共查询到20条相似文献,搜索用时 12 毫秒
1.
In recent years organotypic slice cultures of hippocampal tissue of rats have been widely used to study factors involved in neuronal death. Here we used 2D electrophoresis to study the phosphoprotein profile in such cultures and the effect of oxygen/glucose deprivation on this profile. Cultures were prepared from 7-day-old rats. After 14 days in culture the phosphorylation profile in the cultures, as shown by phospho-protein markers undergoing developmental change, closely resembled the profile of fresh tissue from 23-day-old rats. The results suggest that this model could be a good method to observe the development of the tissue and its response to an ischaemic lesion 相似文献
2.
The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model for neurotoxicological studies, including further studies of neurotoxic mechanisms of TMT. Four-week-old cultures, derived from 7-day-old donor rats and grown in serum-free medium, were exposed to TMT (0.5–100 μM) for 24 h followed by 24 h in normal medium. TMT-induced neurodegeneration was then monitored by (a) propidium iodide (PI) uptake, (b) lactate dehydrogenase (LDH) efflux into the culture medium, (c) cellular cobalt uptake as an index of calcium influx, (d) ordinary Nissl cell staining, and (e) immunohistochemical staining for microtubule-associated protein 2 (MAP-2). Cellular degeneration as assessed by densitometric measurements of PI uptake displayed a dose and time-dependent increase, with the following ranking of vulnerability of the hippocampal subfields: FD>CA4≥CA3c>CA1>CA3ab. This differential neuronal vulnerability observed by PI uptake was confirmed by MAP-2 immunostaining and corresponded to in vivo cell stain observations of rats acutely exposed to TMT. The mean PI uptake of the cultures and the LDH efflux into the medium were highly correlated. The combined results obtained by the different markers indicate that the hippocampal slice culture method is a feasible model for further studies of TMT neurotoxicity. 相似文献
3.
Nestin expression persists in astrocytes of organotypic slice cultures from rat cortex 总被引:11,自引:0,他引:11
Rainald Schmidt-Kastner Christian Humpel 《International journal of developmental neuroscience》2002,20(1):29-38
Nestin is an intermediate filament protein typical for neural precursor cells that is down-regulated in the post-natal rodent brain. Re-expression of nestin has been observed in reactive astrocytes after injury. In this study, organotypic slice cultures from rat cortex were examined for expression of nestin and glial fibrillary acidic protein between 2 and 8 weeks in culture. Immunoreactivity for nestin and glial fibrillary acidic protein was seen in astrocytes which persisted throughout the observation period. Immunofluorescence double labeling showed widespread co-localization of nestin and glial fibrillary acidic protein. Image analysis revealed that levels of nestin-immunoreactivity plateaued after 5 weeks in culture. By comparison nestin immunoreactivity was absent from glial cells of the cortex in mature rats. These immunohistochemical findings of a persistent expression of nestin in glial cells of organotypic slice culture of the rat cortex indicate a different time course of glial maturation in vitro. This difference could be related to the altered trophic stimulation in vitro; differences in neuronal maturation, activity or survival; slow degeneration of the vasculature; or intrinsic properties of astrocytes. 相似文献
4.
We have examined the functional characteristics of microglia in an environment where the cytoarchitecture of the brain is preserved. Using organotypic slice culture under serum-free conditions, microglia initially demonstrated a rounded morphology but after 10 days in vitro (DIV), microglia in the slice were highly branched. Stimulation of the microglia at 4 DIV with phorbol ester significantly increased the number of cells stained with nitroblue tetrazolium, an indicator of superoxide anion production, compared to non-stimulated conditions. At 10 DIV, superoxide anion production was significantly less than that seen at 4 DIV and no increase in production was seen with phorbol ester stimulation. Phagocytosis of fluorescent latex beads and chemotaxis of microglia in response to zymosan activated serum was also reduced at 10 DIV compared to 4 DIV. These experiments indicate that microglia at 4 DIV in tissue slice culture have functional characteristics that resemble microglia in primary culture. However, prolonged culture of the slices results in a return of the microglia to a ramified and functionally down-regulated state, reminiscent of an "in vivo"-like environment. The organotypic slice culture, thus, provides a useful model system to I examine the interactions of microglia with neurons and other glia in the normal and injured brain. 相似文献
5.
