首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Differentiation of pluripotent neural stem cells engrafted into the adult normal and injured spinal cord is restricted to the glial lineage, suggesting that in vitro induction toward a neuronal lineage prior to transplantation and/or modification of the host environment may be necessary to initiate and increase the differentiation of neurons. In the present study, we investigated the differentiation of neuronal-restricted precursors (NRPs) grafted into the normal and contused adult rat spinal cord. NRPs proliferated through multiple passages in the presence of FGF2 and NT3 and differentiated into only neurons in vitro in the presence of retinoic acid and the absence of FGF2. Differentiated NRPs expressed GABA, glycine, glutamate, and ChAT. Two weeks to 2 months after engraftment of undifferentiated NRPs into adult normal spinal cord, large numbers of surviving cells were seen in all of the animals. The majority differentiated into betaIII-tubulin-positive neurons. Some transplanted NRPs expressed GABA and small numbers were glutamate- and ChAT-positive. NRPs were also transplanted into the epicenter of the contused adult rat spinal cord. Two weeks to 2 months after transplantation, some engrafted NRPs remained undifferentiated nestin-positive cells. Small numbers were MAP2- or betaIII-tubulin-positive neurons. However, the expression of GABA, glutamate, or ChAT was not observed. These results show that NRPs can differentiate into different types of neurons in the normal adult rat spinal cord, but that such differentiation is inhibited in the injured spinal cord. Manipulation of the microenvironment in the injured spinal cord will likely be necessary to facilitate neuronal replacement.  相似文献   

2.
BACKGROUND: Studies have shown that cell death can activate proliferation of endogenous neural stem cells and promote newly generated cells to migrate to a lesion site.
OBJECTIVE: To observe regeneration and differentiation of neural cells following spinal cord injury in adult rats and to quantitatively analyze the newly differentiated cells.
DESIGN, TIME AND SETTING: A cell biology experiment was performed at the Institute of Orthopedics and Medical Experimental Center, Lanzhou University, between August 2005 and October 2007.
MATERIALS: Fifty adult, Wistar rats of both sexes; 5-bromodeoxyuridine (BrdU, Sigma, USA); antibodies against neuron-specific enolase, glial fibrillary acidic protein, and myelin basic protein (Chemicon, USA).
METHODS: Twenty-five rats were assigned to the spinal cord injury group and received a spinal cord contusion injury. Materials were obtained at day 1, 3, 7, 15, and 29 after injury, with 5 rats for each time point. Twenty-five rats were sham-treated by removing the lamina of the vertebral arch without performing a contusion.
MAIN OUTCOME MEASURES: The phenotype of BrdU-labeled cells, i.e., expression and distribution of surface markers for neurons (neuron-specific enolase), astrocytes (glial fibrillary acidic protein), and oligodendrocytes (myelin basic protein), were identified with immunofluorescence double-labeling. Confocal microscopy was used to detect double-labeled cells by immunofluorescence. Quantitative analysis of newly generated cells was performed with stereological counting methods.
RESULTS: There was significant cell production and differentiation after adult rat spinal cord injury. The quantity of newly-generated BrdU-labeled cells in the spinal cord lesion was 75-fold greater than in the corresponding area of control animals. Endogenous neural precursor cells differentiated into astrocytes and oligodendrocytes, however spontaneous neuronal differentiation was not detected. Between 7 and 29 d after spinal cord injury, newl  相似文献   

