首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
Secretory IgA (SIgA) is widely held to be responsible for the defense of the mucosae against pathogenics and other potentially harmful agents. In this study, polymeric Ig receptor (pIgR) knockout mice, which lack secretory antibodies (SAb), were used to investigate the role of vaccine-elicited SAb in protection against gastrointestinal bacterial infections. An essential role for specific SAb in protection against Vibrio cholerae was evident from experiments showing that vaccinated pIgR(-/-) mice, but not vaccinated C57BL/6 mice, were susceptible to cholera toxin challenge. Vaccination of C57BL/6 mice with Salmonella typhimurium elicited strong antigen-specific, mucosal responses, which blocked in vitro invasion of epithelia. However, vaccinated C57BL/6 and pIgR(-/-) mice were equally resistant to challenge infection with virulent S. typhimurium. Finally, we investigated the importance of SIgA in protection against recurrent infections with Citrobacter rodentium. Although higher numbers of bacteria were detected early after challenge infection in feces of vaccinated pIgR(-/-) mice compared with vaccinated C57BL/6 mice, both mouse strains showed complete clearance after 9 days. These results suggested that, in immune animals, SIgA is crucial for the protection of gastrointestinal surfaces against secreted bacterial toxins, may inhibit early colonization by C. rodentium, but is not essential for protection against re-infection with S. typhimurium or C. rodentium.  相似文献   

2.
The pathogenesis of a Citrobacter rodentium infection was evaluated in mice fed diets with a single deficiency in either selenium or vitamin E or with a double deficiency in both selenium and vitamin E compared to mice on nutritionally adequate diets. Mice fed the selenium- and vitamin E-deficient diet for 6 weeks had increased loads of C. rodentium in the colon and spleen, which were not observed in mice fed either of the singly deficient diets or the adequate diet. Infected mice fed the doubly deficient diet had increased colon crypt hyperplasia and an influx of infiltrating cells along with gross changes to crypt architecture, including ulceration and denuding of the epithelial layer. Cytokine and chemokine mRNA levels in the colon were measured by real-time PCR. Expression of proinflammatory cytokines and chemokines was upregulated on day 12 after infection with C. rodentium in mice fed the doubly deficient diet compared to mice fed the control diet. Heme oxygenase 1, an enzyme upregulated by oxidative stress, also was more highly induced in infected mice fed the doubly deficient diet. Production of C. rodentium antigen-specific IgM and IgG antibodies was not affected by feeding the doubly deficient diet. The results indicated that selenium and vitamin E play an important role in host resistance and in the pathology induced by C. rodentium, an infection that mimics disease caused by common food-borne bacterial pathogens in humans.  相似文献   

3.
Citrobacter rodentium, a murine model pathogen for enteropathogenic Escherichia coli, colonizes the colon utilizing attaching and effacing lesions to adhere specifically to the surfaces of intestinal epithelial cells and cause mucosal inflammation. CD4+ T cells, B cells, and immunoglobulin G (IgG), but not secretory IgA or IgM, play a critical role in eradicating this pathogen. Consistent with the importance of IgG in C. rodentium eradication, IgG transport by the neonatal Fc receptor for IgG within the intestinal epithelium also has a critical role in the regulation of C. rodentium infection. It remains to be determined, however, whether Fcgamma receptors (FcgammaRs), the receptors for the Fc portion of IgG, regulate this bacterial infection within mucosal tissues. Therefore, we investigated the roles of FcgammaRs during C. rodentium infection. Fc receptor common gamma chain (FcRgamma)-deficient mice were more susceptible to C. rodentium-induced colitis. This occurred through decreased efficiency of FcR-mediated endocytosis and maturation of dendritic cells and consequently T-cell activation of antigen-specific T cells. Moreover, in the absence of FcgammaRs, phagocytosis by macrophages was significantly diminished. Therefore, activating FcgammaRs play an important role in defending against C. rodentium infection, indicating that the critical role played by IgG in this infection is not mediated by IgG alone but is dependent upon this class of receptors.  相似文献   

