首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
β-Cell dysfunction is an important factor in the development of hyperglycemia of type-2 diabetes mellitus, and pancreatic islet amyloidosis (IA) has been postulated to be one of the main contributors to impaired insulin secretion. The aim of this study was to evaluate the correlation of IA with metabolic parameters and its effect on islets of Langerhans remodeling and relative endocrine-cell volume in baboons. We sequenced the amylin peptide, determined the fibrillogenic propensities, and evaluated pancreatic histology, clinical and biochemical characteristics, and endocrine cell proliferation and apoptosis in 150 baboons with different metabolic status. Amylin sequence in the baboon was 92% similar to humans and showed superimposable fibrillogenic propensities. IA severity correlated with fasting plasma glucose (FPG) (r = 0.662, P < 0.001) and HbA1c (r = 0.726, P < 0.001), as well as with free fatty acid, glucagon values, decreased homeostasis model assessment (HOMA) insulin resistance, and HOMA-B. IA severity was associated with a decreased relative β-cell volume, and increased relative α-cell volume and hyperglucagonemia. These results strongly support the concept that IA and β-cell apoptosis in concert with α-cell proliferation and hypertrophy are key determinants of islets of Langerhans “dysfunctional remodeling” and hyperglycemia in the baboon, a nonhuman primate model of type-2 diabetes mellitus. The most important determinants of IA were age and FPG (R2 = 0.519, P < 0.0001), and different FPG levels were sensitive and specific to predict IA severity. Finally, a predictive model for islet amyloid severity was generated with age and FPG as required variables.  相似文献   

2.
3.
Differentiation and function of pancreatic β cells are regulated by a variety of hormones and growth factors, including nerve growth factor (NGF). Whether this is an endocrine or autocrine/paracrine role for NGF is not known. We demonstrate that NGF is produced and secreted by adult rat pancreatic β cells. NGF secretion is increased in response to elevated glucose or potassium, but decreased in response to dibutyryl cAMP. Moreover, steady-state levels of NGF mRNA are down-regulated by dibutyryl cAMP, which is opposite to the effect of cAMP on insulin release. NGF-stimulated changes in morphology and function are mediated by high-affinity Trk A receptors in other mammalian cells. Trk A receptors are present in β cells and steady-state levels of Trk A mRNA are modulated by NGF and dibutyryl cAMP. Taken together, these findings suggest endocrine and autocrine roles for pancreatic β-cell NGF, which, in turn, could be related to the pathogenesis of diabetes mellitus where serum NGF levels are diminished.  相似文献   

4.
Expression of peroxisome proliferator-activated receptor α (PPARα) and enzymes of fatty acid (FA) oxidation is markedly reduced in the fat-laden, dysfunctional islets of obese, prediabetic Zucker diabetic fatty (fa/fa) rats with mutated leptin receptors (OB-R). Leptin, PPARα/retinoid x receptor ligands, and FA all up-regulate PPARα and enzymes of FA oxidation and stimulate [3H]-palmitate oxidation in normal islets but not in islets from fa/fa rats. Overexpression of normal OB-R in islets of fa/fa rats corrects all of the foregoing abnormalities and reverses the diabetic phenotype. PPARα is a OB-R-dependent factor required for normal fat homeostasis in islet cells.  相似文献   

5.
The gastrointestinal tract is considered an important endocrine organ for controlling glucose homeostasis via the production of incretins. A 21-year-old man emergently underwent total colectomy due to severe ulcerative colitis, and overt diabetes became evident. Weekly administration of a glucagon-like peptide (GLP)-1 receptor agonist (RA) dramatically improved his glucose control. Levels of GLP-1 or gastric inhibitory polypeptide (GIP) were low at the baseline in the duodenum and serum of the patient. After 11 months of GLP-1RA treatment, his HbA1c worsened again, and intensive insulin therapy was necessary to control his glucose levels. Our report may explain the significance of residual incretin for maintaining the pancreatic β-cell function.  相似文献   

