首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage- and current-clamp recordings were made from acute slices of mouse cerebral cortex from embryonic day 14 to postnatal day 17. We targeted cells in the migratory population of the embryonic intermediate zone (IZ) and in deep layers of embryonic and postnatal cortical plate (CP). IZ neurons maintain fairly consistent properties through the embryonic period, all expressing high-input resistance, inward Na(+) currents and outward K(+) currents, and none showing any hyperpolarization-activated currents. In CP neurons, several changes in physiological properties occur in the late embryonic and early postnatal period: inward Na(+) current density is strongly upregulated while outward K(+) current density remains almost unchanged, input resistance drops dramatically, and a hyperpolarization-activated current resembling I(h) appears. As a result of these changes, the action potential becomes larger, shorter in duration, and its threshold shifts to more negative potentials. In addition, CP cells become capable of firing repetitively and an increasing fraction show spontaneous action potentials. This coordinated development of ion channel properties may help to time the occurrence of developmentally relevant spontaneous activity in the immature cortex.  相似文献   

2.
Established methods for cryopreservation of living cells were modified for freeze-storage of postnatal retinal ganglion cells from rat. Retinal cell suspensions containing fluorescently labeled ganglion cells were frozen after addition of 8% dimethyl sulfoxide and stored at -80 degrees C for up to 66 days. Viability of identified retinal ganglion cells was assessed by their ability to take up and cleave fluorescein diacetate to fluorescein. No significant difference was found in the number of living retinal ganglion cells when cells obtained from the same dissociation were counted before and after freezing (6.65 +/- 2.37 x 10(4) vs 7.05 +/- 3.67 x 10(4) retinal ganglion cells per ml, respectively; mean +/- S.D., n = 4). In culture following cryopreservation, the cells appeared morphologically normal, and developed neurites and growth cones similar to their freshly dissociated counterparts. Since very little is known about the electrophysiology and membrane properties of neurons after cryopreservation, we used the whole-cell configuration of the patch-clamp technique to study voltage- and ligand-gated conductances in cryopreserved retinal ganglion cells. The cryopreserved retinal ganglion cells studied under current-clamp maintained resting potentials of -60.9 +/- 6.6 mV (n = 10) and upon depolarization fired action potentials. During voltage-clamp in the whole-cell mode, depolarizing voltage steps activated Na(+)-(INa), Ca(2+)-(ICa), and K(+)-currents in all cells tested (n = 122). INa could be reversibly blocked by 1 microM tetrodotoxin added to the external solution. ICa was blocked by external 250 microM Cd2+ or 3 mM Co2+. In some cells, ICa consisted of both a transient and prolonged component. The outward K(+)-current consisted of Ca(2+)-dependent and -independent components. The Ca(2+)-insensitive portion of the K+ outward current was separated into four distinct components based upon pharmacological sensitivity and biophysical properties. In many cells, a rapidly inactivating current similar to the A-type K(+)-current (IA) observed in freshly cultured retinal ganglion cells was isolated by its greater sensitivity to 4-aminopyridine (5 mM) than to tetraethylammonium (20 mM). A tetraethylammonium-sensitive current with a more prolonged time course reminiscent of IK, the delayed rectifier, was also found. When the 4-aminopyridine- and tetraethylammonium-insensitive portions of the outward current were further analysed with voltage protocols, an additional slowly decaying potassium current became apparent. The inhibitory amino acids, GABA (20 microM) and glycine (100 microM), activated chloride-selective currents that were selectively blocked by bicuculline methiodide (10 microM) and strychnine (5 microM), respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
To compare nongenomic effects of progesterone on various receptor responses of neurons, Aplysia ganglion cells were pretreated with 30 microM progesterone for 5 min and various receptor responses were tested using a conventional voltage-clamp method. Progesterone reduced nicotinic receptor-activated Na(+)-currents, nicotinic receptor-activated Cl(-)-currents, gamma-aminobutyric acid receptor-activated Cl(-)-currents, and dopamine receptor-activated Na(+)-currents. These depressant effects are similar at two different agonist concentrations. On the other hand, progesterone affected neither muscarinic receptor-activated K(+)-currents nor dopamine receptor-activated K(+)-currents. The former four types of receptors are known to be ionotropic while the latter two types of receptors are known to be metabotropic. Therefore, progesterone selectively inhibited all the types of ionotropic receptor responses, presumably in a noncompetitive manner.  相似文献   

