首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diethylnitrosamine (DEN) is a genotoxic carcinogen, but in vivo DNA‐damaging activities are not usually evident in hematopoietic cells because the short‐lived active metabolite is formed mainly in the liver. DEN therefore represented an interesting case for evaluating the performance characteristics of blood‐based endpoints of genotoxicity that have been automated using flow cytometric analysis—frequency of micronucleated reticulocytes and Pig‐a mutant phenotype reticulocytes (RETCD59?) and erythrocytes (RBCCD59?). Male Sprague Dawley rats were treated for 28 consecutive days with DEN at levels up to 12.5 mg/kg/day. Serial blood samples were collected and micronucleus frequencies were determined on Days 4 and 29, while RETCD59? and RBCCD59? frequencies were determined on Days 15, 29, and 42. The Pig‐a analyses were conducted with an enrichment step based on immunomagnetic column separation to increase the statistical power of the assay. Modest but significant reductions to reticulocyte frequencies demonstrated that bone marrow was exposed to reactive intermediates. Even so, DEN did not affect micronucleus frequencies at any dose level tested. However, RETCD59? frequencies were significantly elevated in the high dose group on Day 29, and RBCCD59? were increased at this same dose level on Days 29 and 42. These results demonstrate that the Pig‐a assay is sufficiently sensitive to evaluate chemicals for genotoxic potential, even in the case of a promutagen that has traditionally required direct assessment(s) of liver tissue for detection of DNA‐damage. Environ. Mol. Mutagen. 55:400–406, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Genotoxicity assessments were conducted on male Sprague Dawley rats treated with 5‐fluorouracil (5‐FU) and 4‐nitroquinoline‐1–oxide (4NQO) as part of an international validation trial of the Pig‐a mutant phenotype assay. Rats were orally exposed to 0, 11.5, 23, or 46 mg/kg/day 5‐FU for three consecutive days (Days 1–3); blood was sampled on Days ?1, 4, 15, 29, and 45. Pig‐a mutant phenotype reticulocyte (RETCD59?) and mutant phenotype erythrocyte (RBCCD59?) frequencies were determined on Days ?1, 15, 29, and 45, and percent micronucleated reticulocytes (%MN‐RET) were measured on Day 4. Rats were treated with 4NQO for 28 consecutive days by oral gavage, at doses of 1.5, 3, or 6 mg/kg/day. RBCCD59? and RETCD59? frequencies were determined on Days ?1, 15, and 29, and MN‐RET were quantified on Day 29. Whereas 5‐FU was found to increase %MN‐RET, no significant increases were observed for RBCCD59? or RETCD59? at any of the time points studied. The high dose of 4NQO (6 mg/kg/day) was observed to markedly increase RBCCD59? and RETCD59? frequencies, and this same dose level caused a weak but significantly elevated increase in MN‐RET (approximately twofold). Collectively, the results provide additional support for the combination of Pig‐a mutation and MN‐RET into acute and 28‐day repeat‐dose studies. Environ. Mol. Mutagen. 55:735–740, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
To evaluate whether blood‐based genotoxicity endpoints can provide temporal and dose‐response data within the low‐dose carcinogenic range that could contribute to carcinogenic mode of action (MoA) assessments, we evaluated the sensitivity of flow cytometry‐based micronucleus and Pig‐a gene mutation assays at and below tumorigenic dose rate 50 (TD50) levels. The incidence of micronucleated reticulocytes (MN‐RET) was used to evaluate chromosomal damage, and the frequency of CD59‐negative reticulocytes (RETCD59?) and erythrocytes (RBCCD59?) served as phenotypic reporters of mutation at the X‐linked Pig‐a gene. Several leukemogenic agents with a presumed genotoxic MoA were studied. Specifically, male Sprague Dawley rats were treated via oral gavage for 28 days with chlorambucil, thiotepa, melphalan, and 1,3‐propane sultone at doses corresponding to 0.33x, 1x, and 3x TD50, as well as at the maximum tolerated dose. Frequencies of MN‐RET were determined at Days 4 and 29, and RETCD59? and RBCCD59? data were collected pretreatment as well as Days 15/16, 29, and 56/57. Dose‐related increases were observed for each endpoint, and time to maximal effect was consistently: MN‐RET < RETCD59? < RBCCD59?. For each of the chemicals studied, the genotoxic events occurred long before tumors or preneoplastic lesions would be expected. Furthermore, in the case of Pig‐a gene mutation, the responses were observed at or below the TD50 dose for three out of the four chemicals studied. These data illustrate the potential for quantitative blood‐based analyses to provide dose‐response and temporality information that relates genetic damage to cancer induction. Environ. Mol. Mutagen. 55:299–308, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