6.
Tomita T 《Islets》2011,3(6):344-351
Aims/hypothesis: Islet amyloid polypeptide is originally identified as the chief constituent of amyloid in insulinomas and type 2 diabetic islets. This study aimed to identify islet amyloid polypeptide by immunocytochemical staining in pancreatic endocrine tumors including 30 cases of insulinomas and non-β-cell pancreatic endocrine tumors. Results: In normal islets, 62% of islet cells and 52% of insulin cells were granularly positive for insulin and IAPP, respectively, with more insulin positive cells than IAPP positive cells and some densely positive staining for insulin and IAPP in irregularly shaped a nuclear, degenerating islet β-cells. In pancreatic endocrine tumors, all 10 insulinomas were positive for islet amyloid polypeptide but 2 glucogonomas, 1 somatostatinoma, 6 of 7 pancreatic polypeptidomas, all 7 gastrinomas and all 3 non-functioning pancreatic endocrine tumors were negative for islet amyloid polypeptide whereas one pancreatic polypeptidoma was positive for islet amyloid polypeptide. Methods: Using commercially available rabbit anti-islet amyloid polypeptide antibody, immunocytochemical staining was performed on 30 cases of pancreatic endocrine tumors, consisting of 10 insulinomas, 2 glucagonomas, 1 somatostatinoma, 7 pancreatic polypeptidomas, 7 gastrinomas and 3 non-functioning pancreatic endocrine tumors. Pancreatic tissues containing pancreatic endocrine tumors were systematically immunostained for insulin, glucagon, somatostatin, pancreatic polypeptide, gastrin and chromogranin A, in addition to islet amyloid polypeptide. When normal pancreatic tissues adjacent to pancreatic endocrine tumors were present, insulin, glucagon, somatostatin and islet amyloid polypeptide positive cells were counted for a total of 20 islets, which were divided into large islets and medium islets for each case. Conclusions/Interpretations: All 10 insulinomas and 1 pancreatic polypeptidoma were granularly positive for islet amyloid polypeptide, suggesting all 10 insulinomas contained enough insulin granules for IAPP whereas only one non-β-cell pancreatic endocrine tumor was co-localized with islet amyloid polypeptide in their secretary granules.  相似文献   

7.
AIM: To investigate the anti-diabetogenic mechanism of Nardostachys jatamansi extract (NJE).METHODS: Mice were injected with streptozotocin via a tail vein to induce diabetes. Rat insulinoma RINm5F cells and isolated rat islets were treated with interleukin-1β and interferon-γ to induce cytotoxicity.RESULTS: Treatment of mice with streptozotocin resulted in hyperglycemia and hypoinsulinemia, which was confirmed by immunohistochemical staining of the islets. The diabetogenic effects of streptozotocin were completely abolished when mice were pretreated with NJE. Inhibition of streptozotocin-induced hyperglycemia by NJE was mediated by suppression of nuclear factor (NF)-κB activation. In addition, NJE protected against cytokine-mediated cytotoxicity. Incubation of RINm5F cells and islets with NJE resulted in a significant reduction in cytokine-induced NF-κB activation and downstream events, inducible nitric oxide synthase expression and nitric oxide production. The protective effect of NJE was further demonstrated by the normal insulin secretion of cytokine-treated islets in response to glucose.CONCLUSION: NJE provided resistance to pancreatic β-cell damage from cytokine or streptozotocin treatment. The β-cell protective effect of NJE is mediated by suppressing NF-κB activation.  相似文献   

8.
We evaluated the potential for a monoclonal antibody antagonist of the glucagon receptor (Ab-4) to maintain glucose homeostasis in type 1 diabetic rodents. We noted durable and sustained improvements in glycemia which persist long after treatment withdrawal. Ab-4 promoted β-cell survival and enhanced the recovery of insulin+ islet mass with concomitant increases in circulating insulin and C peptide. In PANIC-ATTAC mice, an inducible model of β-cell apoptosis which allows for robust assessment of β-cell regeneration following caspase-8–induced diabetes, Ab-4 drove a 6.7-fold increase in β-cell mass. Lineage tracing suggests that this restoration of functional insulin-producing cells was at least partially driven by α-cell-to-β-cell conversion. Following hyperglycemic onset in nonobese diabetic (NOD) mice, Ab-4 treatment promoted improvements in C-peptide levels and insulin+ islet mass was dramatically increased. Lastly, diabetic mice receiving human islet xenografts showed stable improvements in glycemic control and increased human insulin secretion.