Homeostatic plasticity is a phenomenon whereby synaptic strength is scaled in the context of the activity that the network receives. Here, we have analysed excitatory and inhibitory synapses in a model of homeostatic plasticity where rat organotypic hippocampal slice cultures were deprived of excitatory synaptic input by the NMDA and AMPA/KA glutamate receptor antagonists, AP5 and CNQX. We show that chronic excitatory synapse deprivation generates an excitable CA3 network where enhanced amplitude and frequency of spontaneous excitatory post-synaptic potentials were associated with increased glutamate receptor subunit expression and increased number and size of synapsin 1 and VGLUT1 positive puncta. Intact spontaneous inhibitory post-synaptic potentials coincided with persistent expression of the GABA-A receptor alpha subunit and GAD65 and an enhancement of parvalbumin-positive puncta. In this model of homeostatic plasticity, scaling up of synaptic excitation and maintenance of fast synaptic inhibition promote an excitable, but stable, CA3 network. 相似文献
6.
Organotypic slice cultures provide an excellent system for the analysis of study of the molecular mechanisms of this development necessitates the use of a chemically defined culture medium. We report here the development of a medium, EOL1 defined medium, designed specifically for this purpose. Cultures of both cerebral cortex and basal forebrain demonstrate that this defined medium allows a high degree of cytoarchitectural maintenance while promoting neural metabolism and process outgrowth. 相似文献
7.
The microtubule-disrupting agent colchicine is known to be particular toxic for certain types of neurons, including the granule cells of the dentate gyrus. In this study we investigated whether colchicine could induce such neuron-specific degeneration in developing (1 week in vitro) and mature (3 weeks in vitro) organotypic hippocampal slice cultures and whether the induced cell death was apoptotic and/or necrotic. When applied to 1-week-old cultures for 48 h, colchicine induced primarily apoptotic, but also a minor degree of necrotic cell death in the dentate granule cells, as investigated by cellular uptake of the fluorescent dye propidium iodide (PI), immunostaining for active caspase 3 and c-Jun/AP-1 (N) and fragmentation of nuclei as seen in Hoechst 33342 staining. All four markers appeared after 12 h of colchicine exposure. Two of them, active caspase 3 and c-Jun/AP-1 (N) displayed a similar time course and reached a maximum after 24 h of exposure, 24 h ahead of both PI uptake and Hoechst 33342 staining, which together displayed similar time profiles and a close correlation. In 3-week-old cultures, colchicine did not induce apoptotic or necrotic cell death. Attempts to interfere with the colchicine-induced apoptosis in 1-week-old cultures showed that colchicine-induced PI uptake and formation of apoptotic nuclei were temporarily prevented by coapplication of the protein synthesis inhibitor cycloheximide. Application of the pancaspase inhibitor z-VAD-fmk almost completely abolished the formation of active caspase 3 protein and apoptotic nuclei induced by colchicine, but the formation of necrotic nuclei increased correspondingly and the PI uptake was unaffected. We conclude that colchicine induces caspase 3-dependent apoptotic cell death of dentate granule cells in hippocampal brain slice cultures, but the apoptotic cell death is highly dependent on the developmental stage of the cultures. 相似文献
8.
《Brain research. Brain research protocols》1999,3(3):278-290
This protocol describes ways of monitoring spontaneous or induced neuronal degeneration in organotypic brain slice cultures. Hippocampal cultures (4-week-old) are grown in normal serum-free control medium, or exposed to the neurotoxin trimethyltin (TMT) (0.5–100 μM) for 24 h or the excitotoxic glutamate agonist kainic acid (KA) (5–25 μM) for 48 h followed by 24 h or 48 h, respectively, in normal medium. Corticostriatal slice cultures (also 4-week-old) are exposed to KA (6–24 μM) for 48 h and normal medium for control. The resulting neurodegeneration is estimated by (a) propidium iodide (PI) uptake, (b) lactate dehydrogenase (LDH) efflux to the culture medium, (c) ordinary Nissl cell staining, (d) staining by the neurodegenerative marker Fluoro-Jade (FJ), (e) neuronal microtubule degeneration by immunohistochemical staining for microtubule-associated protein 2 (MAP2), and (f) Timm sulphide silver staining for heavy metal alterations. Both hippocampal and corticostriatal slice cultures show a dose- and time-dependent increase in PI uptake and LDH efflux after exposure to TMT and KA. The mean PI uptake and the LDH efflux into the medium correlate well for both types of cultures. Both TMT and KA exposed hippocampal cultures display in vivo patterns of differential neuronal vulnerability as evidenced by PI uptake, FJ staining and MAP2 immunostaining. Corticostriatal slice cultures exposed to a high dose of KA display extensive striatal and cortical degeneration in FJ staining as suggested by a high PI uptake. A change in Timm sulphide silver staining in deep central parts of some control cultures, corresponds to areas with loss of cells in cell staining, loss of MAP2 staining, PI uptake, and FJ staining. We conclude that organotypic brain slice cultures, in combination with appropriate markers in standardized protocols, represent feasible means for studies of excitotoxic and neurotoxic compounds.Themes: Disorders of the nervous systemTopics: Neurotoxicity 相似文献
9.