The recently developed Pig‐a mutation assay is based on flow cytometric enumeration of glycosylphosphatidylinositol (GPI) anchor‐deficient red blood cells caused by a forward mutation in the Pig‐a gene. Because the assay can be conducted in nontransgenic animals and the mutations accumulate with repeat dosing, we believe that the Pig‐a assay could be integrated into repeat‐dose toxicology studies and provides an alternative to transgenic rodent (TGR) mutation assays. The capacity and characteristics of the Pig‐a assay relative to TGR mutation assays, however, are unclear. Here, using transgenic gpt delta mice, we compared the in vivo genotoxicity of single oral doses of N‐ethyl‐N‐nitrosourea (ENU, 40 mg/kg), benzo[a]pyrene (BP, 100 and 200 mg/kg), and 4‐nitroquinoline‐1‐oxide (4NQO, 50 mg/kg) in the Pig‐a (peripheral blood) and gpt (bone marrow and liver) gene mutation assays. Pig‐a assays were conducted at 2, 4, and 7 weeks after the treatment, while gpt assays were conducted on tissues collected at the 7‐week terminal sacrifice. ENU increased both Pig‐a and gpt mutant frequencies (MFs) at all sampling times, and BP increased MFs in both assays but the Pig‐a MFs peaked at 2 weeks and then decreased. Although 4NQO increased gpt MFs in the liver, only weak, nonsignificant increases (two‐ or threefold above control) were detected in the bone marrow in both the Pig‐a and the gpt assay. These findings suggest that further studies are needed to elucidate the kinetics of the Pig‐a mutation assay in order to use it as an alternative to the TGR mutation assay. Environ. Mol. Mutagen. 54:747–754, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Obesity increases the risk of a number of chronic diseases in humans including several cancers. Biological mechanisms responsible for such increased risks are not well understood at present. Increases in systemic inflammation and oxidative stress, endogenous production of mutagenic metabolites, altered signaling in proliferative pathways, and increased sensitivity to exogenous mutagens and carcinogens are some of the potential contributing factors. We hypothesize that obesity creates an endogenously mutagenic environment in addition to increasing the sensitivity to environmental mutagens. To test this hypothesis, we examined two in vivo genotoxicity endpoints. Pig‐a mutant frequencies and micronucleus frequencies were determined in blood cells in two independent experiments in 30‐week old male mice reared on either a high‐fat diet (60% calories from fat) that exhibit an obese phenotype or a normal‐fat diet (10% calories from fat) that do not exhibit an obese phenotype. Mice were assayed again at 52 weeks of age in one of the experiments. N‐ethyl‐N‐nitrosourea (ENU) was used as a positive mutation control in one experiment. ENU induced a robust Pig‐a mutant and micronucleus response in both phenotypes. Obese, otherwise untreated mice, did not differ from non‐obese mice with respect to Pig‐a mutant frequencies in reticulocytes or micronucleus frequencies. However, such mice, had significantly higher and sustained Pig‐a mutant frequencies (increased 2.5‐3.7‐fold, p < 0.02) in erythrocytes as compared to non‐obese mice (based on measurements collected at 30 weeks or 30 and 52 weeks of age). This suggests that obesity, in the absence of exposure to an exogenous mutagen, is itself mutagenic. Environ. Mol. Mutagen. 57:668–677, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Procarbazine is a genotoxic carcinogen whose DNA‐damaging activities are not reliably detected in vitro. We evaluated the in vivo genotoxic effects of procarbazine on hematopoietic cells of male CD‐1 mice using a multi‐endpoint study design that scored micronucleated reticulocyte (MN‐RET) frequency and gene mutation at the Pig‐a locus. CD‐1 mice were treated for 3 days with procarbazine, up to 150 mg/kg/day. Blood samples collected on Day 3 exhibited robust induction of MN‐RETs, with the high dose group exhibiting a mean 29‐fold increase. Blood collected 15 and 30 days after treatment began was analyzed for Pig‐a mutation with a dual labeling method that facilitated mutant cell frequency measurements in both total erythrocytes and the reticulocyte subpopulation. Procarbazine significantly increased mutant reticulocyte frequencies by Day 15. Mutant erythrocyte responses were also apparent, with a peak incidence observed for the high dose group on Day 30. These results demonstrate that the complex metabolism and resulting genotoxicity of procarbazine is best evaluated in intact animal models, and show that the flow cytometric methods employed offer a means to efficiently monitor both in vivo chromosomal damage and mutation. Environ. Mol. Mutagen. 