首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Ultrasound B-mode visualization of lesions produced in soft tissues using high-intensity focused ultrasound (HIFU) has been shown to be challenging when there is no cavitation activity and, therefore, no hyperechogenecity in the focal region. We investigated a method for the visualization and localization of HIFU-induced lesions after HIFU delivery was complete based on the change in backscattered radio-frequency (RF) signals. A HIFU transducer was used with focal dimension of 8 mm by 2 mm working at 5 MHz. HIFU was applied at different intensities to produce lesions in ex vivo chicken breast, with or without the generation of hyperecho in B-mode images. We compared lesion locations obtained from our RF-processing method, from measurement of physical lesions after exposure and from the B-mode images, if exposures had resulted in hyperecho. The results showed that the RF amplitude decreased as a function of time immediately after stopping the HIFU exposure. The lesions were clearly visualized in two-dimensional (2-D) images of the decay rate of RF amplitude, no matter with or without hyperecho. In experiments with hyperecho, when comparing to physical lesion locations, there was no statistically significant difference in the localization accuracy between the RF-based and the hyperecho-based method (p = 0.76). In cases without hyperecho, the distance between RF-based locations and measured lesion locations was 3.37 ± 1.59 mm (mean ± standard deviation). The axial and lateral difference were 2.00 ± 2.31 mm and 0.85 ± 2.15 mm, respectively, and no statistically significant difference was found between lesion coordinates (axial: p = 0.37 and lateral: p = 0.15). We demonstrated the feasibility of our proposed RF-based method for the localization of HIFU-induced lesions immediately after HIFU treatment. Using the decay rate in RF amplitude as the signature of lesion formation, our method can detect lesion locations even without the appearance of hyperecho. (E-mail: xlzheng@u.washington.edu)  相似文献   

2.
One of the main problems encountered when using conventional B-mode ultrasound (US) for targeting and monitoring purposes during ablation therapies employing high-intensity focused US (HIFU) is the appearance of strong interference in the obtained diagnostic US images. In this study, instead of avoiding the interference noise, we demonstrate how we used it to locate the focus of the HIFU transducer in both in vitro tissue-mimicking phantoms and an ex vivo tissue block. We found that when the B-mode image plane coincided with the HIFU focal plane, the interference noise was maximally converged and enhanced compared with the off-focus situations. Stronger interference noise was recorded when the angle (alpha) between the US image plane and the HIFU axis was less than or equal to 90 degrees. By intentionally creating a target (group of bubbles) at the 3.5-MHz HIFU focus (7.1 mm in length and 0.7 mm in diameter), the position of the maximal noise convergence coincided well with the target. The difference between the predicted focus and the actual one (bubbles) on x and z axes (axes perpendicular to the HIFU central axis, Fig. 1) were both about 0.9 mm. For y axis (HIFU central axis), the precision was within 1.0 mm. For tissue block ablation, the interference noise concentrated at the position of maximal heating of the HIFU-induced lesions. The proposed method can also be used to predict the position of the HIFU focus by using a low intensity output scheme before permanent changes in the target tissue were made.  相似文献   

3.
OBJECTIVE: The purpose of this study was to identify the pressure threshold for the destruction of Optison (octafluoropropane contrast agent; Amersham Health, Princeton, NJ) using a laboratory-assembled 3.5-MHz pulsed ultrasound system and a clinical diagnostic ultrasound scanner. METHODS: A 3.5-MHz focused transducer and a linear array with a center frequency of 6.9 MHz were positioned confocally and at 90 degrees to each other in a tank of deionized water. Suspensions of Optison (5-8x10(4) microbubbles/mL) were insonated with 2-cycle pulses from the 3.5-MHz transducer (peak rarefactional pressure, or Pr, from 0.0, or inactive, to 0.6 MPa) while being interrogated with fundamental B-mode imaging pulses (mechanical index, or MI,=0.04). Scattering received by the 3.5-MHz transducer or the linear array was quantified as mean backscattered intensity or mean digital intensity, respectively, and fit with exponential decay functions (Ae-kt+N, where A+N was the amplitude at time 0; N, background echogenicity; and k, decay constant). By analyzing the decay constants statistically, a pressure threshold for Optison destruction due to acoustically driven diffusion was identified. RESULTS: The decay constants determined from quantified 3.5-MHz radio frequency data and B-mode images were in good agreement. The peak rarefactional pressure threshold for Optison destruction due to acoustically driven diffusion at 3.5 MHz was 0.15 MPa (MI=0.08). Furthermore, the rate of Optison destruction increased with increasing 3.5-MHz exposure pressure output. CONCLUSIONS: Optison destruction was quantified with a laboratory-assembled 3.5-MHz ultrasound system and a clinical diagnostic ultrasound scanner. The pressure threshold for acoustically driven diffusion was identified, and 3 distinct mechanisms of ultrasound contrast agent destruction were observed with acoustic techniques.  相似文献   