Cerebellar slice cultures of newborn rats showed poorly developed dendritic arborization of Purkinje cells, whereas cultures of 10-day-old rats revealed prominent dendritic branching. Gap junctional intercellular communication between Purkinje cells, investigated as dye transfer of microinjected neurobiotin, occurred through dendro-dendritic contacts, with decreased dye spreading in old cell cultures. These results indicate a possible correlation of gap junctional intercellular communication and the development of Purkinje cells. 相似文献
10.
Dennis D. Kunkel Loan B. Nguyen Mark R. Harrigan Philip A. Schwartzkroin Alfred T. Malouf 《Hippocampus》1994,4(2):157-166
Light and electron microscopic immunocytochemical techniques were used to study the interneuron population staining for somatostain (SRIF) in cultured slices of rat hippocampus. The SRIF immunoreactive somata were most dense in stratum oriens of areas CA1 and CA3, and in the dentate hilus. Somatostain immunoreactive cells in areas CA1 and CA3 were characteristically fusiform in shape, with dendrites that extended both parallel to and into the alveus. The axonal plexus in areas CA1 and CA3 was most dense in stratum lacunosum-moleculare and in stratum pyramidale. Electron microscopic analysis of this area revealed that the largest number of symmetric synaptic contacts from SRIF immunoreactive axons were onto pyramidal cell somata and onto dendrites in stratum lacunosum-moleculare. In the dentate gyrus, SRIF somata and dendrites were localized in the hilus. Hilar SRIF immunoreactive neurons were fusiform in shape and similar in size to those seen in CA1 and CA3. Axon collaterals coursed throughout the hilus, projected between the granule cells and into the outer molecular layer. The highest number of SRIF synaptic contacts in the dentate gyrus were seen on granule cell dendrites in the outer molecular layer. Synaptic contacts were also observed on hilar neurons and granule cell somata. SRIF synaptic profiles were seen on somata and dendrites of interneurons in all regions. The morphology and synaptic connectivity of SRIF neurons in hippocampal slice cultures appeared generally similar to intact hippocampus. © 1994 Wiley-Liss, Inc. 相似文献
11.
Amyloid beta peptide (Abeta) is a major component of senile plaques, one of the principle pathological features in Alzheimer's disease (AD) brains. Fibrillar Abeta has been shown to bind C1 via C1q, the recognition component of the classical complement pathway, resulting in the activation of the complement pathway, thereby initiating an inflammatory cascade in the brain. C1q has also been shown to enhance phagocytic activities of microglia, which could benefit in clearance of apoptotic cells or cellular debris. To begin to define the role of C1q in tissue injury mediated by Abeta, we assessed the appearance of C1q in hippocampal slice cultures treated with freshly solubilized or fibrillar Abeta 1-42. Here we demonstrate a dose- and time-dependent uptake of exogenously applied Abeta by pyramidal neurons in organotypic slice cultures from rat hippocampus. Importantly, when slices were immunostained with antibody against rat C1q, a distinct reactivity for C1q in cells within the neuronal cell layer of cornu ammonis (CA) of hippocampus, primarily the CA1/CA2, was observed in the Abeta-treated slices. No such immunoreactivity was detected in untreated cultures or upon addition of control peptides. ELISA assays also showed an increase in C1q in tissue extracts from slices of the treated group. Similarly, the mRNA level of C1q in slices was increased within 24 h after Abeta treatment. These data demonstrate that upon exposure to Abeta, C1q is expressed in neurons in this organotypic system. The induction of C1q may be an early, perhaps beneficial, tissue or cellular response to injury triggered by particular pathogenic stimuli. 相似文献
12.