54:294–298, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The rodent Pig‐a assay is an in vivo method for the detection of gene mutation, where lack of glycosylphosphatidylinositol‐anchored proteins on the surface of circulating red blood cells (RBCs) serves as a reporter for Pig‐a gene mutation. In the case of rats, the frequency of mutant phenotype RBCs is measured via fluorescent anti‐CD59 antibodies and flow cytometry. The Pig‐a assay meets the growing expectations for novel approaches in animal experimentation not only focusing on the scientific value of the assay but also on animal welfare aspects (3Rs principles), for example, amenable to integration into pivotal rodent 28‐day general toxicology studies. However, as recommended in the Organisation for Economic Co‐operation and Development Test Guidelines for genotoxicity testing, laboratories are expected to demonstrate their proficiency. While this has historically involved the extensive use of animals, here we describe an alternative approach based on a series of blood dilutions covering a range of mutant frequencies. The experiments described herein utilized either non‐fluorescent anti‐CD59 antibodies to provide elevated numbers of mutant‐like cells, or a low volume blood sample from a single N‐ethyl‐N‐nitrosourea treated animal. Results from these so‐called reconstruction experiments from four independent laboratories showed good overall precision (correlation coefficients: 0.9979–0.9999) and accuracy (estimated slope: 0.71–1.09) of mutant cell scoring, which was further confirmed by Bland–Altman analysis. These data strongly support the use of reconstruction experiments for training purposes and demonstrating laboratory proficiency with very few animals, an ideal situation given the typically conflicting goals of demonstrating laboratory proficiency and reducing the use of animals. Environ. Mol. Mutagen. 57:678–686, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Combining multiple genetic toxicology endpoints into a single in vivo study, and/or integrating one or more genotoxicity assays into general toxicology studies, is attractive because it reduces animal use and enables comprehensive comparative analysis using toxicity, metabolism, and pharmacokinetic information from the same animal. This laboratory has developed flow cytometric scoring techniques for monitoring two blood‐based genotoxicity endpoints—micronucleated reticulocyte frequency and gene mutation at the Pig‐a locus—thereby making combination and integration studies practical. The ability to effectively monitor these endpoints in short‐term and repeated dosing schedules was investigated with the carcinogen/noncarcinogen pair benzo(a)pyrene (BP) and pyrene (Pyr). Male Sprague‐Dawley rats were treated via oral gavage for 3 or 28 consecutive days with several dose levels of Pyr, including maximum tolerated doses. BP exposure was administered by the same route but at one dose level, 250 or 125 mg/kg/day for 3‐day and 28‐day studies, respectively. Serial blood samples were collected up to Day 45, and were analyzed for Pig‐a mutation with a dual labeling method (SYTO 13 in combination with anti‐CD59‐PE) that facilitated mutant cell frequency measurements in both total erythrocytes and the reticulocyte subpopulation. A mutant cell enrichment step based on immunomagnetic column separation was used to increase the statistical power of the assay. BP induced robust mutant reticulocyte responses by Day 15, and elevated frequencies persisted until study termination. Mutant erythrocyte responses lagged mutant reticulocyte responses, with peak incidences observed on Day 30 of the 3‐day study (43‐fold increase) and on Day 42 of the 28‐day study (171‐fold increase). No mutagenic effects were apparent for Pyr. Blood samples collected on Day 4, and Day 29 for the 28‐day study, were evaluated for micronucleated reticulocyte frequency. Significant increases in micronucleus frequencies were observed with BP, whereas Pyr had no effect. These results demonstrate that Pig‐a and micronucleus endpoints discriminate between these structurally related carcinogenic and noncarcinogenic agents. Furthermore, the high sensitivity demonstrated with the enrichment protocol indicates that the Pig‐a endpoint is suitable for both repeated‐dose and acute studies, allowing integration of mutagenic and clastogenic endpoints into on‐going toxicology studies, and use as a short‐term assay that provides efficient screening and mechanistic information in vivo. Environ. Mol. Mutagen. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
A collaborative international trial was conducted to evaluate the reproducibility and transferability of an in vivo mutation assay based on the enumeration of CD59-negative rat erythrocytes, a phenotype that is indicative of Pig-a gene mutation. Fourteen laboratories participated in this study, where anti-CD59-PE, SYTO 13 dye, and flow cytometry were used to determine the frequency of CD59-negative erythrocytes (RBC(CD59-)) and CD59-negative reticulocytes (RET(CD59-)). To provide samples with a range of mutant phenotype cell frequencies, male rats were exposed to N-ethyl-N-nitrosourea (ENU) via oral gavage for three consecutive days (Days 1-3). Each laboratory studied 0, 20, and 40 mg ENU/kg/day (n = 5 per group). Three sites also evaluated 4 mg/kg/day. At a minimum, blood samples were collected three times: predosing and on Days 15 and 30. Blood samples were processed according to a standardized sample processing and data acquisition protocol, and three endpoints were measured: %reticulocytes, frequency of RET(CD59-) , and frequency of RBC(CD59-) . The methodology was found to be reproducible, as the analysis of technical replicates resulted in experimental coefficients of variation that approached theoretical values. Good transferability was evident from the similar kinetics and magnitude of the dose-related responses that were observed among different laboratories. Concordance correlation coefficients showed a high level of agreement between the reference site and the test sites (range: 0.87-0.99). Collectively, these data demonstrate that with adequate training of personnel, flow cytometric analysis is capable of reliably enumerating mutant phenotype erythrocytes, thereby providing a robust in vivo mutation assay that is readily transferable across laboratories.  相似文献   

10.
Single-burst analysis was applied to a forward assay for gene A mutation in splenic lymphocytes of phiX174 transgenic mice for the purpose of optimizing analytical parameters for identifying in vivo mutations. The effect of varying the cutoff value for an in vivo burst on induced mutant frequency, fold increase, and the significance of the difference between control and N-ethyl-N-nitrosourea (ENU)-treated mice was calculated by two different methods. The plating density was reduced to an average of less than 10 background mutant plaques per aliquot in order to separate in vitro bursts. The spectrum of mutations contributing < 60 plaques per aliquot from control animals was not significantly different from the control spectra from E. coli or transgenic phiX174 cells in culture. The mutant spectra from ENU-treated animals was highly different between mutant bursts of > 80 plaques per aliquot compared to mutations contributing < 60 plaques per aliquot (P < 0.000001), the former fitting the spectrum expected for ENU-induced mutations. The latter spectrum was also different from control animals and E. coli (P < 0.000001), suggesting the difference was caused by ex vivo mutation. With the mutations found in this study, the total number of reported target sites for gene A is now 33. The results support the interpretation that, in contrast to results for the lacI transgene, 100% of mutants isolated in gene A from control animals and cells were fixed in E. coli. We attribute the difference between the two genes to hot-spot sites for mutation in gene A and to a testable hypothesis that the mosaic plaque assay for the lacI transgene underestimates the frequency of ex vivo mutants.  相似文献   

11.
An international collaborative trial was established to systematically investigate the merits and limitations of a rat in vivo Pig-a gene mutation assay. The product of this gene is essential for anchoring CD59 to the plasma membrane, and mutations in this gene are identified by flow cytometric quantification of circulating erythrocytes without cell surface CD59 expression. Initial interlaboratory data from rats treated with several potent mutagens have been informative, but the time required for those flow cytometric analyses (~20 min per sample) limited the number of cells that could be interrogated for the mutant phenotype. Thus, it was desirable to establish a new higher throughput scoring approach before expanding the trial to include weak mutagens or nongenotoxicants. An immunomagnetic column separation method that dramatically increases analysis rates was therefore developed (Dertinger et al. [2011]: Mutat Res 721:163-170). To evaluate this new method for use in the international collaborative trial, studies were conducted to determine the mutagenic response of male Sprague Dawley rats treated for 3 or 28 consecutive days with several doses of 1,3-propane sultone (1,3-PS). Pig-a mutant frequencies were measured over a period of several weeks and were supplemented with another indicator of genetic toxicity, peripheral blood micronucleated reticulocyte (MN-RET) counts. 1,3-PS was found to increase Pig-a mutation and MN-RET frequencies in both 3- and 28-day study designs. While the greatest induction of MN-RETs was observed in the 3-day study, the highest Pig-a responses were found with 28-days of treatment. Pig-a measurements were acquired in approximately one-third the time required in the original method, while the number of erythrocyte and reticulocyte equivalents analyzed per sample were increased by factors of 100 and 10, respectively. The data strongly support the value of using the immunomagnetic separation technique for enumerating Pig-a mutation frequencies. These results also demonstrate that the ongoing international trial will benefit from the inclusion of studies that are based on both acute and protracted repeat dosing schedules in conjunction with the acquisition of longitudinal data, at least until more data have been accumulated.  相似文献   

12.