4.
Thermal ablation by high-intensity focused ultrasound (HIFU) shows great promise as a noninvasive cancer therapy. This work proposes a novel method of real-time HIFU treatment monitoring that uses the passively monitored acoustic signal emanating from the focus during HIFU exposure. We performed 212 exposures in seven freshly excised ox livers using 1.067-MHz HIFU at a 95% duty cycle for a range of insonation durations and acoustic intensities. Acoustic emissions were recorded using a 15-MHz passive detector aligned confocally and coaxially with the HIFU transducer. Lesion presence and size were ascertained by slicing the tissue in the transverse and axial focal planes post exposure. Our results demonstrate that successful formation of HIFU lesions in ex vivo ox liver is highly correlated with the presence of pronounced dips in the magnitude of the received signal at integer harmonics of the insonation frequency. A detector based on this observation predicted lesioning with >80% accuracy in regimes that were very likely to create lesions (≥60 J of energy) and had an error rate of <6% for exposures that were too short to cause lesioning (≤1 s long). The overall sensitivity and specificity of the detector were 75.6% and 74.2%, respectively. The proposed detector could therefore provide a low-cost means of effectively monitoring clinical HIFU treatments passively and in real time.  相似文献   

5.
OBJECTIVE: This study evaluated variables relevant to creating myocardial lesions using high-intensity focused ultrasound (HIFU). Without an effective means of tracking heart motion, lesion formation in the moving ventricle can be accomplished by intermittent delivery of HIFU energy synchronized by electrocardiographic triggering. In anticipation of future clinical applications, multiple lesions were created by brief HIFU pulses in calf myocardial tissue ex vivo. METHODS: Experiments used f-number 1.1 spherical cap HIFU transducers operating near 5 MHz with in situ spatial average intensities of 13 and 7.4 kW/cm2 at corresponding depths of 10 and 25 mm in the tissue. The distance from the HIFU transducer to the tissue surface was measured with a 7.5-MHz A-mode transducer coaxial and confocal with the HIFU transducer. After exposures, fresh, unstained tissue was dissected to measure visible lesion length and width. Lesion dimensions were plotted as functions of pulse parameters, cardiac structure, tissue temperature, and focal depth. RESULTS: Lesion size in ex vivo tissue depended strongly on the total exposure time but did not depend strongly on pulse duration. Lesion width depended strongly on the pulse-to-pulse interval, and lesion width and length depended strongly on the initial tissue temperature. CONCLUSIONS: High-intensity focused ultrasound creates well-demarcated lesions in ex vivo cardiac muscle without damaging intervening or distal tissue. These initial studies suggest that HIFU offers an effective, noninvasive method for ablating myocardial tissues to treat several important cardiac diseases.  相似文献   

6.
OBJECTIVE: To determine the impact of tissue harmonic imaging on visualization of focal breast lesions and to compare gray scale contrast between focal breast lesions and fatty tissue of the breast between tissue harmonic imaging and fundamental frequency sonography. METHODS: A prospective study was performed on 219 female patients (254 lesions) undergoing sonographically guided fine-needle biopsy. The fundamental frequency and tissue harmonic images of all lesions were obtained on a scanner with a wideband 7.5-MHz linear probe. Twenty-three breast carcinomas, 6 suspect lesions, 9 fibroadenomas, 1 papilloma, 1 phyllodes tumor, 162 unspecified solid benign lesions, and 40 cysts were found. In 12 cases the fine-needle aspiration did not yield sufficient material. The gray scale intensity of the lesions and adjacent fatty tissue was measured with graphics software, and the gray scale contrast between lesions and adjacent fatty tissue was calculated. RESULTS: Tissue harmonic imaging improved the gray scale contrast between the fatty tissue and breast lesions in 230 lesions (90.6%; P < .001) compared with fundamental frequency images. The contrast improvement was bigger in breasts with predominantly fatty or mixed (fatty/glandular) composition than in predominantly glandular breasts. The overall conspicuity, lesion border definition, lesion content definition, and acoustic shadow conspicuity were improved or equal in the harmonic mode for all lesions.CONCLUSIONS: The tissue harmonic imaging technique used as an adjunct to conventional breast sonography may improve lesion detectability and characterization.  相似文献   