4.
The ionic mechanisms underlying the termination of action-potential (AP) bursts and postburst afterhyperpolarization (AHP) in intrinsically bursting (IB) neocortical neurons were investigated by performing intracellular recordings in thin slices of rat sensorimotor cortex. The blockade of Ca(2+)-activated K(+) currents enhanced postburst depolarizing afterpotentials, but had inconsistent and minor effects on the amplitude and duration of AHPs. On the contrary, experimental conditions resulting in reduction of voltage-dependent Na(+) entry into the cells caused a significant decrease of AHP amplitude. Slice perfusion with a modified artificial cerebrospinal fluid in which LiCl (40 mM) partially replaced NaCl had negligible effects on the properties of individual APs, whereas it consistently increased burst length and led to an approximately 30% reduction in the amplitude of AHPs following individual bursts or short trains of stimulus-induced APs. Experiments performed by partially replacing Na(+) ions with choline revealed a comparable reduction in AHP amplitude associated with an inhibition of bursting activity. Moreover, in voltage-clamp experiments carried out in both in situ and acutely isolated neurons, partial substitution of extracellular NaCl with LiCl significantly and reversibly reduced the amplitude of K(+) currents evoked by depolarizing stimuli above-threshold for Na(+)-current activation. The above effect of Na(+)-to-Li(+) substitution was not seen when voltage-gated Na(+) currents were blocked with TTX, indicating the presence of a specific K(+)-current component activated by voltage-dependent Na(+) (but not Li(+)) influx. The above findings suggest that a Na(+)-activated K(+) current recruited by the Na(+) entry secondary to burst discharge significantly contributes to AHP generation and the maintenance of rhythmic burst recurrence during sustained depolarizations in neocortical IB neurons.  相似文献   

5.
The application of either follicle-stimulating hormone (FSH) or adenosine (Ade) induces a K(+)-current response in the follicular cells surrounding a Xenopus oocyte under a voltage clamp. These K(+)-current responses are reported to be produced by an increase in intracellular cAMP. A previous application of ATP to the same cells markedly depressed the K(+)-current responses to FSH and Ade. Furthermore, a 2 min application of phorbol 12,13-dibutyrate (PDBu), an activator of protein kinase C (PKC), significantly depressed the K(+)-current responses to FSH and Ade, but it had no significant effect on the Cl(-)-current response to ATP. An application of either ATP or PDBu also depressed the K(+)-current response induced by intracellularly applied cAMP. In contrast to the effect of PDBu, the application of 1-octanol, an inhibitor of gap junction channel, significantly depressed both the Ade- and ATP-induced responses, indicating that the acting site of 1-octanol is different from that of PKC. The results suggest that the depressing effect of ATP on the FSH- and Ade-induced K(+)-current responses might be mediated by PKC activation and that the site of PKC action might be downstream of the cAMP production involved in the K(+) channel opening.  相似文献   

6.
The development of Na(+)- and K(+)-currents in the primary afferent neurons of the cochlear ganglion was studied using the patch-clamp technique. Cells were dissociated between days 6 and 17 of development and membrane currents recorded within the following 24 h. Outward currents were the first to appear between days 6 and 7 of embryonic development and their magnitude increased throughout development from 200 pA on day 7 to 900 pA on days 14-16. Threshold for activation decreased by 20 mV between days 8 and 14. Outward currents were absent when Cs+ replaced K+ in the pipette and were partially blocked by external tetraethylammonium. Outward currents contained at least three components: (i) a non-inactivating outward current, similar to the delayed-rectifier, predominating in mature neurons; (ii) a slowly inactivating current (tau about 200 ms), most evident in early and intermediate stages (days 7-10); and (iii) a rapidly inactivating outward current (tau about 20 ms) similar to the A-current (IA) described in other neurons, which was distinctly expressed in mature neurons. Sodium currents were identified as fast transient inward currents, sensitive to tetrodotoxin and extracellular Na(+)-removal. They appeared later than K(+)-currents and increased in size from about 100 pA between days 9-11 to 600 pA by days 13-16. The development of membrane currents in cochlear ganglion neurons corresponded to defined stages of the innervation pattern of the chick cochlea [Whitehead and Morest (1985) Neuroscience 14, 255-276]. These currents could be functionally related to the establishment of synaptic connections between transducing cells and primary afferent neurons.  相似文献   