3.
BACKGROUND:Studies have shown that cell death can activate proliferation of endogenous neural stem cells and promote newly generated cells to migrate to a lesion site.OBJECTIVE:To observe regeneration and differentiation of neural cells following spinal cord injury in adult rats and to quantitatively analyze the newly differentiated cells.DESIGN,TIME AND SETTING:A cell biology experiment was performed at the Institute of Orthopedics and Medical Experimental Center,Lanzhou University.between August 2005 and October 2007.MATERIALS:Fifty adult,Wistar rats of both sexes;5-bromodeoxyuridine(BrdU,Sigma,USA);antibodies against neuron-specific enolase,glial fibrillary acidic protein,and myelin basic protein(Chemicon,USA).METHODS:Twenty-five rats were assigned to the spinal cord injury group and received a spinal cord contusion injury.Materials were obtained at day 1,3,7,15,and 29 after injury,with 5 rats for each time point.Twenty-five rats were sham-treated by removing the lamina of the vertebral arch without performing a contusion.MAIN OUTCOME MEASURES:The phenotype of BrdU-labeled cells,i.e.,expression and distribution of surface markers for neurons(neuron-specific enolase),astrocytes(glial fibrillary acidic protein),and oligodendrocytes(myelin basic protein),were identified with immunofluorescence double-labeling.Confocal microscopy was used to detect double-labeled cells by immunofluorescence.Quantitative analysis of newly generated cells was performed with stereological counting methods.RESULTS:There was significant cell production and differentiation after adult rat spinal cord injury.The quantity of newly-generated BrdU-labeled cells in the spinal cord lesion was 75-fold greater than in the corresponding area of control animals.Endogenous neural precursor cells differentiated into astrocytes and oligodendrocytes,however spontaneous neuronal difierentiation was not detected.Between 7 and 29 d after spinal cord injury,newly generated cells expressed increasingly more mature oligodendrocyte and astrocyte markers.CONCLUSION:Spinal cord injury is a direct inducer of regeneration and differentiation of neural cells.Endogenous neural precursor cells Can difierentiate into astrocytes and oligodendrocytes following adult rat spinal cord injury.  相似文献   

4.
Bone morphogenetic proteins (BMPs) play a critical role in regulating cell fate determination during central nervous system (CNS) development. In light of recent findings that BMP-2/4/7 expressions are upregulated after spinal cord injury, we hypothesized that the BMP signaling pathway is important in regulating cellular composition in the injured spinal cord. We found that BMP expressions were upregulated in neural stem cells (NSCs), neurons, oligodendrocytes and microglia/macrophages. Increased expression levels of pSmad1/5/8 (downstream molecules of BMP) were detected in neurons, NSCs, astrocytes, oligodendrocytes and oligodendroglial progenitor cells (OPCs). Active astrocytes which form the astroglial scar were probably derived from NSCs, OPCs and resident astrocytes. Since quiescent NSCs in the normal adult spinal cord will proliferate and differentiate actively into neural cells after traumatic injury, we proposed that BMPs can regulate cellular components by controlling NSC differentiation. Neurosphere culture from adult mouse spinal cord showed that BMP-4 promoted astrocyte differentiation from NSCs while suppressing production of neurons and oligodendrocytes. Conversely, inhibition of BMP-4 by Noggin notably decreased the ratio of astrocyte to neuron numbers. However, intrathecal administration of Noggin in the injured spinal cord failed to attenuate glial fibrillar acidic protein (GFAP) expression even though it effectively reduced pSmad expression. Noggin treatment did not block phosphorylation of Stat3 and the induction of GFAP in the injured spinal cord, suggesting that in addition to the BMP/Smad pathway, the JAK/STAT pathway may also be involved in the regulation of GFAP expression after spinal cord injury.  相似文献   

5.
In the presence of epidermal growth factor (EGF) and/or fibroblast growth factor 2 (FGF2), neuroepithelial precursor cells from dissociated fetal human spinal cord are mitotically active and form free-floating spheres of undifferentiated cells. Proliferating cells were obtained in approximately 40% of preparations with each mitogen, were immunoreactive for the intermediate filament nestin, and did not express neuronal- or glial-specific markers. Early passage neuroepithelial precursor cells were pluripotent and differentiated into neurons expressing MAP2a,b, NF-M, and TuJ1, and GFAP-positive astrocytes; however, oligodendrocytes were never seen. As the cells were passaged from P0 to P4, the percentage of differentiating neurons significantly decreased and the prevalence of astrocytes significantly increased. While the majority of cell populations from individual preparations stopped proliferating between 3 and 6 passages, two expanding cell lines have been successfully expanded in EGF and FGF2 for over 25 passages and have been maintained in culture for over one year. These cells express nestin and not other cell-specific lineage markers. When differentiated, these neuroepithelial cell lines differentiate only into astrocytes, showing no expression of any neuronal marker. These data suggest that continued passage under these conditions preferentially selects for spinal cord neural precursors that are restricted to the astrocytic lineage. Despite the lineage restriction of later passage cell populations, these results provide a rationale for future investigation into the lineage potential of these cells in vivo following transplantation into the adult CNS, potentially as a therapeutic approach for traumatic injury and neurodegenerative disease.  相似文献   