7.
A new test object has been developed that generates images of transducer beam patterns on B-mode hardcopy. The extent and depth of the transducer focal zone are measured from these images. The predictions made from test object images were verified in the clinical images obtained from two 3.5-MHz focused transducers. Using the test object images, we have found that we can make a more rational selection of transducer for each clinical situation.  相似文献   

8.
High-intensity focused ultrasound (HIFU) induces thermal lesions by increasing the tissue temperature in a tight focal region. The main ultrasound imaging techniques currently used to monitor HIFU treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation and elastography-based methods. The present study was carried out on ex vivo animal tissue samples, in which backscattered radiofrequency (RF) signals were acquired in real time at time instances before, during and after HIFU treatment. The manifold learning algorithm, a non-linear dimensionality reduction method, was applied to RF signals which construct B-mode images to detect the HIFU-induced changes among the image frames obtained during HIFU treatment. In this approach, the embedded non-linear information in the region of interest of sequential images is represented in a 2-D manifold with the Isomap algorithm, and each image is depicted as a point on the reconstructed manifold. Four distinct regions are chosen in the manifold corresponding to the four phases of HIFU treatment (before HIFU treatment, during HIFU treatment, immediately after HIFU treatment and 10-min after HIFU treatment). It was found that disorganization of the points is achieved by increasing the acoustic power, and if the thermal lesion has been formed, the regions of points related to pre- and post-HIFU significantly differ. Moreover, the manifold embedding was repeated on 2-D moving windows in RF data envelopes related to pre- and post-HIFU exposure data frames. It was concluded that if mean values of the points related to pre- and post-exposure frames in the reconstructed manifold are estimated, and if the Euclidean distance between these two mean values is calculated and the sliding window is moved and this procedure is repeated for the whole image, a new image based on the Euclidean distance can be formed in which the HIFU thermal lesion is detectable.  相似文献   

9.
OBJECTIVE: To evaluate the capability of contrast-enhanced wideband harmonic imaging (WHI) to detect liver metastases in comparison with fundamental B-mode US and postcontrast CT. METHODS: We studied 27 patients with hepatic metastases from different malignancies with conventional B-mode sonography, WHI 3 min after injection of contrast agent (Levovist(R) 2.5 g, 300 mg/ml) and postcontrast helical CT (HCT). The number and location of the lesions and the smallest lesion for each patient were noted by two different observers and compared. RESULTS: Both readers recorded an increase in the number of lesions in harmonic mode compared with conventional B-mode in all 27 patients with hepatic metastases with a mean increase in both observers from 9.3 lesions with B-mode to 18.8 lesions with WHI. The smallest lesions were detected with WHI when compared with conventional US and HCT (2 mm with WHI, 5 mm with B-mode and 5 mm with CT). WHI detected more lesions than conventional US or HCT. CONCLUSIONS: Contrast-enhanced WHI seems superior to conventional US and HCT for the detection of hepatic metastases, specially for those nodules under 1 cm of diameter.  相似文献   

10.
The purpose of our study was to compare pulse inversion harmonic imaging, tissue harmonic imaging, and fundamental imaging in the evaluation of normal and diseased gallbladder. Gallbladders in 170 patients were examined with fundamental imaging, tissue harmonic imaging, and pulse inversion harmonic imaging using a 2- to 5-MHz curved array transducer. Images were divided into normal and abnormal groups. The sharpness of the wall and degree of internal artifact were evaluated in normal groups, and lesion conspicuity and internal artifact were evaluated in abnormal groups. In images of both normal and abnormal gallbladder, significant differences were demonstrated among the 3 imaging methods (P < .001), and pulse inversion harmonic imaging provided the best image quality and the least artifact. Tissue harmonic imaging was the next best, providing better image quality and less artifact than fundamental imaging. In conclusion, pulse inversion harmonic imaging provided the best image quality and the least artifact among the 3 ultrasonographic methods in the evaluation of both normal and abnormal gallbladder.  相似文献   