Bjarne W. Kristensen Jens Noraberg Birthe Jakobsen Jan Bert Gramsbergen Bjarke Ebert Jens Zimmer 《Brain research》1999,841(1-2):143-159
The excitotoxic effects of the glutamate receptor agonists kainic acid (KA) and 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and the corresponding neuroprotective effects of the AMPA/KA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) were examined in corticostriatal slice cultures. The purpose was to examine the feasibility of these cultures for excitotoxic studies, and to demonstrate possible differential excitotoxic effects of KA and AMPA on striatal and cortical neurons. Slices of dorsolateral striatum with overlying neocortex were obtained from neonatal rats and grown on semiporous membranes in serum-free medium for 3-4 weeks before exposure to KA or AMPA for 48 h. The uptake by injured cells of the fluorescent dye propidium iodide (PI) added to the culture medium was used as a quantifiable measure for neuronal degeneration and compared with efflux of the cytosolic enzyme lactate dehydrogenase (LDH) into the culture medium and loss of glutamic acid decarboxylase (GAD) activity in the tissue. Histological sections were also stained by the fluorescent dye Fluoro-Jade (FJ), for degenerating neurons and by immunocytochemical staining for gamma-aminobutyric acid (GABA). Digitized images showed a dose (0-24 microM KA, 0-6 microM AMPA) and time (0-48 h) dependent increase in PI uptake in both striatum and cortex. In other cultures exposed to KA (24 microM) or AMPA (6 microM) together with NBQX (0.1-9 microM), NBQX was found to exert a differential neuroprotective effect on striatum and cortex at low doses. NBQX was thus more protective against KA in the cortex than in the striatum, while the opposite was seen in relation to AMPA. Regarding neurodegenerative markers, PI uptake was significantly correlated with (1) LDH release into the culture medium, (2) optical density of Fluoro-Jade staining, (3) loss of GAD-activity in tissue homogenates, and (4) loss of GABA-immunostained neurons. We conclude that both differences between compounds (AMPA vs. KA) and brain areas (striatum vs. cortex) can be demonstrated in corticostriatal slice cultures, which in conjunction with an established set of markers for neuronal cell damage appears to be a feasible model for studies of the neurotoxic and neuroprotective effects of glutamate receptor agonists and antagonists. 相似文献
13.
Calpain activation and inhibition in organotypic rat hippocampal slice cultures deprived of oxygen and glucose. 总被引:2,自引:0,他引:2
It has been suggested that, after ischaemia, activation of proteases such as calpains could be involved in cytoskeletal degradation leading to neuronal cell death. In vivo, calpain inhibitors at high doses have been shown to reduce ischaemic damage and traumatic brain injury, however, the relationship between calpain activation and cell death remains unclear. We have investigated the role of calpain activation in a model of ischaemia based on organotypic hippocampal slice cultures using the appearance of spectrin breakdown products (BDPs) as a measure of calpain I activation. Calpain I activity was detected on Western blot immediately after a 1-h exposure to ischaemia. Up to 4 h post ischaemia, BDPs were found mainly in the CA1 region and appeared before uptake of the vital dye propidium iodide (PI). 24 h after the insult, BDPs were detected extensively in CA1 and CA3 pyramidal cells, all of which was PI-positive. However, there were many more PI-positive cells that did not have BDPs, indicating that the appearance of BDPs does not necessarily accompany ischaemic cell death. Inhibition of BDP formation by the broad-spectrum protease inhibitor leupeptin was not accompanied by any neuroprotective effects. The more specific and more cell-permeant calpain inhibitor MDL 28170 had a clear neuroprotective effect when added after the ischaemic insult. In contrast, when MDL 28170 was present throughout the entire pre- and post-incubation phases, PI labelling actually increased, indicating a toxic effect. These results suggest that calpain activation is not always associated with cell death and that, while inhibition of calpains can be neuroprotective under some conditions, it may not always lead to beneficial outcomes in ischaemia. 相似文献
14.