6.
Spontaneous recovery after spinal cord injury is limited. Transplantation of neural precursor cells (NPCs) into lesioned adult rat spinal cord results in only partial functional recovery, and most transplanted cells tend to differentiate predominantly into astrocytes. In order to improve functional recovery after transplantation, it is important that transplanted neural precursor cells appropriately differentiate into cell lineages required for spinal cord regeneration. In order to modulate the fate of transplanted cells, we advocate transplanting gene-modified neural precursor cells. We demonstrate that gene modification to inhibit bone morphogenetic protein (BMP) signaling by noggin expression promoted differentiation of neural precursor cells into neurons and oligodendrocytes, in addition to astrocytes after transplantation. Furthermore, functional recovery of the recipient mice with spinal cord injury was observed when noggin-expressing neural precursor cells were transplanted. These observations suggest that gene-modified neural precursor cells that express molecules involved in cell fate modulation could improve central nervous system (CNS) regeneration.  相似文献   

7.
Grafted human neural stem cells (hNSCs) may help to alleviate functional deficits resulting from spinal cord injury by bridging gaps, replacing lost neurons or oligodendrocytes, and providing neurotrophic factors. Previously, we showed that primed hNSCs differentiated into cholinergic neurons in an intact spinal cord. In this study, we tested the fate of hNSCs transplanted into a spinal cord T10 contusion injury model. When grafted into injured spinal cords of adult male rats on either the same day or 3 or 9 days after a moderate contusion injury, both primed and unprimed hNSCs survived for 3 months postengraftment only in animals that received grafts at 9 days postinjury. Histological analyses revealed that primed hNSCs tended to survive better and differentiated at higher rates into neurons and oligodendrocytes than did unprimed counterparts. Furthermore, only primed cells gave rise to cholinergic neurons. Animals receiving primed hNSC grafts on the ninth day postcontusion improved trunk stability, as determined by rearing activity measurements 3 months after grafting. This study indicates that human neural stem cell fate determination in vivo is influenced by the predifferentiation stage of stem cells prior to grafting. Furthermore, stem cell-mediated facilitation of functional improvement depends on the timing of transplantation after injury, the grafting sites, and the survival of newly differentiated neurons and oligodendrocytes.  相似文献   

8.
大鼠脊髓源性神经干细胞的培养分化及其特异性研究   总被引:4,自引:0,他引:4  
目的 研究大鼠脊髓源性神经干细胞培养和分化的特异性。方法 从孕17d的SD大鼠胚胎脊髓中分离,培养神经干细胞并用血清诱导其分化,通过免疫荧光化学方法研究其特性。结果 在血清的诱导下,脊髓源性神经干细胞大多数分化成GFAP阳性的星形胶质细胞,少数分化为tubulin-β阳性的神经细胞;与脑源性神经干细胞分化的神经细胞相比较,其分化出的神经细胞的突起长度明显延长。结论 脊髓源性神经干细胞在体外具有多向分化潜能,但与脑源性神经干细胞有明显差别。  相似文献   

9.
Great interest exists in using cell replacement strategies to repair the damaged central nervous system. Previous studies have shown that grafting rat fetal spinal cord into neonate or adult animals after spinal cord injury leads to improved anatomic growth/plasticity and functional recovery. It is clear that fetal tissue transplants serve as a scaffold for host axon growth. In addition, embryonic Day 14 (E14) spinal cord tissue transplants are also a rich source of neural-restricted and glial-restricted progenitors. To evaluate the potential of E14 spinal cord progenitor cells, we used in vitro-expanded neurospheres derived from embryonic rat spinal cord and showed that these cells grafted into lesioned neonatal rat spinal cord can survive, migrate, and differentiate into neurons and oligodendrocytes, but rarely into astrocytes. Synapses and partially myelinated axons were detected within the transplant lesion area. Transplanted progenitor cells resulted in increased plasticity or regeneration of corticospinal and brainstem-spinal fibers as determined by anterograde and retrograde labeling. Furthermore, transplantation of these cells promoted functional recovery of locomotion and reflex responses. These data demonstrate that progenitor cells when transplanted into neonates can function in a similar capacity as transplants of solid fetal spinal cord tissue.  相似文献   