7.
Potassium channels play an important role in controlling neuronal firing and synaptic interactions. Na(+)-activated K(+) (K(Na)) channels have been shown to exist in neurons in different regions of the CNS, but their physiological function has been difficult to assess. In this study, we have examined if neurons in the spinal cord possess K(Na) currents. We used whole cell recordings from isolated spinal cord neurons in lamprey. These neurons display two different K(Na) currents. The first was transient and activated by the Na(+) influx during the action potentials, and it was abolished when Na(+) channels were blocked by tetrodotoxin. The second K(Na) current was sustained and persisted in tetrodotoxin. Both K(Na) currents were abolished when Na(+) was substituted with choline or N-methyl-D-glucamine, indicating that they are indeed dependent on Na(+) influx into neurons. When Na(+) was substituted with Li(+), the amplitude of the inward current was unchanged, whereas the transient K(Na) current was reduced but not abolished. This suggests that the transient K(Na) current is partially activated by Li(+). These two K(Na) currents have different roles in controlling the action potential waveform. The transient K(Na) appears to act as a negative feedback mechanism sensing the Na(+) influx underlying the action potential and may thus be critical for setting the amplitude and duration of the action potential. The sustained K(Na) current has a slow kinetic of activation and may underlie the slow Ca(2+)-independent afterhyperpolarization mediated by repetitive firing in lamprey spinal cord neurons.  相似文献   

8.
Action potential generation and conduction requires large quantities of energy to restore Na(+) and K(+) ion gradients. We investigated the subcellular location and voltage dependence of this metabolic cost in rat neocortical pyramidal neurons. Using Na(+)/K(+) charge overlap as a measure of action potential energy efficiency, we found that action potential initiation in the axon initial segment (AIS) and forward propagation into the axon were energetically inefficient, depending on the resting membrane potential. In contrast, action potential backpropagation into dendrites was efficient. Computer simulations predicted that, although the AIS and nodes of Ranvier had the highest metabolic cost per membrane area, action potential backpropagation into the dendrites and forward propagation into axon collaterals dominated energy consumption in cortical pyramidal neurons. Finally, we found that the high metabolic cost of action potential initiation and propagation down the axon is a trade-off between energy minimization and maximization of the conduction reliability of high-frequency action potentials.  相似文献   

9.
We have studied the postnatal development of the physiological characteristics of nucleus accumbens (nAcb) neurons in slices from postnatal day 1 (P1) to P49 rats using the whole cell patch-clamp technique. The majority of neurons (102/108) were physiologically identified as medium spiny (MS) projection neurons, and only these were subjected to detailed analysis. The remaining neurons displayed characteristics suggesting that they were not MS neurons. Around the time of birth and during the first postnatal weeks, the membrane and firing characteristics of MS neurons were quite different from those observed later. These characteristics changed rapidly during the first 3 postnatal weeks, at which point they began to resemble those found in adults. Both whole cell membrane resistance and membrane time constant decreased more than fourfold during the period studied. The resting membrane potential (RMP) also changed significantly from an average of -50 mV around birth to less than -80 mV by the end of the third postnatal week. During the first postnatal week, the current-voltage relationship of all encountered MS neurons was linear over a wide range of membrane potentials above and below RMP. Through the second postnatal week, the proportion of neurons displaying inward rectification in the hyperpolarized range increased steadily and after P15, all recorded MS neurons displayed significant inward rectification. At all ages, inward rectification was blocked by extracellular cesium and tetra-ethyl ammonium and was not changed by 4-aminopyridine; this shows that inward rectification was mediated by the same currents in young and mature MS neurons. MS neurons fired single and repetitive Na(+)/K(+) action potentials as early as P1. Spike threshold and amplitude remained constant throughout development in contrast to spike duration, which decreased significantly over the same period. Depolarizing current pulses from rest showed that immature MS neurons fired action potentials more easily than their older counterparts. Taken together, the results from the present study suggest that young and adult nAcb MS neurons integrate excitatory synaptic inputs differently because of differences in their membrane and firing properties. These findings provide important insights into signal processing within nAcb during this critical period of development.  相似文献   