4.
Citrobacter rodentium, an attaching-effacing bacterial pathogen, establishes an acute infection of the murine colonic epithelium and induces a mild colitis in immunocompetent mice. This study describes the role of T-cell subsets and B lymphocytes in immunity to C. rodentium. C57Bl/6 mice orally infected with C. rodentium resolved infection within 3 to 4 weeks. Conversely, systemic and colonic tissues of RAG1(-/-) mice orally infected with C. rodentium contained high and sustained pathogen loads, and in the colon this resulted in a severe colitis. C57Bl/6 mice depleted of CD4(+) T cells, but not CD8(+) T cells, were highly susceptible to infection and also developed severe colitis. Mice depleted of CD4(+) T cells also had diminished immunoglobulin G (IgG) and IgA antibody responses to two C. rodentium virulence-associated determinants, i.e., EspA and intimin, despite having a massively increased pathogen burden. Mice with an intact T-cell compartment, but lacking B cells ( micro MT mice), were highly susceptible to C. rodentium infection. Systemic immunity, but not mucosal immunity, could be restored by adoptive transfer of convalescent immune sera to infected micro MT mice. Adoptive transfer of immune B cells, but not na?ve B cells, provided highly variable immunity to recipient micro MT mice. The results suggest that B-cell-mediated immune responses are central to resolution of a C. rodentium infection but that the mechanism through which this occurs requires further investigation. These data are relevant to understanding immunity to enteric attaching and effacing bacterial pathogens of humans.  相似文献   

5.
Secretory IgA (SIgA) is the best defined effector component of the mucosal immune system. Generation of SIgA and secretory IgM (SIgM) in exocrine glands and mucous membranes depends on a fascinating cooperation between local plasma cells that produce polymeric IgA (pIgA, mainly dimers and some larger polymers) and pentameric IgM, and secretory epithelial cells that express the polymeric Ig receptor (pIgR)--also known as transmembrane secretory component. After release from the local plasma cells and diffusion through the stroma, pIgA and pentameric IgM become readily bound to pIgR, and are then actively transported across secretory epithelial cells for extrusion into external secretions after cleavage of pIgR. Much knowledge has recently been obtained at the molecular level about the regulation of pIgR-mediated transport of antibodies. This mechanism is of considerable biological interest because SIgA and SIgM form the first line of specific immunological defense against infectious agents and other harmful substances that may enter the body through the mucosae.  相似文献   

6.
Role of J chain in secretory immunoglobulin formation   总被引:8,自引:0,他引:8  
The joining (J) chain is a small polypeptide, expressed by mucosal and glandular plasma cells, which regulates polymer formation of immunoglobulin (Ig)A and IgM. J-chain incorporation into polymeric IgA (pIgA, mainly dimers) and pentameric IgM endows these antibodies with several salient features. First, a high valency of antigen-binding sites, which makes them suitable for agglutinating bacteria and viruses; little or no complement-activating potential, which allows them to operate in a noninflammatory fashion; and, most importantly, only J-chain-containing polymers show high affinity for the polymeric Ig receptor (pIgR), also known as transmembrane secretory component (SC). This epithelial glycoprotein mediates active external transfer of pIgA and pentameric IgM to exocrine secretions. Thus, secretory IgA (SIgA) and SIgM, as well as free SC, are generated by endoproteolytic cleavage of the pIgR extracellular domain. The secretory antibodies form the 'first line' of defence against pathogens and noxious substances that favour the mucosae as their portal of entry. The J chain is involved in creating the binding site for pIgR/SC in the Ig polymers, not only by determining the polymeric quaternary structure but apparently also by interacting directly with the receptor protein. Therefore, both the J chain and the pIgR/SC are key proteins in secretory immunity.  相似文献   