Pancreatic islets secrete both insulin and glucagon in a manner which is tightly juxtaposed. Aberrant glucagon production correlates with diabetes and suppression of glucagon corrects the hyperglycemia of diabetes; however, glucagon’s role in the metabolic manifestations of diabetes remains a subject of debate. More recently, targeted disruption of glucagon action has gained traction as a potential treatment for diabetes. Glucagon receptor (GcgR) antagonists include small-molecule inhibitors and humanized antibodies which antagonize glucagon receptor activation. Both antisense oligonucleotides and human antibodies against GcgR show promise to promote glycemic control in patients while minimizing the side effects seen with small molecules (1). GcgR-antagonizing antibodies provide effective glucose control in rodents and primate models of type 2 diabetes (24). Hyperglucagonemia and excess proliferation of α-cells also result following these treatments, which phenocopy global or liver-specific GcgR−/− mice (5, 6).More recently, our work demonstrated evidence that the blockage of glucagon action improves glycemia in type 1 diabetic rodents (7). Our observations in type 1 diabetic rodents have been replicated by others who have met these results with skepticism (8, 9). In humans, GcgR antagonism diminishes insulin requirements (10, 11). Initial clinical trials in patients with type 1 diabetes showed no serious adverse effects while improving glucose control (10).During the severe insulin resistance promoted by insulin receptor-antagonizing peptide S961, GcgR antagonism can improve insulin production and β-cell mass over S961 alone, suggesting that GcgR antagonism may be beneficial in promoting functional β-cell mass under conditions of severe insulin resistance (12). We hypothesize that such conditions may also exist during insulin deficiency. While testing the efficacy of a similar GcgR-antagonizing antibody (Ab-4) in models of type 1 diabetes (13), we were struck by the remarkable finding that stable normoglycemia can remain following cessation of the treatment. Here, we assess the efficacy of the GcgR antagonist Ab-4 to enhance functional β-cell mass and restore stable glucose control.  相似文献   

9.
Interleukin-6 (IL-6) is systemically elevated in obesity and is a predictive factor to develop type 2 diabetes. Pancreatic islet pathology in type 2 diabetes is characterized by reduced β-cell function and mass, an increased proportion of α-cells relative to β-cells, and α-cell dysfunction. Here we show that the α cell is a primary target of IL-6 actions. Beginning with investigating the tissue-specific expression pattern of the IL-6 receptor (IL-6R) in both mice and rats, we find the highest expression of the IL-6R in the endocrine pancreas, with highest expression on the α-cell. The islet IL-6R is functional, and IL-6 acutely regulates both pro-glucagon mRNA and glucagon secretion in mouse and human islets, with no acute effect on insulin secretion. Furthermore, IL-6 stimulates α-cell proliferation, prevents apoptosis due to metabolic stress, and regulates α-cell mass in vivo. Using IL-6 KO mice fed a high-fat diet, we find that IL-6 is necessary for high-fat diet-induced increased α-cell mass, an effect that occurs early in response to diet change. Further, after high-fat diet feeding, IL-6 KO mice without expansion of α-cell mass display decreased fasting glucagon levels. However, despite these α-cell effects, high-fat feeding of IL-6 KO mice results in increased fed glycemia due to impaired insulin secretion, with unchanged insulin sensitivity and similar body weights. Thus, we conclude that IL-6 is necessary for the expansion of pancreatic α-cell mass in response to high-fat diet feeding, and we suggest that this expansion may be needed for functional β-cell compensation to increased metabolic demand.  相似文献   

10.

Introduction

Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas.

Methods

A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller.

Results

Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents.