10.
血清和雪旺氏细胞诱导大鼠胚胎神经干细胞分化的比较   总被引:1,自引:0,他引:1  
目的 比较血清和雪旺氏细胞诱导大鼠胚胎神经干细胞分化的差异。方法 分别采用血清和与雪旺氏细胞共培养的方法诱导大鼠胚胎神经干细胞分化,应用相差显微镜和免疫荧光染色的方法对其进行观察和比较。结果 两种方法都能够诱导绝大多数神经干细胞分化成神经元,少量分化成星形胶质细胞和少突胶质细胞。虽然后一种方法诱导干细胞分化的进程比前一种方法要慢,但细胞形态学上更接近发育成熟的神经元。结论 雪旺氏细胞的分泌物不仅能够诱导共培养的神经干细胞分化,而且使其分化更加成熟。  相似文献   

11.
Axonal elongation is necessary for neuronal regeneration of the spinal cord after spinal injury. Recently neural stem cells have been proposed as hopeful graft donors for regeneration of the central nervous system. However, most grafted stem cells are not able to differentiate into neurons, and grafted stem cells cannot usually grow axons. Here, we show the effect of the protein tyrosine kinase inhibitor lavendustin A on axonal growth of neurons differentiated from neural stem cells obtained from adult rat hippocampal cells transfected with the von Hippel-Lindau (VHL) gene. Significantly greater axonal outgrowth was observed for the transfected cells treated with the inhibitor than for those not so treated. Thus, protein-tyrosine kinase inhibition is effective for axonal outgrowth of neurons differentiated from neural stem cells and may prove to be useful for neuronal regeneration via transplanted stem cells, particularly in the case of spinal cord injuries.  相似文献   

12.
Transplantation of neural stem cells (NSC) into lesioned spinal cord offers the potential to increase regeneration by replacing lost neurons or oligodendrocytes. The majority of transplanted NSC, however, typically differentiate into astrocytes that may exacerbate glial scar formation. Here we show that blocking of ciliary neurotrophic factor (CNTF) with anti-CNTF antibodies after NSC transplant into spinal cord injury (SCI) resulted in a reduction of glial scar formation by 8 weeks. Treated animals had a wider distribution of transplanted NSC compared with the control animals. The NSC around the lesion coexpressed either nestin or markers for neurons, oligodendrocytes, or astrocytes. Approximately 20% fewer glial fibrillary acidic protein-positive/bromodeoxyuridine (BrdU)-positive cells were seen at 2, 4, and 8 weeks postgrafting, compared with the control animals. Furthermore, more CNPase(+)/BrdU(+) cells were detected in the treated group at 4 and 8 weeks. These CNPase(+) or Rip(+) mature oligodendrocytes were seen in close proximity to host corticospinal tract (CST) and 5HT(+) serotonergic axon. We also demonstrate that the number of regenerated CST fibers both at the lesion and at caudal sites in treated animals was significantly greater than that in the control animals at 8 weeks. We suggest that the blocking of CNTF at the beginning of SCI provides a more favorable environment for the differentiation of transplanted NSC and the regeneration of host axons.  相似文献   

13.
Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibdssa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2'-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (~lll-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demon- strate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury.  相似文献   

14.
OBJECTIVES: In vitro, neural stem cells (NSCs) proliferate as undifferentiated spheroids and differentiate into neurons, astrocytes and oligodendrocytes. These features make NSCs suitable for spinal cord (SC) reconstruction. However, in vivo experiments have demonstrated that in the injured SC transplanted NSCs either remain undifferentiated or differentiate into the astrocytic phenotype. The microenvironment of the injured SC is believed to play a crucial role in driving the differentiation of the engrafted NSCs. Here, we tested the hypothesis that inflammatory cytokines (ICs) may be involved in the restricted differentiation of NSCs after grafting onto the injured SC. METHODS: As the first step, we used immunohistochemistry to analyse the expression of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and interferon (IFN)-gamma in the normal SC of mice and following traumatic injury. Then, we investigated whether a combination of TNF-alpha, IL-1beta and IFN-gamma may affect the phenotype of murine NSCs in vitro. RESULTS: We found that TNF-alpha, IL-1beta and IFN-gamma, which are absent in the normal SC, are all expressed in the injured SC and the expression of these cytokines follows a timely tuned fashion with IFN-gamma being detectable as long as 4 weeks after injury. In culture, exposure of proliferating NSCs to a combination of TNF-alpha, IL-1beta and IFN-gamma was per se sufficient to induce the astrocytic differentiation of these cells even in the absence of serum. CONCLUSIONS: In the traumatically injured SC, differentiation of engrafted NSCs is restricted towards the astrocytic lineage because of the inflammatory environment. ICs are likely to play a major role in differentiation of NSCs in the in vivo conditions.  相似文献   