The in vivo rodent Pig‐a mutation assay is a sensitive test to identify exposure to mutagenic substances, and has been proposed as an assay for the identification of impurities for pharmaceuticals. Red blood cells (RBCs) and reticulocytes (RETs) are analyzed by flow cytometry after exposure to potentially mutagenic chemicals for cells deficient in the cell surface anchored protein CD59, representing mutation in the X‐linked Pig‐a gene. The full potential of the assay as well as its limitations are currently being explored. The current study investigated the effects of regenerative erythropoietic bone marrow responses on the frequency of Pig‐a mutated reticulocytes (RETCD59‐) and erythrocytes (RBCCD59‐). We hypothesized that a robust regenerative erythropoietic response would not increase the basal frequency of RETCD59‐ or RBCCD59‐ cells. Two groups of six male Sprague‐Dawley rats either had 2 mL of blood sampled each day via an indwelling catheter over a period of 5 days or were minimally sampled for hematology and used as controls. Blood was also then collected and evaluated 5, 18, and 49 days after the initial bleed period for the number of Pig‐a mutant cells in either the RET or RBC population. Despite the expected decrease in hematocrit and the correlative increase in reticulocytes after bleeding, no increase in the number of Pig‐a mutant cells was observed in male Sprague‐Dawley rats that were bled for five consecutive days. These results indicate that changes in erythropoiesis and hematology parameters in rats appear to have no effect on the background levels of Pig‐a mutated RETs and RBCs. Environ. Mol. Mutagen. 59:91–95, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
Recent studies indicate that the Pig-a assay is a promising tool for evaluating in vivo mutagenicity. We have developed novel rat Pig-a assays that facilitate measuring mutant frequencies in two early arising populations of blood cells, bone marrow erythroids (BMEs) and peripheral blood (PB) reticulocytes (RETs). In these assays, bone marrow cells of erythroid origin and PB red blood cells (RBCs) were identified using an antibody against rat erythroid-specific marker HIS49. In addition, RETs were selectivity enriched from PB using magnetic separation of cells positive for CD71, a transferrin receptor expressed on the surface of BMEs and RETs, but not on the surface of mature RBCs. With magnetic enrichment, more than 1 x 10(6) CD71-positive RETs could be evaluated by flow cytometry for Pig-a mutant frequency within 5 to 8 min. CD59-deficient RET and BME frequencies of more than 100 x 10(-6) and 80 x 10(-6) were detected 1 week after treating rats with 40 mg/kg N-ethyl-N-nitrosourea; by comparison, the frequency of CD59-deficient total RBCs in these rats was 13.2 x 10(-6). The frequency of spontaneous Pig-a mutant RETs and BMEs was less than 5 x 10(-6) and 15 x 10(-6), respectively. Since approximately 98% of nucleated cells in the BME fraction were erythroblasts, it should be possible to use BMEs to determine the spectrum of CD59-deficient Pig-a mutations in cells of erythroid lineage. Conducting concurrent Pig-a assays on RETs and BMEs may be useful for evaluating the in vivo mutagenicity of chemicals, especially when prolonged mutant manifestation is not feasible or when the confirmation of mutation induction is necessary.  相似文献   

14.