Dupont JL Fourcaudot E Beekenkamp H Poulain B Bossu JL 《Cerebellum (London, England)》2006,5(4):243-256
The cellular and synaptic organization of new born mouse cerebellum maintained in organotypic slice cultures was investigated using immunohistochemical and patch-clamp recording approaches. The histological organization of the cultures shared many features with that observed in situ. Purkinje cells were generally arranged in a monolayer surrounded by a molecular-like neuropil made of Purkinje cell dendritic arborizations. Purkinje cell axons ran between clusters of small round cells identified as granule cells by Kv3.1b potassium channel immunolabelling. The terminal varicosities of the Purkinje cells axons enwrapped presumptive neurons of the cerebellar nuclei whereas their recurrent collaterals were in contact with Purkinje cells and other neurons. Granule cell axons established contacts with Purkinje cell somata and dendrites. Parvalbumin and glutamine acid decarboxylase (GAD) immunohistochemistry revealed the presence of presumptive interneurons throughout the culture. The endings of granule cell axons were observed to be in contact with these interneurons. Similarly, interneurons endings were seen close to Purkinje cells and granule cells. Whole cell recordings from Purkinje cell somata showed AMPA receptor-mediated spontaneous excitatory post-synaptic currents (sEPSCs) and GABAA receptor-mediated spontaneous inhibitory post-synaptic currents (sIPSCs). Similar events were recorded from granule cell somata except that in this neuronal type EPSPs have both a NMDA component and an AMPA component. In addition, pharmacological experiments demonstrated a GABAergic control of granule cell activity and a glutamatergic control of GABAergic neurons by granule cells. This study shows that a functional neuronal network is established in such organotypic cultures even in the absence of the two normal excitatory afferents, the mossy fibers and the climbing fibers. 相似文献
15.
The origin of rhythm generation in mammalian spinal cord networks is still poorly understood. We have previously proposed that disinhibition-induced rhythms are based on intrinsic firing, recurrent excitation and several mechanisms to de-activate the network. In order to clarify these mechanisms we here investigated spontaneous spike discharge oscillations in rat spinal cord slice cultures using multi-electrode arrays and patch clamp. Episodes of such oscillations at 8.5 Hz spontaneously appeared in the ventral parts of the cultured slices. The rising phase of their initial cycles was entirely based on AMPA/kainate receptor-dependent recurrent excitation. Initial oscillations were changed into persistent activity by bicuculline and other blockers of GABA A, but not by blockers of glycine receptors, suggesting a role for GABAergic synaptic inhibition in network de-activation during oscillation cycles. Blockade of glycine receptors by strychnine caused a prolongation of oscillations and their spreading in the slice, suggesting that these receptors are mainly involved in the spatial and temporal restriction of oscillations. In most cultures, oscillations reappeared under disinhibition after an initial phase of persistent activity. Both spontaneous and disinhibition-induced oscillations were facilitated by riluzole, which enhances fast sodium current inactivation and thus leads to early cessation of firing during strong depolarization (depolarization block). In single cell recordings, episodes of strong depolarization were mostly seen during oscillations induced by disinhibition, but occasionally also during spontaneous oscillations. We conclude that both GABA A-mediated synaptic inhibition and depolarization block contribute to the de-activation of spinal cord networks during oscillation cycles. 相似文献
16.
Tsuji S Kikuchi S Shinpo K Tashiro J Kishimoto R Yabe I Yamagishi S Takeuchi M Sasaki H 《Journal of neuroscience research》2005,82(4):443-451
A dysfunctional ubiquitin-proteasome system recently has been proposed to play a role in the pathogenesis of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). We have shown previously that spinal motor neurons are more vulnerable to proteasome inhibition-induced neurotoxicity, using a dissociated culture system. To confirm this toxicity, we used organotypic slice cultures from rat neonatal spinal cords, which conserve the structure of the spinal cord in a horizontal plane, enabling us to identify motor neurons more accurately than in dissociated cultures. Furthermore, such easy identifications make it possible to follow up the course of the degeneration of motor neurons. When a specific proteasome inhibitor, lactacystin (5 microM), was applied to slice cultures, proteasome activity of a whole slice was suppressed below 30% of control. Motor neurons were selectively damaged, especially in neurites, with the increase of phosphorylated neurofilaments. They were eventually lost in a dose-dependent manner (1 microM, P < 0.05; 5 microM, P < 0.01). The low capacity of Ca(2+) buffering is believed to be one of the factors of selectivity for damaged motor neurons in ALS. In our system, negative staining of Ca(2+)-binding proteins supported this notion. An intracellular Ca(2+) chelator, BAPTA-AM (10 microM), exerted a significant protective effect when it was applied with lactacystin simultaneously (P < 0.01). We postulate that proteasome inhibition is an excellent model for studying the mechanisms underlying selective motor neuron death and searching for new therapeutic strategies in the treatment of ALS. 相似文献
17.