15.
Spinal cord injury (SCI) results in substantial oligodendrocyte death and subsequent demyelination leading to white-matter defects. Cell replacement strategies to promote remyelination are under intense investigation; however, the optimal cell for transplantation remains to be determined. We previously isolated a platelet-derived growth factor (PDGF)-responsive neural precursor (PRP) from the ventral forebrain of fetal mice that primarily generates oligodendrocytes, but also astrocytes and neurons. Importantly, human PRPs were found to possess a greater capacity for oligodendrogenesis than human epidermal growth factor- and/or fibroblast growth factor-responsive neural stem cells. Therefore, we tested the potential of PRPs isolated from green fluorescent protein (GFP)-expressing transgenic mice to remyelinate axons in the injured rat spinal cord. PRPs were transplanted 1 week after a moderate thoracic (T9) spinal cord contusion in adult male rats. After initial losses, PRP numbers remained stable from 2 weeks posttransplantation onward and those surviving cells integrated into host tissue. Approximately one-third of the surviving cells developed the typical branched phenotype of mature oligodendrocytes, expressing the marker APC-CC1. The close association of GFP cells with myelin basic protein as well as with Kv1.2 and Caspr in the paranodal and juxtaparanodal regions of nodes of Ranvier indicated that the transplanted cells successfully formed mature myelin sheaths. Transplantation of PRPs into dysmyelinated Shiverer mice confirmed the ability of PRP-derived cells to produce compact myelin sheaths with normal periodicity. These findings indicate that PRPs are a novel candidate for CNS myelin repair, although PRP-derived myelinating oligodendrocytes were insufficient to produce behavioral improvements in our model of SCI.  相似文献   

16.
Astrocytes comprise a heterogeneous cell population that plays a complex role in repair after spinal cord injury. Reactive astrocytes are major contributors to the glial scar that is a physical and chemical barrier to axonal regeneration. Yet, consistent with a supportive role in development, astrocytes secrete neurotrophic factors and protect neurons and glia spared by the injury. In development and after injury, local cues are modulators of astrocyte phenotype and function. When multipotent cells are transplanted into the injured spinal cord, they differentiate into astrocytes and other glial cells as opposed to neurons, which is commonly viewed as a challenge to be overcome in developing stem cell technology. However, several examples show that astrocytes provide support and guidance for axonal growth and aid in improving functional recovery after spinal cord injury. Notably, transplantation of astrocytes of a developmentally immature phenotype promotes tissue sparing and axonal regeneration. Furthermore, interventions that enhance endogenous astrocyte migration or reinvasion of the injury site result in greater axonal growth. These studies demonstrate that astrocytes are dynamic, diverse cells that have the capacity to promote axon growth after injury. The ability of astrocytes to be supportive of recovery should be exploited in devising regenerative strategies.  相似文献   

17.
Stem cell therapy is a promising approach for remyelination strategies in demyelinating and traumatic disorders of the spinal cord. Self-renewing neural stem/progenitor cells (NSPCs) reside in the adult mammalian brain and spinal cord. We transplanted NSPCs derived from the adult spinal cord of transgenic rats into two models of focal demyelination and congenital dysmyelination. Focal demyelination was induced by X-irradiation and ethidium bromide injection (X-EB); and dysmyelination was in adult shiverer mutant mice, which lack compact CNS myelin. We examined the differentiation potential and myelinogenic capacity of NSPCs transplanted into the spinal cord. In X-EB lesions, the transplanted cells primarily differentiated along an oligodendrocyte lineage but only some of the oligodendrocytic progeny remyelinated host axons. In this glial-free lesion, NSPCs also differentiated into cells with Schwann-like features based on ultrastructure, expression of Schwann cell markers, and generation of peripheral myelin. In contrast, after transplantation into the spinal cord of adult shiverer mice, the majority of the NSPCs expressed an oligodendrocytic phenotype which myelinated the dysmyelinated CNS axons forming compact myelin, and none had Schwann cell-like features. This is the first study to examine the differentiation and myelinogenic capacity of adult spinal cord stem/progenitors in focal demyelination and dysmyelination of the adult rodent spinal cord. Our findings demonstrate that these NSPCs have the inherent plasticity to differentiate into oligodendrocytes or Schwann-like cells depending on the host environment, and that both cell types are capable of myelinating axons in the demyelinated and dysmyelinated adult spinal cord.  相似文献   