11.
Very high frequency ultrasound (35-50 MHz) has had a significant impact upon clinical imaging of the anterior segment of the eye, offering an axial resolution as small as 30 microm. Higher frequencies, while potentially offering even finer resolution, are more affected by absorption in ocular tissues and even in the fluid coupling medium. Our aim was to develop and apply improved transducer technology utilizing frequencies beyond those routinely used for ultrasound biomicroscopy of the eye. A 75-MHz lithium niobate transducer with 2 mm aperture and 6 mm focal length was fabricated. We scanned the ciliary body and cornea of a human eye six years post-LASIK. Spectral parameter images were produced from the midband fit to local calibrated power spectra. Images were compared with those produced using a 35 MHz lithium niobate transducer of similar fractional bandwidth and focal ratio. The 75-MHz transducer was found to have a fractional bandwidth (-6 dB) of 61%. Images of the post-LASIK cornea showed higher stromal backscatter at 75 MHz than at 35 MHz. The improved lateral resolution resulted in better visualization of discontinuities in Bowman's layer, indicative of microfolds or breaks occurring at the time of surgery. The LASIK surface was evident as a discontinuity in stromal backscatter between the stromal component of the flap and the residual stroma. The iris and ciliary body were visualized despite attenuation by the overlying sclera. Very high frequency ultrasound imaging of the anterior segment of the eye has been restricted to the 35-50 MHz band for over a decade. We showed that higher frequencies can be used in vivo to image the cornea and anterior segment. This improvement in resolution and high sensitivity to backscatter from the corneal stroma will provide benefits in clinical diagnostic imaging of the anterior segment.  相似文献   

12.
Hyperecho in ultrasound images of HIFU therapy: involvement of cavitation   总被引:9,自引:0,他引:9  
High-intensity focused ultrasound (US), or HIFU, treatment of soft tissues has been shown to result in a hyperechoic region in B-mode US images. We report on detecting cavitation in vivo in correlation with the appearance of a hyperechoic region. The US system consisted of a HIFU transducer (3.3 MHz), a broadband A-mode transducer for active and passive cavitation detection and an US-imaging probe that were all confocal and synchronized. HIFU, at in situ intensities of 220 to 1710 W/cm(2), was applied for 10 s to pig muscles in vivo. Active and passive cavitation detection results showed a strong correlation between the onset of cavitation and the appearance of a hyperechoic region. Passive cavitation detection results showed that inertial cavitation typically occurred prior (within 0.5 s) to the appearance of a hyperechoic region. The observed cavitation activity confirms that bubbles are present during the formation of a hyperechoic region at the HIFU focus.  相似文献   

13.
高强度聚焦超声定位损伤离体人子宫肌瘤的研究   总被引:55,自引:1,他引:54  
目的探讨高强度聚焦超声(HIFU)体外治疗子宫肌瘤的安全性、有效性及临床可行性。方法用频率0.8MHz,焦距117mm,声强5762.7W/cm2的HIFU对17例离体人子宫肌瘤进行扫描切除,并将治疗过程中声像图表现与TTC染色及组织学切片进行对比观察。结果17例子宫肌瘤在治疗后B超下均出现了强回声团,TTC染色不着色,光镜下细胞核固缩,声像图与TTC染色及组织学结果吻合,强回声区面积与凝固性坏死区面积呈显著正相关(γ=0.878,P<0.01)。结论HIFU能够准确安全切除子宫肌瘤,治疗前后超声图像变化是无创监测HIFU切除肌瘤的有用手段。  相似文献   

14.

Purpose

We evaluated the usefulness of color Doppler flow imaging to compensate for the inadequate resolution of the ultrasound (US) monitoring during high-intensity focused ultrasound (HIFU) for the treatment of hepatocellular carcinoma (HCC).

Materials and methods

US-guided HIFU ablation assisted using color Doppler flow imaging was performed in 11 patients with small HCC (<3 lesions, <3 cm in diameter). The HIFU system (Chongqing Haifu Tech) was used under US guidance. Color Doppler sonographic studies were performed using an HIFU 6150S US imaging unit system and a 2.7-MHz electronic convex probe.