7.
The bacterial pathogen Citrobacter rodentium belongs to a family of gastrointestinal pathogens that includes enteropathogenic and enterohemorrhagic Escherichia coli and is the causative agent of transmissible colonic hyperplasia in mice. The molecular mechanisms used by these pathogens to colonize host epithelial surfaces and form attaching and effacing (A/E) lesions have undergone intense study. In contrast, little is known about the host's immune response to these infections and its importance in tissue pathology and bacterial clearance. To address these issues, wild-type mice and mice lacking T and B lymphocytes (RAG1 knockout [KO]) were infected with C. rodentium. By day 10 postinfection (p.i.), both wild-type and RAG1 KO mice developed colitis and crypt hyperplasia, and these responses became more exaggerated in wild-type mice over the next 2 weeks, as they cleared the infection. By day 24 p.i., bacterial clearance was complete, and the colitis had subsided; however, crypt heights remained increased. In contrast, inflammatory and crypt hyperplastic responses in the RAG1 KO mice were transient, subsiding after 2 weeks. By day 24 p.i., RAG1 KO mice showed no signs of bacterial clearance and infection was often fatal. Surprisingly, despite remaining heavily infected, tissues from RAG1 KO mice surviving the acute colitis showed few signs of disease. These results thus emphasize the important contribution of the host immune response during infection by A/E bacterial pathogens. While T and/or B lymphocytes are essential for host defense against C. rodentium, they also mediate much of the tissue pathology and disease symptoms that occur during infection.  相似文献   

8.
The commensal microbiota of the human colon profoundly impacts host gene expression and mucosal homeostasis. Secretory IgA antibodies, which influence the composition of the intestinal microbiota and provide immunity against pathogens, are transported across intestinal epithelial cells (IEC) by the polymeric immunoglobulin receptor (pIgR). To compare the effects of different colonic bacteria on pIgR expression, the human IEC line HT-29 was stimulated with various species representing the 4 major phyla of colonic bacteria. Only bacteria from the family Enterobacteriaceae (phylum Proteobacteria) induced expression of pIgR and other target genes of bacterial pattern recognition receptors. HT-29 cells responded to purified ligands for Toll-like receptor (TLR)4 but not TLR2. Expression of pIgR and transport of IgA were significantly reduced in colons of mice deficient in the TLR adaptor MyD88, consistent with a role for TLR signaling in the regulation of pIgR by colonic bacteria. Induction of pIgR expression in HT-29 cells required NF-κB signaling but not MAPK signaling, in contrast to the requirement for both NF-κB and MAPK signaling for induction of pro-inflammatory genes. These results suggest that commensal Enterobacteriaceae may promote intestinal homeostasis by enhancing pIgR expression in IEC.  相似文献   

9.
The humoral response to the gastrointestinal (GI) flora was analyzed in secretory Ig (sIg)-deficient polymeric IgR (pIgR)(-/-) mice and otherwise congenic C57BL/6 mice. While both strains carried an ileal flora of similar size and composition, increased bacterial translocation to mesenteric lymph node was demonstrated in pIgR(-/-) mice. Serum IgA was greatly increased in pIgR(-/-) mice compared with C57BL/6 mice and reacted with commensal organisms and food. Serum IgG levels in pIgR(-/-) mice were increased to 6-fold above that of C57BL/6 mice and included specificities that bound to selected flora antigens. The enhanced recognition of flora antigens in pIgR(-/-) mice was explored using ovalbumin (OVA)-specific CD4(+) T cells and feeding of low concentrations of OVA. Increased proliferation of transgenic T cells was observed in pIgR(-/-) mice, relative to C57BL/6 mice, suggesting elevated net uptake of protein antigens from the GI tract in the absence of sIg. These studies suggest that there is increased recognition of GI flora antigens by systemic antibodies in pIgR(-/-) mice, most probably as a result of increased access of antigens from the GI flora to the systemic immune compartment, and support the hypothesis that a major function of the secretory immune system is to return environmental antigens to mucosal surfaces.  相似文献   