18.
Neurospheres were obtained by culturing hippocampal cells from transgenic rat fetuses (E16) expressing green fluorescent protein (GFP). The neurosphere cells were injected into the cerebrospinal fluid (CSF) through the 4th ventricle of young rats (4 weeks old) that had been given a contusion injury at T8-9 of the spinal cord. The injected neural stem cells were transported through the CSF to the spinal cord, attached to the pial surface at the lesion, and invaded extensively into the spinal cord tissue as well as into the nerve roots. The grafted stem cells survived well in the host spinal cord for as long as 8 months after transplantation. Immunohistochemical study showed that many grafted stem cells had differentiated into astrocytes at 1-4 months, and some into oligodendrocytes at 8 months postoperatively. Immunoelectron microscopy showed that the grafted stem cells were well integrated into the host tissue, extending their processes around nerve fibers in the same manner as astrocytes. In addition, grafted stem cells within nerve roots closely surrounded myelinated fibers or were integrated into unmyelinated fiber bundles; those associated with myelinated fibers formed basal laminae on their free surface, whereas those associated with unmyelinated fibers were directly attached to axons and Schwann cells, indicating that grafted stem cells behaved like Schwann cells in the nerve roots.  相似文献   

19.
目的:从GFP -大鼠胚胎脊髓分离和培养神经干细胞(NSC),观察NSC的分化功能和Neuregulin-1的表达。方法:从孕16d的GFP -大鼠胚胎脊髓中分离、培养神经干细胞,用免疫组织化学方法观察神经球的Neuregulin-1表达及鉴定分化的细胞类型。结果:从大鼠胚胎脊髓能分离、培养出NSC。神经球能表达Neuregin-1和Nestin,并能进一步分化为神经元、星形胶质细胞和少突胶质细胞。结论:从GFP -大鼠胚胎脊髓能分离和培养出NSC,该NSC具有分化为用于治疗中枢神经疾病的多种神经细胞的潜能。  相似文献   

20.
This study aimed to identify the optimal neural progenitor cell transplantation time for spinal cord injury in rats via the subarachnoid space. Cultured neural progenitor cells from 14-day embryonic rats, constitutively expressing enhanced green fluorescence protein, or media alone, were injected into the subarachnoid space of adult rats at 1 hour (acute stage), 7 days (subacute stage) and 28 days (chronic stage) after contusive spinal cord injury. Results showed that grafted neural progenitor cells migrated and aggregated around the blood vessels of the injured region, and infiltrated the spinal cord parenchyma along the tissue spaces in the acute stage transplantation group. However, this was not observed in subacute and chronic stage transplantation groups. O4- and glial fibrillary acidic protein-positive cells, representing oligodendrocytes and astrocytes respectively, were detected in the core of the grafted cluster attached to the cauda equina pia surface in the chronic stage transplantation group 8 weeks after transplantation. Both acute and subacute stage transplantation groups were negative for O4 and glial fibrillary acidic protein cells. Basso, Beattie and Bresnahan scale score comparisons indicated that rat hind limb locomotor activity showed better recovery after acute stage transplantation than after subacute and chronic transplantation. Our experimental findings suggest that the subarachnoid route could be useful for transplantation of neural progenitor cells at the acute stage of spinal cord injury. Although grafted cells survived only for a short time and did not differentiate into astrocytes or neurons, they were able to reach the parenchyma of the injured spinal cord and improve neurological function in rats. Transplantation efficacy was enhanced at the acute stage in comparison with subacute and chronic stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号