Results

The color Doppler images were used because of the influence of multi-reflections and the emergence of hyperecho. In 1 of the 11 patients, multi-reflections were responsible for the poor visualization of the tumor. In 10 cases, the tumor was poorly visualized because of the emergence of a hyperecho. In these cases, the ability to identify the original tumor location on the monitor by referencing the color Doppler images of the portal vein and the hepatic vein was very useful. HIFU treatments were successfully performed in all 11 patients with the assistance of color Doppler imaging.

Conclusion

Color Doppler imaging is useful for the treatment of HCC using HIFU, compensating for the occasionally poor visualization provided by B-mode conventional US imaging.  相似文献   

15.
The feasibility of using ultrasonic Nakagami imaging to evaluate thermal lesions induced by microwave ablation (MWA) in ex vivo porcine liver was explored. Dynamic changes in echo amplitudes and Nakagami parameters in the region of the MWA-induced thermal lesion, as well as the contrast-to-noise ratio (CNR) between the MWA-induced thermal lesion and the surrounding normal tissue, were calculated simultaneously during the MWA procedure. After MWA exposure, a bright hyper-echoic region appeared in ultrasonic B-mode and Nakagami parameter images as an indicator of the thermal lesion. Mean values of the Nakagami parameter in the thermal lesion region increased to 0.58, 0.71 and 0.91 after 1, 3 and 5 min of MVA. There were no significant differences in envelope amplitudes in the thermal lesion region among ultrasonic B-mode images obtained after different durations of MWA. Unlike ultrasonic B-mode images, Nakagami images were less affected by the shadow effect in monitoring of MWA exposure, and a fairly complete hyper-echoic region was observed in the Nakagami image. The mean value of the Nakagami parameter increased from approximately 0.47 to 0.82 during MWA exposure. At the end of the postablation stage, the mean value of the Nakagami parameter decreased to 0.55 and was higher than that before MWA exposure. CNR values calculated for Nakagami parameter images increased from 0.13 to approximately 0.61 during MWA and then decreased to 0.26 at the end of the post-ablation stage. The corresponding CNR values calculated for ultrasonic B-mode images were 0.24, 0.42 and 0.17. This preliminary study on ex vivo porcine liver suggested that Nakagami imaging have potential use in evaluating the formation of MWA-induced thermal lesions. Further in vivo studies are needed to evaluate the potential application.  相似文献   

16.
Elastographic characterization of HIFU-induced lesions in canine livers   总被引:9,自引:0,他引:9  
The elastographic visualization and evaluation of high-intensity focused ultrasound (HIFU)-induced lesions were investigated. The lesions were induced in vitro in freshly excised canine livers. The use of different treatment intensity levels and exposure times resulted in lesions of different sizes. Each lesion was clearly depicted by the corresponding elastogram as being an area harder than the background. The strain contrast of the lesion/background was found to be dependent on the level of energy deposition. A lesion/background strain contrast between -2.5 dB and -3.5 dB was found to completely define the entire zone of tissue damage. The area of tissue damage was automatically estimated from the elastograms by evaluating the number of pixels enclosed inside the isointensity contour lines corresponding to a strain contrast of -2.5, -3 and -3.5 dB. The area of the lesion was measured from a tissue photograph obtained at approximately the same plane where elastographic data were collected. The estimated lesion areas ranged between approximately 10 mm2 and 110 mm2. A high correlation between the damaged areas as depicted by the elastograms and the corresponding areas as measured from the gross pathology photographs was found (r2 = 0.93, p value < 0.0004, n = 16). This statistically significant high correlation demonstrates that elastography has the potential to become a reliable and accurate modality for HIFU therapy monitoring.  相似文献   

17.
A toroidal high-intensity focused ultrasound (HIFU) transducer was used to non-invasively treat liver tissues in vivo in a pig model. The transducer was divided into 32 concentric rings with equal surface areas operating at 2.5 MHz. First, attenuation of skin, fat, muscle and liver tissues was measured in fresh animal samples to adjust the energy delivered to the focal zone. Then, 8 animals were included in the present protocol and placed in a dorsal decubitus proclive position at an angle of 15°. The device was held by hand, and sonications were performed during apnea. Two thermal HIFU lesions were created in 40 s in each animal. The average abdominal wall thickness was 14.8 ± 1.3 mm (12.5–17.6 mm). The longest and shortest axes of the HIFU ablations were 20.9 ± 6.3 mm (14.0–33.7 mm) and 14.2 ± 5.5 mm (7.0–22.0 mm), respectively. All HIFU lesions were visible on sonograms. The correlation between the dimensions of the HIFU lesions observed on sonograms and those obtained during gross examination was r = 0.84. Creating large and fast ablations with reliable ultrasound imaging guidance in the liver using this handheld device may represent a new therapeutic option for patients with liver tumors.  相似文献   