10.
The natural immune response to Helicobacter pylori neither clears infection nor prevents reinfection. However, the ability of secretory antibodies to influence the course of H. pylori infection has not been determined. We compared the natural progression of H. pylori infection in wild-type C57BL/6 mice with that in mice lacking the polymeric immunoglobulin receptor (pIgR) that is essential for the secretion of polymeric antibody across mucosal surfaces. H. pylori SS1-infected wild-type and pIgR knockout (KO) mice were sampled longitudinally for gastrointestinal bacterial load, antibody response, and histological changes. The gastric bacterial loads of wild-type and pIgR KO mice remained constant and comparable at up to 3 months postinfection (mpi) despite SS1-reactive secretory IgA in the intestinal contents of wild-type mice at that time. Conversely, abundant duodenal colonization of pIgR KO animals contrasted with the near-total eradication of H. pylori from the intestine of wild-type animals by 3 mpi. H. pylori was cultured only from the duodenum of those animals in which colonization in the distal gastric antrum was of sufficient density for immunohistological detection. By 6 mpi, the gastric load of H. pylori in wild-type mice was significantly lower than in pIgR KO animals. While there was no corresponding difference between the two mouse strains in gastric pathology results at 6 mpi, reductions in gastric bacterial load correlated with increased gastric inflammation together with an intestinal secretory antibody response in wild-type mice. Together, these results suggest that naturally produced secretory antibodies can modulate the progress of H. pylori infection, particularly in the duodenum.  相似文献   

11.
12.
Citrobacter rodentium infection of mice induces cell-mediated immune responses associated with crypt hyperplasia and epithelial β-catenin signaling. Recent data suggest that phosphatidylinositol-3-kinase (PI3K)/Akt signaling cooperates with Wnt to activate β-catenin in intestinal stem and progenitor cells through phosphorylation at Ser552 (P-β-catenin(552)). Our aim was to determine whether epithelial PI3K/Akt activation is required for β-catenin signaling and host defense against C. rodentium. C57BL/6 mice were infected with C. rodentium and treated with dimethyl sulfoxide (DMSO) (vehicle control) or with the PI3K inhibitor LY294002 or wortmannin. The effects of infection on PI3K activation and β-catenin signaling were analyzed by immunohistochemistry. The effects of PI3K inhibition on host defense were analyzed by the quantification of splenic and colon bacterial clearance, and adaptive immune responses were measured by real-time PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Increased numbers of P-β-catenin(552)-stained epithelial cells were found throughout expanded crypts in C. rodentium colitis. We show that the inhibition of PI3K signaling attenuates epithelial Akt activation, the Ser552 phosphorylation and activation of β-catenin, and epithelial cell proliferative responses during C. rodentium infection. PI3K inhibition impairs bacterial clearance despite having no impact on mucosal cytokine (gamma interferon [IFN-γ], tumor necrosis factor [TNF], interleukin-17 [IL-17], and IL-1β) or chemokine (CXCL1, CXCL5, CXCL9, and CXCL10) induction. The results suggest that the host defense against C. rodentium requires epithelial PI3K activation to induce Akt-mediated β-catenin signaling and the clearance of C. rodentium independent of adaptive immune responses.  相似文献   

