD17C into HCC cells rescued the suppressed cell viability, migration, and invasion mediated by ectopic expression of miR-145-5p. Importantly, miR-145-5p suppressed tumor growth in mice and downregulated the levels of Ki67 and ABHD17C in tumor. Conclusion: miR-145-5p could attenuate HCC progression via suppressing ABHD17C.  相似文献   

12.
目的:探讨长链非编码RNA(long non-coding RNA,lncRNA)GTSE1-AS1在前列腺癌组织中的表达及其影响LNCaP细胞增殖和侵袭的机制.方法:收集2017年11月至2018年12月郑州大学附属洛阳中心医院泌尿外科手术切除的68例前列腺癌患者的癌和癌旁组织标本,以及前列腺癌细胞系LNCaP、PC...  相似文献   

13.
14.
This study investigated the epigenetic alteration and biological function of the pro-apoptotic gene ASC/TMS1 in renal cell carcinoma. ASC/TMS1 was downregulated in five out of six RCC cell lines. A significant downregulation was also detected in sixty-seven paired renal tumors compared with adjacent non-cancerous tissues. The downregulation of ASC/TMS1 was correlated with promoter hypermethylation and could be restored with demethylation treatment. Re-expression of ASC/TMS1 in silenced RCC cell lines inhibited cell viability, colony formation, arrested cell cycle, induced apoptosis, suppressed cell invasion and repressed tumorigenicity in SCID mice. The antitumorigenic function of ASC/TMS1 in renal cancer was partially regulated by activation of p53 and p21 signaling. In addition, restoration of ASC/TMS1 sensitizes RCC cells to DNA damaging agents. Knockdown of ASC/TMS1 reduced DNA damaging agents-induced p53 activation and cell apoptosis. Moreover, ASC/TMS1 hypermethylation was further detected in 41.1% (83/202) of RCC tumors, but only 12% in adjacent non-cancerous tissues. ASC/TMS1 methylation was significantly correlated with higher tumor nuclear grade. In conclusion, ASC/TMS1 is a novel functional tumor suppressor in renal carcinogenesis. ASC/TMS1 tumor specific methylation may be a useful biomarker for designing improved diagnostic and therapeutic strategies for RCC.  相似文献   

15.
MicroRNA (miR)-199a-5p expression is downregulated in a variety of malignancies, including non-small cell lung cancer (NSCLC), and its low expression is associated with a poor prognosis. However, to the best of our knowledge, the mechanism underlying miR-199a-5p downregulation in NSCLC and its target effectors remain to be elucidated. The present study revealed the downregulation of miR-199a-5p expression in NSCLC tissues and cell lines compared with in para-carcinoma tissues and a lung epithelial cell line. Further experiments indicated that the methylation levels of the miR-199a promoter were markedly higher in NSCLC tissues compared with in para-carcinoma tissues. The DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine markedly increased the expression levels of miR-199a-5p in NSCLC cells. Furthermore, it was identified that miR-199a-5p mimics transfection decreased the expression levels of A-kinase anchoring protein 1 (AKAP1) at both the mRNA and protein levels by targeting the 3′ untranslated region of AKAP1 mRNA. The in vitro experiments demonstrated that miR-199a-5p overexpression inhibited the proliferation and tumorigenicity of NSCLC cells, whereas overexpression of AKAP1 partially recovered the malignant phenotypes, suggesting that AKAP1 may be a downstream effector targeted by miR-199a-5p. Collectively, the present findings indicated that miR-199a-5p may be a novel regulator of AKAP1, and that miR-199a-5p may be a potential tumor suppressor in NSCLC.  相似文献   

16.
17.
Y Zhang  J Dai  H Deng  H Wan  M Liu  J Wang  S Li  X Li  H Tang 《British journal of cancer》2015,112(2):365-374

Background:

The effective mechanisms of microRNAs (miRNAs) functions as oncogenes or tumour suppressors in human hepatocellular carcinoma (HCC) are still obscure. Here, we investigated the function and expression of miR-1228 in HCC.

Methods:

The role of miR-1228 in HCC was determined by colony formation, transwell, and nude mice xenograft experiments. miR-1228 target gene were identified by EGFP reporter assays, real-time PCR, and western blot analysis. Dual-luciferase reporter assay and real-time PCR analysis are used to examine the regulation of p53.

Results:

miR-1228 promoted proliferation and metastasis, and facilitated the transition of cell cycle in hepatoma cells. miR-1228 downregulated p53 expression by binding to its 3′UTR. The ectopic expression of p53 abrogated the phenotypes induced by miR-1228. An inverse correlation existed between miR-1228 and p53 expression in hepatoma tissues compared with the adjacent tissues and three hepatoma cell lines. Moreover, we found that p53 suppressed the expression and promoter activity of miR-1228.

Conclusions:

miR-1228 functions as an oncogene by promoting cell cycle progression and cell mobility and negatively regulates the expression of p53. p53 downregulation in turn leads to an increase in miR-1228 expression, thereby forming a positive feedback loop that contributes to cancerogenesis in HCC.  相似文献   

18.
Many studies have shown that downregulated miR-203 level is in a variety of cancers including gastric cancer (GC). However, the precise molecule mechanisms of miR-203 in GC have not been well clarified. In the current study, we investigated the biological functions and molecular mechanisms of miR-203 in GC cell lines. We found that miR-203 is downregulated in GC tissues and cell lines. Moreover, the low level of miR-203 was associated with increased expression of annexin A4 in GC tissues and cell lines. The invasion and EMT of GC cells were suppressed by overexpression of miR-203. However, downregulation of miR-203 promoted invasion and EMT of GC cells. Bioinformatics analysis predicted that annexin A4 was a potential target gene of miR-203. Next, luciferase reporter assay confirmed that miR-203 could directly target annexin A4. Consistent with the effect of miR-203, downregulation of annexin A4 by siRNA inhibited the invasion and EMT of GC cells. Introduction of annexin A4 in GC cells partially blocked the effects of miR-203 mimic. Introduction of miR-203 directly targeted annexin A4 to inhibit the invasion and EMT of GC cells. Overall, reactivation of the miR-203/annexin A4 axis may represent a new strategy for overcoming metastasis of GC.  相似文献   

19.
Au Yeung CL  Tsang TY  Yau PL  Kwok TT 《Oncogene》2011,30(21):2401-2410
Deregulation of microRNA (miRNA or miR) expression in human cervical cancer is associated frequently with human papillomavirus (HPV) integration. miR-23b is often downregulated in HPV-associated cervical cancer. Interestingly, urokinase-type plasminogen activator (uPA), the miR-23b target, is detected in cervical cancer, but not in normal cervical tissues. Thus, the importance of miR-23b and uPA in HPV-associated cervical cancer development is investigated. In this study, the high-risk subtype HPV-16 E6 oncoprotein was found to decrease the expression of miR-23b, increase the expression of uPA, and thus induce the migration of human cervical carcinoma SiHa and CaSki cells. uPA is the target gene for miR-23b as the miR repressed uPA expression and interacted with the 3'-untranslated region of uPA mRNA. The tumor suppressor p53 is known to be inactivated by HPV-16 E6. A consensus p53 binding site is detected in the promoter region of miR-23b, whereas p53 trans-activated and also interacted with the miR's promoter. Therefore, p53 is believed to mediate the HPV-16 E6 downregulation of miR-23b. From the above, miR-23b/uPA are confirmed to be involved in HPV-16 E6-associated cervical cancer development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号