Conclusions

This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model.  相似文献   

11.
Tomita T 《Islets》2012,4(3):223-232
Aims/hypothesis: Islet amyloid polypeptide (IAPP) is a chief constituent of amyloid deposits in pancreatic islets, characteristic histopathology for type 2 diabetes. The goal of this study was to analyze islet cell composition in diabetic islets for the process of transforming water-soluble IAPP in β-cells to water-insoluble amyloid deposits by Immunocytochemical staining using different dilutions of anti-IAPP antibody. IAPP in β-cell granules may initiate β-cell necrosis through apoptosis to form interstitial amyloid deposits in type 2 diabetic islets. Results: Control islets revealed twice as much β-cells as α-cells whereas 15 of 18 type 2 diabetic cases (83%) revealed α- cells as major cells in larger islets. Diabetic islets consisted of more larger islets with more σ-cells than β-cells, which contribute to hyperglucagonemia. In control islets, percentage of IAPP-positive cells against β-cells was 40–50% whereas percentage for type 2 diabetic islets was about 25%. Amyloid deposits in diabetic islets were not readily immunostained for IAPP using 1: 800 diluted antibody, however, 1: 400 and 1: 200 diluted solutions provided stronger immunostaining in early stages of islet amyloidogenesis after treating the deparaffinized sections with formic acid. Methods: Using commercially available rabbit antihuman IAPP antibody, immunocytochemical staining was performed on 18 cases of pancreatic tissues from type 2 diabetic subjects by systematically immunostaining for insulin, glucagon, somatostatin (SRIF) and IAPP compared with controls. Sizes of islets were measured by 1 cm scale, mounted in 10X eye piece. Conclusions/Interpretation: α cells were major islet cells in majority of diabetic pancreas (83%) and all diabetic islets contained less IAPP-positive cells than controls, indicating that IAPP deficiency in pancreatic islets is responsible for decreased IAPP in blood. In diabetic islets, water-soluble IAPP disappeared in β-cell granules, which transformed to water-insoluble amyloid deposits. Amyloid deposits were not readily immunostained using IAPP 1: 800 diluted antibody but were stronger immunostained for IAPP in early stages of amyloid deposited islets using less diluted solutions after formic acid treatment. In early islet amyloidogenesis, dying β-cell cytoplasm was adjacently located to fine amyloid fibrils, supporting that IAPP in secretary granules from dying β cells served as nidus for islet β-sheet formation.  相似文献   

12.
Like obese humans, Zucker diabetic fatty (ZDF) rats exhibit early β cell compensation for insulin resistance (4-fold β cell hyperplasia) followed by decompensation (>50% loss of β cells). In prediabetic and diabetic ZDF islets, apoptosis measured by DNA laddering is increased 3- and >7-fold, respectively, compared with lean ZDF controls. Ceramide, a fatty acid-containing messenger in cytokine-induced apoptosis, was significantly increased (P < 0.01) in prediabetic and diabetic islets. Free fatty acids (FFAs) in plasma are high (>1 mM) in prediabetic and diabetic ZDF rats; therefore, we cultured prediabetic islets in 1 mM FFA. DNA laddering rose to 19.6% vs. 4.6% in lean control islets, preceded by an 82% increase in ceramide. C2-Ceramide without FFA induced DNA laddering, but fumonisin B1, a ceramide synthetase inhibitor, completely blocked FFA-induced DNA laddering in cultured ZDF islets. [3H]Palmitate incorporation in [3H]ceramide in ZDF islets was twice that of controls, but [3H]palmitate oxidation was 77% less. Triacsin C, an inhibitor of fatty acyl-CoA synthetase, and troglitazone, an enhancer of FFA oxidation in ZDF islets, both blocked DNA laddering. These agents also reduced inducible nitric oxide (NO) synthase mRNA and NO production, which are involved in FFA-induced apoptosis. In ZDF obesity, β cell apoptosis is induced by increased FFA via de novo ceramide formation and increased NO production.  相似文献   