13.
The observation that approximately half of the B cells in the murine intestinal lamina propria are derived from peritoneal CD5 B-cell precursors raises the question of their contribution to mucosal protection. Using mice with X-linked immunodeficiency which are deficient in CD5+ B cells, we showed that they mount little serum and virtually no intestinal immunoglobulin M (IgM), IgG, and IgA antibody responses following oral inoculation with live Salmonella typhimurium. Nonresponsive Xid mice were reconstituted with responsive CBA/Ca donor cell preparations which were constitutively enriched or depleted of CD5 B-cell precursors. Reconstitution of irradiated Xid mice with CD5 B-cell-deficient bone marrow from CBA/Ca donors marginally improved IgM responses in the intestinal mucosa but had no effect on IgG or IgA in response to oral immunization with live S. typhimurium. Whenever Xid mice were reconstituted with donor cells from the peritoneal cavity, which are enriched for CD5 B-cell precursors, strong IgA and in some cases IgG responses in the intestinal mucosa were stimulated in response to oral immunization. When mucosal and serum antibody responses were compared, the peritoneal donor cells again reinstated maximal serum antibody responses to S. typhimurium. Serum and mucosal responses to the bacterial hapten phosphorylcholine could be induced in Xid mice after immunization with S. typhimurium or hapten-carrier conjugates but only following reconstitution with donor cells containing CD5 B-cell precursors. These observations suggest that different lymphoid compartments are enriched for regulatory or effector cells which vary in their contributions to the mucosal antibody response against epitopes on S. typhimurium.  相似文献   

14.
15.
16.
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli cause an inflammatory colitis in human patients characterized by neutrophil infiltration, proinflammatory cytokine expression, and crypt hyperplasia. Citrobacter rodentium causes a similar colitis in mice and serves as a model for enteropathogenic E. coli infection in humans. C. rodentium induces systemic T-cell-dependent antibody production that facilitates clearance of the bacteria and protects the host from reinfection. The role of innate immune cells in infectious colitis, however, is less well understood. In this study, we have determined the role of mast cells in the inflammatory response and disease induced by C. rodentium. Mice deficient in mast cells exhibit more severe colonic histopathology and have a higher mortality rate following infection with C. rodentium than do wild-type animals. Despite unimpaired neutrophil recruitment and lymphocyte activation, mast cell-deficient mice have a disseminated infection evident in crucial organ systems that contributes to sepsis. Importantly, mast cells also have the capacity to directly kill C. rodentium. Together, these results suggest that mast cells protect the host from systemic infection by reducing the bacterial load and preventing dissemination of the bacterium from the colon.  相似文献   

17.
H Y Wu  M W Russell 《Immunology》1992,77(3):443-448
To elucidate the origins of biliary IgA antibodies, we investigated the isotype and specificity of antibody-secreting cells (ASC) in the liver in comparison with the spleen and intestinal lamina propria of mice immunized by peroral or parenteral routes. The profile of specific IgM, IgG1, IgG2a, and IgA ASC in the liver resembled that of the spleen rather than the lamina propria, regardless of the route of immunization. Peroral immunization increased the proportion of specific IgA ASC in all three organs. However, liver mononuclear cells (MNC) contained a higher proportion of total IgA-secreting cells than spleen cells. After immunization, the number and proportion of B220+ B cells were increased in the liver but not in the spleen. Although the predominant isotype of Ig and specific antibody in bile in response to immunization by either route was IgA, IgM and IgG were clearly detectable. However, specific activities of biliary antibodies relative to total Ig isotype were generally higher than in serum. The predominance of IgA-secreting cells in the liver and the large amount of IgA secreted in the bile resemble the situation at other secretory sites of the mucosal immune system. However, specific antibody-secreting cells appear to accumulate in the liver promptly after immunization, regardless of isotype, and contribute locally produced antibodies to the bile.  相似文献   

