首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
A conserved family of calcineurin regulators   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

6.
《Seminars in immunology》2013,25(4):313-320
One of the mechanisms that are in place to control the activation of mature T cells that bear self-reactive antigen receptors is anergy, a long-term state of hyporesponsiveness that is established in T cells in response to suboptimal stimulation. T cells receive signals that result not only from antigen recognition and costimulation but also from other sources, including cytokine receptors, inhibitory receptors or metabolic sensors. Integration of those signals will determine T cell fate. Under conditions that induce anergy, T cells activate a program of gene expression that leads to the production of proteins that block T cell receptor signaling and inhibit cytokine gene expression. In this review we will examine those signals that determine functional outcome following antigen encounter, review current knowledge of the factors that ensure signaling inhibition and epigenetic gene silencing in anergic cells and explore the mechanisms that lead to the reversal of anergy and the reacquisition of effector functions.  相似文献   

7.
Impaired Ca/calcineurin pathway in in vivo anergized CD4 T cells   总被引:2,自引:0,他引:2  
Clonal anergy is one of the mechanisms that may account for self tolerance induced in T cells in the periphery. In this study we used the well-documented system of in vivo administration of a superantigen, staphylococcal enterotoxin B (SEB), to induce a state of hyporesponsiveness (anergy) in murine peripheral T cells to decipher the intracellular biochemical basis for this process. The TCR-induced Ca response of in vitro activated T cells was found to be impaired with significant defects in the phosphorylation of phospholipase C-gamma 1. Experiments with calcium ionophore and newly established transgenic mouse lines that express an active form of calcineurin suggested that in vivo SEB-induced anergy is established and/or maintained by a selective impairment in the TCR-induced activation of the Ca/calcineurin pathway.  相似文献   

8.
9.
10.
11.
Incomplete T cell antigen receptor-mediated signaling induces an unresponsive state known as anergy. Previously, we had shown that anergy can be induced in antigen-primed but not naive T cells. In this report, we found that in vitro primed T cells from IL-2R alpha-deficient mice were resistant to anergy induction in contrast to comparably treated wild-type T cells. This resistance persisted even after proliferation of IL-2R alpha chain-deficient CD4 T cells with high-dose IL-2-IL-2R beta gamma chains interaction. Thus, antigen activation, and/or progression through cell cycle are not sufficient to induce anergy susceptibility in T cells. The high-affinity IL-2-IL-2R interaction appears to play a critical role in this process.  相似文献   

12.
13.
HLA class II molecules play pivotal roles in antigen presentation to CD4+ T cells. We investigated signaling via HLA-DR molecules expressed on CD4+ T cells. When HLA-DR or CD3 molecules on cloned CD4+ T cells were cross-linked by solid-phase mAbs, T cells proliferated, and this resulted in anergy. Whereas cross-linking of HLA-DR and CD3 resulted in secretion of the same levels of IFN-gamma and IL-8, secretion of IL-10 induced by cross-linking of HLA-DR was less than that induced by cross-linking of CD3 on CD4+ T cells. Interestingly, expression of p27(Kip1) but not p21(Cip1) increased after stimulation by either anti-HLA-DR or anti-CD3 mAb. This was indeed the case, when T cells were rendered anergic using a soluble form of antigenic peptide. In contrast, T cells stimulated by peptide-pulsed PBMC expressed little p27(Kip1). We propose that signaling via HLA-DR molecules on CD4+ T cells at least in part contributes to the induction of T cell anergy, through the upregulated expression of the p27(Kip1). The implication of our finding is that HLA-DR molecules play a role in human T cell anergy induced by a soluble form of antigenic peptide.  相似文献   

14.
T cell receptor (TCR)-mediated stimulation of T hybridomas leads to cell activation and lymphokine production that is followed by a long-term hyporesponsiveness. To investigate the biochemical events involved in the induction and maintenance of this antigen receptor hyporesponsiveness or anergy, we have expressed a G protein/PLCβ1-coupled muscarinic subtype 1 acetylcholine receptor in a murine T cell hybrid. Transfected cells were capable of responding to both muscarinic agonists and TCR ligands by inducing interleukin-2 secretion that was sensitive to cyclosporin A and dexamethasone. Both receptors induced tyrosine kinase (TK) activity, but muscarinic stimulation did not affect tyrosine phosphorylation of PLCγ1, nor did the TK inhibitor, herbimycin, block muscarinic receptor-mediated calcium mobilization. These data indicate that in T cells, the muscarinic receptor mediates T cell effector functions by regulating a TK-independent proximal pathway which later converges with the TCR pathway. Using these cells, we have explored the long-term consequences of T cell stimulation via antigen or muscarinic receptors. Our results show that hyporesponsiveness specifically follows TCR engagement and appears to result from a defect in the early signal transduction initiated by TCR cross-linking. A study of TCR-mediated signaling supports this model by showing that tyrosine phosphorylation and calcium mobilization are deficient in hyporesponsive T cells.  相似文献   