13.
Leptin is a pivotal regulator of energy and glucose homeostasis, and defects in leptin signaling result in obesity and diabetes. The ATP-sensitive potassium (KATP) channels couple glucose metabolism to insulin secretion in pancreatic β-cells. In this study, we provide evidence that leptin modulates pancreatic β-cell functions by promoting KATP channel translocation to the plasma membrane via AMP-activated protein kinase (AMPK) signaling. KATP channels were localized mostly to intracellular compartments of pancreatic β-cells in the fed state and translocated to the plasma membrane in the fasted state. This process was defective in leptin-deficient ob/ob mice, but restored by leptin treatment. We discovered that the molecular mechanism of leptin-induced AMPK activation involves canonical transient receptor potential 4 and calcium/calmodulin-dependent protein kinase kinase β. AMPK activation was dependent on both leptin and glucose concentrations, so at optimal concentrations of leptin, AMPK was activated sufficiently to induce KATP channel trafficking and hyperpolarization of pancreatic β-cells in a physiological range of fasting glucose levels. There was a close correlation between phospho-AMPK levels and β-cell membrane potentials, suggesting that AMPK-dependent KATP channel trafficking is a key mechanism for regulating β-cell membrane potentials. Our results present a signaling pathway whereby leptin regulates glucose homeostasis by modulating β-cell excitability.The KATP channel, an inwardly rectifying K+ channel that consists of pore-forming Kir6.2 and regulatory sulfonylurea receptor 1 (SUR1) subunits (1), functions as an energy sensor: its gating is regulated mainly by the intracellular concentrations of ATP and ADP. In pancreatic β-cells, KATP channels are inhibited or activated in response to the rise or fall in blood glucose levels, leading to changes in membrane excitability and insulin secretion (2, 3). Thus, KATP channel gating has been considered an important mechanism in coupling blood glucose levels to insulin secretion. Recently, trafficking of KATP channels to the plasma membrane was highlighted as another important mechanism for regulating KATP channel activity (46).AMP-activated protein kinase (AMPK) is a key enzyme regulating energy homeostasis (7). We recently demonstrated that KATP channels are recruited to the plasma membrane in glucose-deprived conditions via AMPK signaling in pancreatic β-cells (6). Inhibition of AMPK signaling significantly reduces KATP currents, even after complete wash-out of intracellular ATP (6). Given these results, we proposed a model that recruitment of KATP channels to the plasma membrane via AMPK signaling is crucial for KATP channel activation in low-glucose conditions. However, the physiological relevance of this model remains unclear because pancreatic β-cells had to be incubated in media containing less than 3 mM glucose to recruit a sufficient number of KATP channels to the plasma membrane (6). We thus hypothesized that there should be an endogenous ligand in vivo that promotes AMPK-dependent KATP channel trafficking sufficiently to stabilize pancreatic β-cells at physiological fasting glucose levels.Leptin is an adipocyte-derived hormone that regulates food intake, body weight, and glucose homeostasis (8, 9). In addition to its central action, leptin regulates the release of insulin and glucagon, the key hormones regulating glucose homeostasis, by direct actions on β- and α-cells of pancreatic islets, respectively (1012). It thus was proposed that the adipoinsular axis is crucial for maintaining nutrient balance and that dysregulation of this axis contributes to obesity and diabetes (12). However, intracellular signaling mechanisms underlying leptin effects are largely unknown. Leptin was shown to increase KATP currents in pancreatic β-cells (13, 14), but the possibility that KATP channel trafficking mediates leptin-induced KATP channel activation has not been explored.In the present study, we demonstrate that the surface levels of KATP channels increase in pancreatic β-cells under fasting conditions in vivo. Translocation of KATP channels to the plasma membrane in fasting was absent in pancreatic β-cells from ob/ob mice, but restored by treatment with leptin, suggesting a role for leptin in KATP channel trafficking in vivo. We further show that leptin-induced AMPK activation, which is essential for KATP channel trafficking to the plasma membrane, is mediated by activation of canonical transient receptor potential 4 (TRPC4) and calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ). Our results highlight the importance of trafficking regulation in KATP channel activation and provide insights into the action of leptin on glucose homeostasis.  相似文献   

14.
15.
Associations with insulin resistance and islet β-cell function have been studied cross-sectionally in a population-based sample of 4278 Mauritians comprising Asian Indian, Creole and Chinese subjects. Insulin resistance and β-cell function were estimated by a computer solved model based on fasting plasma glucose and insulin concentrations. Insulin resistance increased with declining glucose tolerance, whereas β-cell function was highest in subjects with impaired glucose tolerance (IGT) and lowest in those with non-insulin-dependent diabetes mellitus (NIDDM). Indian subjects had the highest β-cell function, while ethnic differences in insulin sensitivity were-less marked. This may indicate that deranged β-cell function rather than insulin resistance is the primary determinant of hyperinsulinaemia and glucose intolerance in Asian Indians. β-Cell function declined with age more sharply than did insulin sensitivity, suggesting that the age-related decline in glucose tolerance is primarily related to loss of β-cell function. Body mass index, waist/hip ratio, physical inactivity and female sex were independently associated with insulin resistance and β-cell function. Subjects with a family history of diabetes had increased insulin resistance, irrespective of glucose tolerance. This or similar models may have application in longitudinal population-based studies which seek to determine the relative contributions of insulin resistance and β-cell function to the aetio-pathogenesis of NIDDM.  相似文献   