Robust axonal sprouting and synaptogenesis in organotypic slice cultures of rat cerebellum exposed to increased potassium chloride 总被引:1,自引:0,他引:1
Organotypic slices of the rat cerebellum, cultured in physiological levels [K+]o (5 mM) for 14 days, loose the majority of granule cells in the anterior lobe resulting in few axons and atypical Purkinje cell dendrites with vacant spines. When the culture medium was switched from 5 mM to 20, 30 or 40 mM [K+]o during the last 7 days of cultures, slices developed axons with numerous vesicle-filled boutons that made synaptic contact with Purkinje cell spines. Most boutons had one or two spine profile contacts, while some were unusually large. Enlarged boutons abutted Purkinje cell somata or their dendrites, causing intervening spines to invaginate terminals to form rosette synaptic complexes. Calbindin immuno-labeling excluded Purkinje cell axonal collaterals as the source of rosette boutons and suggested a granule cell origin. Quantification of vacant spines as compared to those on boutons revealed a threshold for potassium, between 10 and 20 mM, where the number of synaptic spines increased and vacant spines decreased drastically. These findings suggest that elevated [K+]o triggers an activity-dependent plasticity in rat cerebellar slice cultures by promoting axonal sprouting with formation of vesicle-filled boutons and synaptogenesis on open receptor sites of Purkinje cell spines. 相似文献
18.
Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures 总被引:5,自引:0,他引:5
Protoplasmic astrocytes in mammalian CNS tissues in vivo have a highly complex 3D morphology, but in dissociated cell cultures they often assume a flattened, fibroblast-like morphology bearing only a few, simple processes. By fluorescent labeling and confocal reconstruction we show that many astrocytes in organotypic hippocampal slice cultures exhibit a more native complex cytoarchitecture. Although astrocytes at the surface of slice cultures show a reactive form with several thick glial fibrillary acidic protein (GFAP)-positive processes, astrocytes situated in deeper portions of tissue slices retain a highly complex 3D morphology with many fine spine- or veil-like protrusions. Dozens of astrocytes can be labeled in single slice cultures by gene gun-mediated ballistic delivery of gold or tungsten particles carrying cDNAs (Biolistics), lipophilic dyes (DiOlistics), or fluorescent intracellular calcium indicators (Calistics). Expression of a membrane-targeted form of eGFP (Lck-GFP) is superior to soluble eGFP for resolving fine astrocytic processes. Time-lapse confocal imaging of Lck-GFP transfected astrocytes or "calistically" labeled astrocytes show structural remodeling and calcium transients, respectively. This approach provides an in vitro system for investigating the functional architecture, development and dynamic remodeling of astrocytes and their relationships to neurons and glia in live mammalian brain tissues. 相似文献
19.
Ryuta Koyama 《Neuropathology》2013,33(4):475-479
Epilepsy is a nervous system disorder characterized by recurrent seizures. Among several types of epilepsy, which accounts for a significant portion of the disease worldwide, temporal lobe epilepsy (TLE) is one of the most common types of intractable epilepsy in adulthood. It has been suggested that complex febrile seizures in early life are associated with the development of TLE later in life; however, cellular and molecular links between febrile seizures and TLE remain unclear because of the lack of an appropriate in vitro system. Using rat hippocampal slice cultures, in which many features of native organotypic organization are retained, we found that the dentate granule cells exhibit aberrant migration in the dentate hilus via enhanced excitatory GABAA receptor (GABAA‐R) signaling, which results in granule cell ectopia that persists into adulthood. We further found that the granule cell ectopia is associated with spontaneous limbic seizures in adulthood. Importantly, both of these phenomena were prevented by inhibiting Na+K+2Cl? co‐transporter (NKCC1) which mediates the excitatory action of GABA. 相似文献
20.
The GABAA receptor agonist THIP is neuroprotective in organotypic hippocampal slice cultures 总被引:1,自引:0,他引:1
The potential neuroprotective effects of the GABA(A) receptor agonists THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and muscimol, and the selective GluR5 kainate receptor agonist ATPA ((RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid), which activates GABAergic interneurons, were examined in hippocampal slice cultures exposed to N-methyl-D-aspartate (NMDA). The NMDA-induced excitotoxicity was quantified by densitometric measurements of propidium iodide (PI) uptake. THIP (100-1000 microM) was neuroprotective in slice cultures co-exposed to NMDA (10 microM) for 48 h, while muscimol (100-1000 microM) and ATPA (1-3 microM) were without effect. The results demonstrate that direct GABA(A) agonism can mediate neuroprotection in the hippocampus in vitro as previously suggested in vivo. 相似文献