18.
The protozoan pathogen Giardia is an important cause of parasitic diarrheal disease worldwide. It colonizes the lumen of the small intestine, suggesting that effective host defenses must act luminally. Immunoglobulin A (IgA) antibodies are presumed to be important for controlling Giardia infection, but direct evidence for this function is lacking. B-cell-independent effector mechanisms also exist and may be equally important for antigiardial host defense. To determine the importance of the immunoglobulin isotypes that are transported into the intestinal lumen, IgA and IgM, for antigiardial host defense, we infected gene-targeted mice lacking IgA-expressing B-cells, IgM-secreting B-cells, or all B-cells as controls with Giardia muris or Giardia lamblia GS/M-83-H7. We found that IgA-deficient mice could not eradicate either G. muris or G. lamblia infection, demonstrating that IgA is required for their clearance. Furthermore, although neither B-cell-deficient nor IgA-deficient mice could clear G. muris infections, IgA-deficient mice controlled infection significantly better than B-cell-deficient mice, suggesting the existence of B-cell-dependent but IgA-independent antigiardial defenses. In contrast, mice deficient for secreted IgM antibodies cleared G. muris infection normally, indicating that they have no unique functions in antigiardial host defense. These data, together with the finding that B-cell-deficient mice have some, albeit limited, residual capacity to control G. muris infection, show that IgA-dependent host defenses are central for eradicating Giardia spp. Moreover, B-cell-dependent but IgA-independent and B-cell-independent antigiardial host defenses exist but are less important for controlling infection.  相似文献   

19.
We examined whether or not dietary fructooligosaccharides (FOS) in infancy can have a beneficial effect on the mucosal immune system. Newborn BALB/c mice, accompanied by their dams until 21 days of age, were fed either a control diet based on casein [FOS- diet group] or a FOS- diet supplemented with 5% (w/w) FOS [FOS+ diet group]. Total IgA levels in tissue extracts from the intestines of mice in the FOS+ diet group at 38 days of age were about twofold higher (P < 0.05) than those in the FOS- diet group in the jejunum, ileum and colon. Ileal and colonic polymeric immunoglobulin receptor (pIgR) expression in the FOS+ diet group at 36 days of age was 1.5-fold higher than in the FOS- diet group (P < 0.05). Consistent with these results, the ileal IgA secretion rate of the FOS+ diet group at 37 days of age was twofold higher than that of the FOS- diet group (P < 0.05). Moreover, the percentage of B220(+)IgA+ cells in Peyer's patches (PP) was significantly higher in the FOS+ diet group than in the FOS- diet group (6.2%versus 4.3%, P < 0.05), suggesting that isotype switching from IgM to IgA in PP B cells might be enhanced in vivo. Taken together, our findings suggest that dietary FOS increases the intestinal IgA response and pIgR expression in the small intestine as well as the colon in infant mice.  相似文献   

20.
Enteropathogenic Escherichia coli (EPEC) is a common cause of diarrhea in children from developing countries. Intimate adhesion of the bacteria to intestinal cells occurs via binding of the adhesin intimin to the TIR receptor exposed on cell surfaces. Here, Lactobacillus casei expressing a fragment of β-intimin (L. casei-Int(cv)) was tested as mucosal vaccines in mice against intestinal colonization with the murine pathogen Citrobacter rodentium. Oral or sublingual immunization of C57BL/6 mice with L. casei-Int(cv) induced anti-Int(cv) IgA in feces but no IgG in sera. Conversely, anti-Int(cv) IgG was induced in the sera of mice after sublingual immunization with purified Int(cv). All vaccines were able to decrease C. rodentium recovery from feces. However, this reduction was more evident and sustained over time in mice immunized with L. casei-Int(cv) by the sublingual route. These mice also displayed an increase in interleukin 6 (IL-6) and gamma interferon (IFN-γ) secretion by spleen cells 10 days after infection. Additionally, oral or sublingual immunization of C3H/HePas mice, which are highly susceptible to C. rodentium infection, with L. casei-Int(cv) induced anti-Int(cv) antibodies and significantly increased survival after challenge. Immunohistological analysis of colon sections revealed that C. rodentium was located in deep fractions of the tissue from C3H/HePas mice immunized with L. casei whereas superficial staining was observed in colon sections from mice immunized with L. casei-Int(cv.) The results indicate that vaccines composed of L. casei expressing intimin may represent a promising approach and that the C3H/HePas infection model with C. rodentium can be used to evaluate potential vaccines against EPEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号