16.
Aims/IntroductionGlutamine is the most abundant amino acid in the circulation. In this study, we investigated cell signaling in the amplification of insulin secretion by glutamine.Materials and MethodsClonal pancreatic β‐cells MIN6‐K8, wild‐type B6 mouse islets, glutamate dehydrogenase (GDH) knockout clonal β‐cells (Glud1KOβCL), and glutamate‐oxaloacetate transaminase 1 (GOT1) knockout clonal β‐cells (Got1KOβCL) were studied. Insulin secretion from these cells and islets was examined under various conditions, and intracellular glutamine metabolism was assessed by metabolic flux analysis. Intracellular Ca2+ concentration ([Ca2+]i) was also measured.ResultsGlutamine dose‐dependently amplified insulin secretion in the presence of high glucose in both MIN6‐K8 cells and Glud1KOβCL. Inhibition of glutaminases, the enzymes that convert glutamine to glutamate, dramatically reduced the glutamine‐amplifying effect on insulin secretion. A substantial amount of glutamate was produced from glutamine through direct conversion by glutaminases. Glutamine also increased [Ca2+]i at high glucose, which was abolished by inhibition of glutaminases. Glutamic acid dimethylester (dm‐Glu), a membrane permeable glutamate precursor that is converted to glutamate in cells, increased [Ca2+]i as well as induced insulin secretion at high glucose. These effects of glutamine and dm‐Glu were dependent on calcium influx. Glutamine also induced insulin secretion in clonal β‐cells MIN6‐m14, which otherwise exhibit no insulin secretory response to glucose.ConclusionsGlutamate converted from glutamine is an essential mediator that enhances calcium signaling in the glutamine‐amplifying effect on insulin secretion. Our data also suggest that glutamine exerts a permissive effect on glucose‐induced insulin secretion.  相似文献   

17.
18.
The role of integrins, in particular αv integrins, in regulating insulin resistance is incompletely understood. We have previously shown that the αvβ5 integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) regulates cellular uptake of fatty acids. In this work, we evaluated the impact of MFGE8 on glucose homeostasis. We show that acute blockade of the MFGE8/β5 pathway enhances while acute augmentation dampens insulin-stimulated glucose uptake. Moreover, we find that insulin itself induces cell-surface enrichment of MFGE8 in skeletal muscle, which then promotes interaction between the αvβ5 integrin and the insulin receptor leading to dampening of skeletal-muscle insulin receptor signaling. Blockade of the MFGE8/β5 pathway also enhances hepatic insulin sensitivity. Our work identifies an autoregulatory mechanism by which insulin-stimulated signaling through its cognate receptor is terminated through up-regulation of MFGE8 and its consequent interaction with the αvβ5 integrin, thereby establishing a pathway that can potentially be targeted to improve insulin sensitivity.