10.
The hyperpolarization-activated nonselective cation current, I(h), was investigated in neonatal and adult rat intracardiac neurons. I(h) was observed in all neurons studied and displayed slow time-dependent rectification. I(h) was isolated by blockade with external Cs(+) (2 mM) and was inhibited irreversibly by the bradycardic agent, ZD 7288. Current density of I(h) was approximately twofold greater in neurons from neonatal (-4.1 pA/pF at -130 mV) as compared with adult (-2.3 pA/pF) rats; however, the reversal potential and activation parameters were unchanged. The reversal potential and amplitude of I(h) was sensitive to changes in external Na(+) and K(+) concentrations. An inwardly rectifying K(+) current, I(K(IR)), was also present in intracardiac neurons from adult but not neonatal rats and was blocked by extracellular Ba(2+). I(K(IR)) was present in approximately one-third of the adult intracardiac neurons studied, with a current density of -0.6 pA/pF at -130 mV. I(K(IR)) displayed rapid activation kinetics and no time-dependent rectification consistent with the rapidly activating, inward K(+) rectifier described in other mammalian autonomic neurons. I(K(IR)) was sensitive to changes in external K(+), whereby raising the external K(+) concentration from 3 to 15 mM shifted the reversal potential by approximately +36 mV. Substitution of external Na(+) had no effect on the reversal potential or amplitude of I(K(IR)). I(K(IR)) density increases as a function of postnatal development in a population of rat intracardiac neurons, which together with a concomitant decrease in I(h) may contribute to changes in the modulation of neuronal excitability in adult versus neonatal rat intracardiac ganglia.  相似文献   

11.
1. With the use of whole-cell patch-clamp recording. Na(+)-current expression was studied in hippocampal astrocytes in vitro, individually identified by filling with Lucifer yellow (LY) and staining for glial fibrillary acidic protein (GFAP) and vimentin. 2. The proportion of astrocytes that express Na+ currents in rat hippocampal cultures changes during development in vitro and decreases from approximately 75% at day 1 to approximately 30% after 10 days in culture. 3. The sodium currents expressed in astrocytes can be differentiated into two types on the basis of kinetics. At early times in culture the time course of Na+ currents is fast in both onset and decay with an average decay time constant of 1.27 ms, whereas after 6 days Na+ currents become comparatively slow and decayed with an average time constant of 1.86 ms. 4. As with the time-course of Na+ currents, the two age groups of astrocytes (i.e., days 1-5 and day 6 and older) differ with respect to their steady-state inactivation characteristics. Early after plating and up to day 5, the midpoint of the steady-state inactivation curve is close to -60 mV, as also observed in hippocampal neurons of various ages; in contrast, after 6 days in culture the curve is shifted by approximately 25 mV toward more hyperpolarized potentials with a midpoint close to -85 mV. 5. In contrast to h infinity-curves, current-voltage (I-V) curves of Na(+)-current activation were identical in all astrocytes studied and did not change with time in culture. 6. In astrocytes expressing Na+ currents, current densities (average of 35 pA/pF on day 1) decreased throughout the first 5 days and were almost abolished around days 4 and 5 in culture. Beginning on day 6, however, current densities increased again and maintained a steady level (average of 14 pA/pF) for the duration of the time period in culture (20 days). This biphasic time course closely correlates with the time course of changes in Na(+)-current kinetics and steady-state inactivation. 7. These data suggest that Na+ currents in cultured hippocampal astrocytes show characteristic changes with increasing time in culture. During the first 4-5 days in culture, hippocampal astrocytes display Na+ currents with properties similar to those of hippocampal neurons. Our data further suggest that Na+ currents with distinctive, "glial-type" characteristics are only expressed in hippocampal astrocytes after 6 days in culture.  相似文献   