Acetaminophen, a nonmutagenic compound as previously concluded from bacteria, in vitro mammalian cell, and in vivo transgenic rat assays, presented a good profile as a nonmutagenic reference compound for use in the international multilaboratory Pig-a assay validation. Acetaminophen was administered at 250, 500, 1,000, and 2,000 mg·kg−1·day−1 to male Sprague Dawley rats once daily in 3 studies (3 days, 2 weeks, and 1 month with a 1-month recovery group). The 3-Day and 1-Month Studies included assessments of the micronucleus endpoint in peripheral blood erythrocytes and the comet endpoint in liver cells and peripheral blood cells in addition to the Pig-a assay; appropriate positive controls were included for each assay. Within these studies, potential toxicity of acetaminophen was evaluated and confirmed by inclusion of liver damage biomarkers and histopathology. Blood was sampled pre-treatment and at multiple time points up to Day 57. Pig-a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as CD59-negative RBC and CD59-negative RET frequencies, respectively. No increases in DNA damage as indicated through Pig-a, micronucleus, or comet endpoints were seen in treated rats. All positive controls responded as appropriate. Data from this series of studies demonstrate that acetaminophen is not mutagenic in the rat Pig-a model. These data are consistent with multiple studies in other nonclinical models, which have shown that acetaminophen is not mutagenic. At 1,000 mg·kg−1·day−1, Cmax values of acetaminophen on Day 28 were 153,600 ng/ml and 131,500 ng/ml after single and repeat dosing, respectively, which were multiples over that of clinical therapeutic exposures (2.6–6.1 fold for single doses of 4,000 mg and 1,000 mg, respectively, and 11.5 fold for multiple dose of 4,000 mg) (FDA 2002). Data generated were of high quality and valid for contribution to the international multilaboratory validation of the in vivo Rat Pig-a Mutation Assay.  相似文献   

15.
The Pig‐a assay, a recently developed in vivo somatic gene mutation assay, is based on the identification of mutant erythrocytes that have an altered repertoire of glycosylphosphatidylinositol (GPI)‐anchored cell surface markers. We hypothesized that the erythrocyte Pig‐a assay concept could be applied to rat cauda epididymal spermatozoa (sperm) for germ cell mutagenicity evaluation. We used GPI‐anchored CD59 as the Pig‐a mutation marker and examined the frequency of CD59‐negative sperm using flow cytometry. A reconstruction experiment that spiked un‐labeled sperm (mutant–mimic) into labeled sperm at specific ratios yielded good agreement between the detected and expected frequencies of mutant–mimic sperm, demonstrating the analytical ability for CD59‐negative sperm detection. Furthermore, this methodology was assessed in F344/DuCrl rats administered N‐ethyl‐N‐nitrosourea (ENU), a prototypical mutagen, or clofibrate, a lipid‐lowering drug. Rats treated with 1, 10, or 20 mg/kg body weight/day (mkd) ENU via daily oral garage for five consecutive days showed a dose‐dependent increase in the frequency of CD59‐negative sperm on study day 63 (i.e., 58 days after the last ENU dose). This ENU dosing regimen also increased the frequency of CD59‐negative erythrocytes. In rats treated with 300 mkd clofibrate via daily oral garage for consecutive 28 days, no treatment‐related changes were detected in the frequency of CD59‐negative sperm on study day 85 (i.e., 57 days after the last dose) or in the frequency of CD59‐negative erythrocytes on study day 29. In conclusion, these data suggest that the epidiymal sperm Pig‐a assay in rats is a promising method for evaluating germ cell mutagenicity. Environ. Mol. Mutagen. 58:485–493, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
17.