18.
Presented in this article is a tumor-mimic model that allows the evaluation, before clinical trials, of the targeting accuracy of a high intensity focused ultrasound (HIFU) device for the treatment of the liver. The tumor-mimic models are made by injecting a warm solution that polymerizes in hepatic tissue and forms a 1 cm discrete lesion that is detectable by ultrasound imaging and gross pathology. First, the acoustical characteristics of the tumor-mimics model were measured in order to determine if this model could be used as a target for the evaluation of the accuracy of HIFU treatments without modifying HIFU lesions in terms of size, shape and homogeneity. On average (n = 10), the attenuation was 0.39 +/- 0.05 dB.cm(-1) at 1 MHz, the ultrasound propagation velocity was 1523 +/- 1 m.s(-1) and the acoustic impedance was 1.84 +/- 0.00 MRayls. Next, the tumor-mimic models were used in vitro in order to verify, at a preclinical stage, that lesions created by HIFU devices guided by ultrasound imaging are properly positioned in tissues. The HIFU device used in this study is a 256-element phased-array toroid transducer working at a frequency of 3 MHz with an integrated ultrasound imaging probe working at a frequency of 7.5 MHz. An initial series of in vitro experiments has shown that there is no significant difference in the dimensions of the HIFU lesions created in the liver with or without tumor-mimic models (p = 0.3049 and p = 0.8796 for the diameter and depth, respectively). A second in vitro study showed that HIFU treatments performed on five tumor-mimics with safety margins of at least 1 mm were properly positioned. The margins obtained were on average 9.3 +/- 2.7 mm (min. 3.0 - max. 20.0 mm). This article presents in vitro evidence that these tumor-mimics are identifiable by ultrasound imaging, they do not modify the geometry of HIFU lesions and, thus, they constitute a viable model of tumor-mimics indicated for HIFU therapy.  相似文献   

19.
Tissue harmonic imaging (THI) has been shown to improve medical ultrasound (US) image quality in the frequency range from 2 to 10 MHz and might, therefore, also be advantageous in high-frequency US applications, like US biomicroscopy and intravascular US (IVUS). In this study, we compared high-frequency THI (40 MHz) with fundamental imaging (20 and 40 MHz) with a distorting reflective metal stent in the near fields of both a spherically-focused US biomicroscopy transducer (aperture 8 mm, focal distance 13 mm) and an unfocused elliptical IVUS element. Hydrophone measurements of the harmonic beam (40 MHz) of both transducers showed relatively low signal strength in the near field compared with both (20 and 40 MHz) fundamental beams. For the focused transducer, THI suppressed the second stent echo up to 14 dB compared with fundamental imaging. No significant reduction in stent artifact imaging was observed for the unfocused IVUS element.  相似文献   

20.
Contrast-agent-enhanced ultrasound thermal ablation   总被引:4,自引:0,他引:4  
The small thermal lesions induced when using high-intensity focused ultrasound (HIFU) to ablate tumors results in long treatment duration. In this study, the effect of using ultrasound contrast agent (UCA, Definity) to enhance the ultrasound (US) thermal effects and, thus to enlarge the lesion size, was studied in transparent tissue phantoms insonified by 1.85-MHz US with acoustical powers of 28.9 and 40.4 W. The experimental results show that the lesion size depended strongly on the electrical power and the concentration of UCA. UCA also reduced the power required to form a lesion of a certain size by about 30%. However, UCA moved the greatest heating position from the transducer focus, by 2.16 cm for 0.015% UCA at 40.4 W, and with lesions forming at the surface for UCA concentrations higher than 0.1%. An optimal result was obtained when using 0.001% UCA and 28.9-W US, which produced a lesion 12 times larger and an acceptable shift (less than half of the lesion length). UCA can effectively increase the size of the HIFU lesions, but lesion shift should be carefully considered while performing HIFU ablations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号