12.
The follicular cells surrounding Xenopus oocyte under voltage clamp produce K(+)-current responses to follicle-stimulating hormone (FSH), adenosine (Ade), and intracellularly applied cAMP. We previously reported that these responses are suppressed by the stimulation of P2Y receptor through phosphorylation by PKC presumably of the ATP-sensitive K(+) (K(ATP)) channel. This channel comprises sulfonylurea receptors (SURs) and K(+) ionophores (Kirs) having differential sensitivities to K(+) channel openers (KCOs) depending on the SURs. To characterize the K(+) channels involved in the FSH- and Ade-induced responses, we investigated the effects of various KCOs and SUR blockers on the agonist-induced responses. The applications of PCO400, cromakalim (Cro), and pinacidil, but not diazoxide, produced K(+)-current responses similar to the FSH- and Ade-induced responses in the magnitude order of PCO400 > Cro > pinacidil in favor of SUR2A. The application of glibenclamide, phentolamine, and tolbutamide suppressed all the K(+)-current responses to FSH, Ade, cAMP, and KCOs. Furthermore, both the FSH- and Ade-induced responses were markedly augmented during the KCO-induced responses, or vice versa. The I-V curves for the K(+)-current responses induced by Cro, Ade, and FSH showed outward rectification in normal [K(+)](o), but weak inward rectification in 122 mM [K(+)](o). Also, stimulations of P2Y receptor by UTP or PKC by PDBu markedly depressed the K(+)-current response to KCOs in favor of Kir6.1, as previously observed with the responses to FSH and Ade. These results suggest that the K(+)-current responses to FSH and Ade may be produced by the opening of a novel type of K(ATP) channel comprising SUR2A and Kir6.1.  相似文献   

13.
The extracellular application of either quisqualic acid (QA) or Phe-Met-Arg-Phe-NH2 (FMRFamide) induces an outward current in identified neurons of Aplysia ganglion under voltage clamp. The time course of the QA-induced response is significantly slower than that induced by FMRFamide. The reversal potential for both responses was -92 mV and was shifted 17 mV in a positive direction for a twofold increase in the extracellular K(+) concentration. The QA-induced response was markedly depressed in the presence of Ba(2+), a blocker of inward rectifier K(+)-channel, whereas TEA, a Ca(2+)-activated K(+)-channel (BK(Ca)) blocker, or 4-AP, a transient K(+) (A)-channel blocker, had no effect on the response. The QA-induced K(+)-current was significantly suppressed by CNQX and GYKI52466, antagonists of non-NMDA receptors. However, the application of either kainate or AMPA, agonists for non-NMDA receptors, produced no type of response in the same neurons. The QA-induced K(+)-current response was not depressed at all by an intracellular injection of either guanosine 5'-O-(2-thiodiphosphate) (GDP-betaS) or guanosine 5'-O-(3-thiotriphosphate) (GTP-gammaS), but the FMRFamide-induced response was markedly blocked by both GDP-betaS and GTP-gammaS in the same cell. Furthermore, the QA- and FMRFamide-induced K(+)-current responses were both decreased markedly when the temperature was lowered to 15 degrees C, from 23 degrees C. These results suggested that the QA-induced K(+)-current response is produced by an activation of a novel type of QA-receptor and that this response is not produced by an activation of the G protein.  相似文献   

14.
There have been numerous investigations of thyroid function during senescence in humans. However, very little information is available on thyroid hormone action at the cell level during senescence. Therefore, we have investigated thyroid hormone induction of cell membrane (Na + K)ATPase during human senescence using three experimental fibroblast cell culture systems: (1) cells from premature aging syndrome, progeria; (2) aging in vitro; and (3) early passage cells from aged patients. In all cases senescence is associated with a dramatic alteration from the normal dose-dependent thyroid hormone induction of (Na + K)ATPase. Senescent cells depleted of thyroid hormones demonstrated an elevated activity of (Na + K)ATPase, while non-senescing cells exhibit the characteristic basal enzyme activities in the hypothyroid state. These results indicate that human senescence is associated with extreme alterations in thyroid hormone regulation of (Na + K)ATPase; and may suggest a more general change in thyroid hormone action at senescence. These changes may be associated with important alterations in cell metabolism and intracellular ionic environment during senescence.  相似文献   