Ethyl methanesulfonate (EMS) was evaluated as part of the validation effort for the rat Pig‐a mutation assay and compared with other well‐established in vivo genotoxicity endpoints. Male Sprague‐Dawley (SD) rats were given a daily dose of 0, 6.25, 12.5, 25, 50, or 100 mg/kg/day EMS for 28 days, and evaluated for a variety of genotoxicity endpoints in peripheral blood, liver, and colon. Blood was sampled pre‐dose (Day 1) and at various time points up to Day 105. Pig‐a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as RBCCD59? and RETCD59? frequencies. The first statistically significant increases in mutant frequencies were seen in RETs on Day 15 and in RBCs on Day 29 with the maximum RETCD59? on Day 29 and of RBCCD59? on Day 55. The lowest dose producing a statistically significant increase of RETCD59? was 12.5 mg/kg on Day 55 and 25 mg/kg for RBCCD59? on Day 55. EMS also induced significant increases in % micronucleated RETs (MN‐RETs) in peripheral blood on Days 3, 15, and 28. No statistically significant increases in micronuclei were seen in liver or colon. Results from the in vivo Comet assay on Day 29 showed generally weak increases in DNA damage in all tissues evaluated with little evidence for accumulation of damage seen over time. The results with EMS indicate that the assessment of RBCCD59? and/or RETCD59? in the Pig‐a assay could be a useful and sensitive endpoint for a repeat dose protocol and complements other genotoxicity endpoints. Environ. Mol. Mutagen. 55:492–499, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Understanding the mutagenic dose response could prove beneficial in the management of pharmaceutically relevant impurities. For most alkyl ester impurities, such as isopropyl methanesulfonate (IPMS), little in vivo mutagenicity data exist for dose analysis. The likelihood of a sublinear dose response for IPMS was assessed by comparing the Swain Scott constant, the SN1/SN2 reaction mechanism and the O6:N7 guanine adduct ratio to that of more well‐known alkyl esters. Based on available information, IPMS was predicted to have a mutagenic profile most like ethyl nitrosourea. To test this hypothesis, mature male Wistar Han rats were administered IPMS using acute (single administration at 3.5 to 56 mg/kg) or subchronic (28 days at 0.125 to 2 mg/kg/day) exposures. The in vivo Pig‐a mutation assay was used to identify mutant phenotype reticulocyte (Ret) and red blood cell (RBC) populations. The maximum mutant response occurred approximately 15 and 28 days after the last dose administration in the mutant Ret and RBC populations respectively in the acute study and on Day 29 and 56 in the mutant Ret and RBC populations, respectively, in the subchronic study. A comparison of RBC mutant frequencies from acute and subchronic protocols suggests a sublinear response; however, this was not substantiated by statistical analysis. A No Observed Effect Level (NOEL) of 0.25 mg/kg/day resulted in a Permitted Daily Exposure equivalent to the Threshold of Toxicological Concern. An estimate of the NOEL based on the previously mentioned factors, in practice, would have pre‐empted further investigation of the potent mutagen IPMS. Environ. Mol. Mutagen. 56:322–332, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
The assumption that mutagens have linear dose–responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA‐reactive mutagen and carcinogen, exhibited sublinear or thresholded dose‐responses for LacZ mutation in transgenic Muta?Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Müller L [2009]: Mutat Res 678:101–107). In order to explore variables in establishing genotoxicity dose–responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta?Mouse. Male gpt‐delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig‐a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no‐observed‐genotoxic‐effect‐levels (NOGELs), lower confidence limits of threshold effect levels (Td‐LCIs), and lower confidence limits of 10% benchmark response rates (BMDL10s). Similar PoDs were calculated from the published EMS dose–responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig‐a MFs were 13–40‐fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose–responses in gpt‐delta mice had lower PoDs than those calculated from the Muta?Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds. Environ. Mol. Mutagen. 55:385–399, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The Pig‐a assay is being used in regulatory studies to evaluate the potential of agents to induce somatic cell gene mutations and an OECD test guideline is under development. A working group involved with establishing the guideline recently noted that representative aneugenic agents had not been evaluated, and to help fill this data gap Pig‐a mutant phenotype and micronucleated reticulocyte frequencies were measured in an integrated study design to assess the mutagenic and cytogenetic damage responses to vinblastine sulfate exposure. Male Sprague Dawley rats were treated for twenty‐eight consecutive days with vinblastine dose levels from 0.0156 to 0.125 mg/kg/day. Micronucleated reticulocyte frequencies in peripheral blood were determined at Days 4 and 29, and mutant cell frequencies were determined at Days ?4, 15, 29, and 46. Vinblastine affected reticulocyte frequencies, with reductions noted during the treatment phase and increases observed following cessation of treatment. Micronucleated reticulocyte frequencies were significantly elevated at Day 4 in the high dose group. Although a statistically significant increase in mutant reticulocyte frequencies were found for one dose group at a single time point (Day 46), it was not deemed biologically relevant because there was no analogous finding in mutant RBCs, it occurred at the lowest dose tested, and only 1 rat exceeded an upper bound tolerance interval established with historical negative control rats. Therefore, whereas micronucleus induction reflects vinblastine's well‐established aneugenic effect on hematopoietic cells, the lack of a Pig‐a response indicates that this tubulin‐binding agent does not cause appreciable mutagenicity in this same cell type. Environ. Mol. Mutagen. 59:30–37, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号