15.
T cell responses are determined by the environment in which antigen is encountered. In the absence of proper costimulation, anergizing stimuli induce the activation of a specific program of gene expression. Proteins encoded by these genes impose a state of functional unresponsiveness in anergic T cells through the activation of different mechanisms that include dampening of the T cell receptor signaling and direct inhibition of cytokine expression. Anergy can be reversed by stimulating T cells in the presence of interleukin (IL-)2. Signaling through the IL-2 receptor has been shown to activate mTOR, which plays an important role in the integration of signals that determine the fate of T cells. The mechanisms underlying the IL-2-dependent regulation of T cell tolerance are still not fully elucidated. In this study we show that IL-2 receptor signaling mediated through JAK3 and mTOR inhibits the expression of anergy-inducing genes independently of any effect on cell cycle progression. Interestingly, we also show that this effect is likely due to changes on the levels of AP-1 activation induced by IL-2 receptor signaling in T cells. Our data identifies a mechanism that can explain how IL-2 may prevent or reverse the establishment of anergy in T cells and, therefore, helps to understand how the cytokine environment can be determinant to shape the outcome of T cell responses - tolerance or activation - when antigen is encountered.  相似文献   

16.
Yamamoto T  Hattori M  Yoshida T 《Immunology》2007,121(3):383-391
It has been shown that anergic T cells have important roles in peripheral tolerance, although the precise mechanism for inducing anergy is still unclear. We analysed the kinetics of anergy induction at an individual cell level by flow cytometry. We first successfully obtained T helper type 1 (Th1) cells that had been made uniform with the level of interferon-gamma (IFN-gamma) production induced by antigen stimulation. We then used these Th1 cells to evaluate the degree of anergy for each Th1 cell treated with an anti-CD3 monoclonal antibody according to the level of IFN-gamma secretion. Our results demonstrate that anergic stimulation could induce both activation and anergy, depending on the duration and intensity of stimulation at the level of an individual cell. Each Th1 cell was first activated and then gradually became anergic depending on the duration of stimulation. The duration of the stimulus required for inducing anergy became shorter as the intensity of stimulation became stronger. We also show that the calcineurin signal controlled the induction of activation or anergy depending on the activity. This study contributes to better understanding of the precise mechanism for inducing T-cell anergy.  相似文献   

17.
Puga I  Rao A  Macian F 《Immunity》2008,29(2):193-204
T cell receptor (TCR) engagement in the absence of costimulation induces the calcium-dependent upregulation of a program of gene expression that leads to the establishment of T cell anergy. Casp3 is one of the genes activated during anergy induction. Here we show that caspase 3 is required for the induction of T cell unresponsiveness. Suboptimal T cell stimulation induced caspase 3 activation, which did not result in cell death. Furthermore, caspase 3-deficient T cells showed impaired responses to anergizing stimuli. In anergic T cells, activated caspase 3 associated to the plasma membrane, where it cleaved and inactivated proteins such as the Grb2-related adaptor downstream of shc (GADS) and the guanine-nucleotide exchange factor Vav1, causing a blockade in TCR signaling. Our results identify a role for caspase 3 in nonapoptotic T cells and support that caspase 3-dependent proteolytic inactivation of signaling proteins is essential to maintain T cell tolerance.  相似文献   

18.
Tolerance in vivo and its in vitro counterpart, anergy, are defined as the state in which helper T lymphocytes are alive but incapable of producing IL-2 and expanding in response to optimal antigenic stimulation. Anergy is induced when the T cell receptor (TCR) is engaged by antigen in the absence of costimulation or IL-2. This leads to unique intracellular signaling events that stand in contrast to those triggered by coligation of the TCR and costimulatory receptors. Specifically, anergy is characterized by lack of activation of lck, ZAP 70, Ras, ERK, JNK, AP-1, and NF-AT. In contrast, anergizing stimuli appear to activate the protein tyrosine kinase fyn, increase intracellular calcium levels, and activate Rap1. Moreover, anergizing TCR signals result in increased intracellular concentrations of the second messenger cAMP. This second messenger upregulates the cyclin-dependent kinase (cdk) inhibitor p27kip1, sequestering cyclin D2-cdk4, and cyclin E/cdk2 complexes and preventing progression of T cells through the G1 restriction point of the cell cycle. In contrast, costimulation through CD28 prevents p27kip1 accumulation by decreasing the levels of intracellular cAMP and promotes p27kip1 down-regulation due to direct degradation of the protein via the ubiquitin-proteasome pathway. Subsequent autocrine action of IL-2 leads to further degradation of p27kip1 and entry into S phase. Understanding the biochemical and molecular basis of T cell anergy will allow the development of new assays to evaluate the immune status of patients in a variety of clinical settings in which tolerance has an important role, including cancer, autoimmune diseases, and organ transplantation. Precise understanding of these biochemical and molecular events is necessary in order to develop novel treatment strategies against cancer. One of the mechanisms by which tumors down-regulate the immune system is through the anergizing inactivation of helper T lymphocytes, resulting in the absence of T cell help to tumor-specific CTLs. Although T-cells specific for tumor associated antigens are detected in cancer patients they often are unresponsive. Reversal of the defects that block the cell cycle progression is mandatory for clonal expansion of tumor specific T cells during the administration of tumor vaccines. Reversal of the anergic state of tumor specific T cells is also critical for the sufficient expansion of such T cells ex vivo for adoptive immunotherapy. On the other hand, understanding the molecular mechanisms of anergy will greatly improve our ability to design novel clinical therapeutic approaches to induce antigen-specific tolerance and prevent graft rejection and graft-versus-host disease. Such treatment approaches will allow transplantation of bone marrow and solid organs between individuals with increasing HLA disparity and therefore expand the donor pool, enable reduction in the need for nonspecific immunosuppression, minimize the toxicity of chemotherapy, and reduce the risk of opportunistic infections.  相似文献   

19.
20.
Gene regulation mediated by calcium signals in T lymphocytes   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号