15.
The axon initial segment (AIS) is a specialized region in neurons where action potentials are initiated. It is commonly assumed that this process requires a high density of voltage-gated sodium (Na(+)) channels. Paradoxically, the results of patch-clamp studies suggest that the Na(+) channel density at the AIS is similar to that at the soma and proximal dendrites. Here we provide data obtained by antibody staining, whole-cell voltage-clamp and Na(+) imaging, together with modeling, which indicate that the Na(+) channel density at the AIS of cortical pyramidal neurons is approximately 50 times that in the proximal dendrites. Anchoring of Na(+) channels to the cytoskeleton can explain this discrepancy, as disruption of the actin cytoskeleton increased the Na(+) current measured in patches from the AIS. Computational models required a high Na(+) channel density (approximately 2,500 pS microm(-2)) at the AIS to account for observations on action potential generation and backpropagation. In conclusion, action potential generation requires a high Na(+) channel density at the AIS, which is maintained by tight anchoring to the actin cytoskeleton.  相似文献   

16.
Mice lacking Na(+)/H(+) exchanger 1 (NHE1) suffer from recurrent seizures and die early postnatally. Although the mechanisms for seizures are not well established, our previous electrophysiological work has shown that neuronal excitability and Na(+) current density are increased in hippocampal CA1 neurons of these mutant mice. However, it is unknown whether this increased density is related to altered expression or functional regulation of Na(+) channels. In this work, we asked three questions: is the increased excitability limited to CA1 neurons, is the increased Na(+) current density related to an increased Na(+) channel expression, and, if so, which Na(+) channel subtype(s) is upregulated? Using neurophysiological, autoradiographic, and immunoblotting techniques, we showed that both CA1 and cortical neurons have an increase in membrane excitability and Na(+) current density; Na(+) channel density is selectively upregulated in the hippocampus and cortex (P < 0.05); and Na(+) channel subtype I is significantly increased in the hippocampus and Na(+) channel subtype II is increased in the cortex. Our results demonstrate that mice lacking NHE1 upregulate their Na(+) channel expression in the hippocampal and cortical regions selectively; this leads to an increase in Na(+) current density and membrane excitability. We speculate that neuronal overexcitability due to Na(+) channel upregulation in the hippocampus and cortex forms the basis of epileptic seizures in NHE1 mutant mice.  相似文献   

17.
Na+-K+-2Cl- cotransporter has been suggested to contribute to active intracellular Cl- accumulation in neurons at both early developmental and adult stages. In this report, we extensively characterized the Na+-K+-2Cl- cotransporter in primary culture of cortical neurons that were dissected from cerebral cortex of rat fetus at embryonic day 17. The Na+-K+-2Cl- cotransporter was expressed abundantly in soma and dendritic processes of cortical neurons evaluated by immunocytochemical staining. Western blot analysis revealed that an approximately 145-kDa cotransporter protein was present in cerebral cortex at the early postnatal (P0-P9) and adult stages. There was a time-dependent upregulation of the cotransporter activity in cortical neurons during the early postnatal development. A substantial level of bumetanide-sensitive K+ influx was detected in neurons cultured for 4-8 days in vitro (DIV 4-8). The cotransporter activity was increased significantly at DIV 12 and maintained at a steady level throughout DIV 12-14. Bumetanide-sensitive K+ influx was abolished completely in the absence of either extracellular Na+ or Cl-. Opening of gamma-aminobutyric acid (GABA)-activated Cl- channel or depletion of intracellular Cl- significantly stimulated the cotransporter activity. Moreover, the cotransporter activity was elevated significantly by activation of N-methyl-D-aspartate ionotropic glutamate receptor via a Ca2+-dependent mechanism. These results imply that the inwardly directed Na+-K+-2Cl- cotransporter is important in active accumulation of intracellular Cl- and may be responsible for GABA-mediated excitatory effect in immature cortical neurons.  相似文献   