Acute insulin resistance can be viewed as a protective response under specific physiological conditions that necessitate increased insulin secretion. Nevertheless, the increasing prevalence of chronic insulin resistance (1) in the current obesity epidemic hastens the development of type 2 diabetes (T2D) and induces compensatory hyperinsulinemia. Hyperinsulinemia can produce potentially maladaptive consequences at least in part, due to the mitogenic roles of insulin (24). As such, there remains a critical need for new therapies to improve insulin sensitivity in order to prevent T2D, avoid the need for insulin treatment in patients with T2D, or reduce the insulin dose required to normalize blood glucose in such individuals.Insulin binding to the alpha subunit of the insulin receptor induces a conformational change that triggers activation of insulin receptor beta subunit (IRβ) tyrosine kinase activity (57). The activated insulin receptor phosphorylates target molecules that mediate downstream signaling leading to glucose uptake and other metabolic effects (8, 9). Dephosphorylation of IRβ and insulin receptor substrate-1 (IRS-1) aids in termination of insulin signaling pathways (10, 11) and is the basis of clinical trials targeting putative phosphatases to treat diabetes (12). Despite their potential therapeutic relevance, there is a relative paucity of knowledge regarding molecular mechanisms that lead to termination of insulin receptor signaling.The integrin families of cell surface receptors mediate bidirectional signaling between the cell and its external environment. Previous work has identified interactions between integrin receptors and other growth factor receptor tyrosine kinases (1316) that lead to modulation of downstream signaling (1719). For example, the αvβ3 and α6β4 integrins function as coreceptors for insulin-like growth factor-1 and 2 (IGF1 and 2) and potentiate IGF1 receptor (IGF1R)-mediated signaling (1923). Immunoprecipitation studies have demonstrated a physical association between the αv integrins and IRβ (24, 25). The impact of these associations on glucose homeostasis has not been evaluated. A role for β1 integrins in the regulation of glucose homeostasis is well established. This class of integrins appears to be particularly important in regulating insulin-mediated glucose homeostasis in the obese state. The effect of β1 integrins on glucose homeostasis appears to be primarily due to obesity-associated matrix remodeling (2630) rather than a direct effect secondary to a physical association between β1 integrins and the insulin receptor.Milk fat globule epidermal growth factor like 8 (MFGE8) is a secreted integrin ligand which binds the αvβ3, αvβ5, and α8β1 integrins (31, 32). Several recent observations suggest a role for MFGE8 in modulating insulin resistance. In humans, serum MFGE8 levels are increased in the context of diabetes and correlate positively with the extent of hemoglobin glycosylation (33, 34). Indeed, serum MFGE8 levels correlate with indices of insulin resistance in two independent cohorts of patients with T2D or gestational diabetes from China (35, 36). A missense variation in the gene encoding MFGE8, present in South Asian Punjabi Sikhs, is associated with increased circulating MFGE8 levels and increased risk of developing T2D (37). Increased circulating levels of MFGE8 in diabetic patients may impact T2D through effects on inflammation and cardiovascular disease. Humans with increased MFGE8 expression have a greater risk of developing coronary artery disease (38). In contrast, in murine models, MFGE8 deficiency exacerbates cardiac hypertrophy and atherosclerosis (39, 40). MFGE8 also improves wound healing responses in diabetic foot ulcers (41, 42) by triggering apoptotic cell clearance and promoting resolution of inflammation (4345).Despite the notable links between MFGE8, insulin resistance, and T2D pathology, the biology underlying these associations has not been investigated. We therefore evaluated the effect of acute antibody-mediated disruption of the MFGE8/β5 pathway on glucose homeostasis in wild-type (WT) mice. We report here that MFGE8 markedly attenuates the effect of insulin on skeletal muscle glucose uptake. Antibody-mediated blockade of MFGE8 or αvβ5 enhances while recombinant MFGE8 (rMFGE8) reduces insulin-stimulated glucose uptake in vitro and in vivo. Mechanistically, insulin acts to promotes cell-surface enrichment of skeletal muscle MFGE8, which then binds to cell surface αvβ5 and increases the interaction between the integrin and the insulin receptor. This interaction subsequently aids in terminating insulin receptor signaling.  相似文献   

19.
20.
《Islets》2013,5(5):308-317
Pancreatic β cell response to glucose stimulation is governed by tightly regulated signaling pathways which have not been fully characterized. A screen for novel signaling intermediates identified Pim3 as a glucose-responsive gene in the β cell, and here, we characterize its role in the regulation of β-cell function. Pim3 expression in the β-cell was first observed through microarray analysis on glucose-stimulated murine insulinoma (MIN6) cells where expression was strongly and transiently induced. In the pancreas, Pim3 expression exhibited similar dynamics and was restricted to the β cell. Perturbation of Pim3 function resulted in enhanced glucose-stimulated insulin secretion, both in MIN6 cells and in isolated islets from Pim3-/- mice, where the augmentation was specifically seen in the second phase of secretion. Consequently, Pim3-/- mice displayed an increased glucose tolerance in vivo. Interestingly, Pim3-/- mice also exhibited increased insulin sensitivity. Glucose stimulation of isolated Pim3-/- islets resulted in increased phosphorylation of ERK1/2, a kinase involved in regulating β-cell response to glucose. Pim3 was also found to physically interact with SOCS6 and SOCS6 levels were strongly reduced in Pim3-/- islets. Overexpression of SOCS6 inhibited glucose-induced ERK1/2 activation, strongly suggesting that Pim3 regulates ERK1/2 activity through SOCS6. These data reveal that Pim3 is a novel glucose-responsive gene in the β cell that negatively regulates insulin secretion by inhibiting the activation of ERK1/2, and through its effect on insulin sensitivity, has potentially a more global function in glucose homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号