18.
Voltage-dependent Na(+) channels are usually expressed in neurons that use spikes as a means of signal coding. Retinal bipolar cells are commonly thought to be nonspiking neurons, a category of neurons in the CNS that uses graded potential for signal transmission. Here we report for the first time voltage-dependent Na(+) currents in acutely isolated mammalian retinal bipolar cells with whole cell patch-clamp recordings. Na(+) currents were observed in approximately 45% of recorded cone bipolar cells but not in rod bipolar cells. Both ON and OFF cone bipolar cells were found to express Na(+) channels. The Na(+) currents were activated at membrane potentials around -50 to -40 mV and reached their peak around -20 to 0 mV. The half-maximal activation and steady-state inactivation potentials were -24.7 and -68.0 mV, respectively. The time course of recovery from inactivation could be fitted by two time constants of 6.2 and 81 ms. The amplitude of the Na(+) currents ranged from a few to >300 pA with the current density in some cells close or comparable to that of retinal third neurons. In current-clamp recordings, Na(+)-dependent action potentials were evoked in Na(+)-current-bearing bipolar cells by current injections. These findings raise the possibility that voltage-dependent Na(+) currents may play a role in bipolar cell function.  相似文献   

19.
We examined the regulation of Na+,K(+)-ATPase activity in proximal tubule segments during a high salt diet in prehypertensive Dahl salt-sensitive and salt-resistant rats. Rats were placed on normal salt or high salt diets (0.9% saline as drinking water). During the normal salt diet, Na+,K(+)-ATPase activity was not different between Dahl salt-sensitive and salt-resistant rats. After 2 days and 10 days on a high salt diet, Na+,K(+)-ATPase activity in Dahl salt-resistant rats significantly decreased when compared to Dahl salt-resistant rats on a normal salt diet (P less than 0.01). The decreased Na+,K(+)-ATPase activity in Dahl salt-resistant rats during a high salt diet was reversed by treatment with an inhibitor of aromatic L-amino acid decarboxylase (dopamine synthesizing enzyme), benserazide. In contrast, Na+,K(+)-ATPase activity did not decrease during the high salt diet and benserazide had no effect on Na+,K(+)-ATPase activity in Dahl salt-sensitive rats. These results indicate that Dahl salt-sensitive rats do not have the capacity to down-regulate the proximal tubule Na+,K(+)-ATPase activity during a high salt diet. Indirect evidence suggests that the regulation of Na+,K(+)-ATPase activity by locally produced dopamine is absent in Dahl salt-sensitive rats.  相似文献   

20.
Development of the embryonic nervous system requires thyroid hormone. However, the underlying mechanisms and targets of thyroid hormone action are not well defined. To identify embryonic roles for thyroid hormone we tested for effects on a key neuronal trait, voltage-gated sodium current (I(Na)), in the zebrafish model system. We recorded from Rohon-Beard sensory neurons (RBs) using whole cell voltage-clamp methods. Here, we provide in vivo evidence for thyroid hormone regulation of I(Na). Chronic thyroid hormone application increased RB peak I(Na) density 1.4-fold. However, I(Na) density showed a similar increase within 5 min of an acute hormone application, a time course not expected for a genomic mechanism. Tetraiodothyroacetic acid (tetrac), a thyroid hormone blocker, blocked both chronic and acute effects. Further, the thyroid hormone precursor thyroxine (T4) affected I(Na), yet the traditionally active form triiodothyronine did not. Consequently, we tested for a nonconventional T4 receptor. LM609, a selective antagonist of integrin alphaVbeta3, occluded the rapid effect of T4, implicating a specific integrin dimer as a T4 receptor. Chronic application of either tetrac or LM609 significantly reduced sodium conductance, demonstrating an in vivo requirement for T4-integrin regulation of I(Na). Further, removing endogenous T4 levels via yolkectomy reduced sodium conductance, an effect that was partially rescued by T4 supplementation following surgery. Because RBs mediate the embryonic touch response, we tested for behavioral effects. Tetrac and LM609 significantly reduced the percentage of touch trials eliciting a normal touch response. T4's rapid effect on RB I(Na) highlights the importance of embryonic T4 availability and nongenomic T4 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号