首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity‐dependent manner, as a mediator of the stress‐induced dendritic remodeling. The analysis of Golgi‐impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF±) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF± mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF± mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Remodeling of synaptic networks is believed to contribute to synaptic plasticity and long‐term memory performance, both of which are modulated by chronic stress. We here examined whether chronic stress modulates dendritic complexity of hippocampal CA1 pyramidal cells, under conditions of basal as well as elevated corticosteroid hormone levels. Slices were prepared from naïve, handled or chronically stressed animals and briefly treated with vehicle or corticosterone (100 nM); neurons were visualized with a fluorescent dye injected into individual CA1 pyramidal cells. We observed that 21 days of unpredictable stress did not affect hippocampal CA1 apical or basal dendritic morphology compared with naïve animals when corticosteroid levels were low. Only when slices from stressed animals were also exposed to elevated corticosteroid levels, a significant reduction in apical (but not basal) dendritic length became apparent. Unexpectedly, animals that were handled or 3 weeks showed a reduction in both apical dendritic length and number of apical branch points when compared with naïve animals. Apical dendritic length and number of branch points were restored to levels found in naïve animals several hours after in vitro treatment with 100 nM corticosterone. All effects of acute corticosterone administration could be prevented by the glucocorticoid receptor antagonist RU38486 given during the last 4 days of the stress or handling protocol. We conclude that brief exposure to high concentrations of corticosterone can differently affect apical dendritic structure, depending on the earlier history of the animal, a process that critically depends on involvement of the glucocorticoid receptor. © 2007 Wiley‐Liss, Inc.  相似文献   

3.
Post‐traumatic stress disorder (PTSD) has been associated with anxiety, memory impairments, enhanced fear, and hippocampal volume loss, although the relationship between these changes remain unknown. Single‐prolonged stress (SPS) is a model for PTSD combining three forms of stress (restraint, swim, and anesthesia) in a single session that results in prolonged behavioral effects. Using pharmacogenetic ablation of adult neurogenesis in rats, we investigated the role of new neurons in the hippocampus in the long‐lasting structural and behavioral effects of SPS. Two weeks after SPS, stressed rats displayed increased anxiety‐like behavior and decreased preference for objects in novel locations regardless of the presence or absence of new neurons. Chronic stress produced by daily restraint for 2 or 6 hr produced similar behavioral effects that were also independent of ongoing neurogenesis. At a longer recovery time point, 1 month after SPS, rats with intact neurogenesis had normalized, showing control levels of anxiety‐like behavior. However, GFAP‐TK rats, which lacked new neurons, continued to show elevated anxiety‐like behavior and enhanced serum corticosterone response to anxiogenic experience. Volume loss in ventral CA1 region of the hippocampus paralleled increases in anxiety‐like behavior, occurring in all rats exposed to SPS at the early time point and only rats lacking adult neurogenesis at the later time point. In chronic stress experiments, volume loss occurred broadly throughout the dentate gyrus and CA1 after 6‐hr daily stress but was not apparent in any hippocampal subregion after 2‐hr daily stress. No effect of SPS was seen on cell proliferation in the dentate gyrus, but the survival of young neurons born a week after stress was decreased. Together, these data suggest that new neurons are important for recovery of normal behavior and hippocampal structure following a strong acute stress and point to the ventral CA1 region as a potential key mediator of stress‐induced anxiety‐like behavior.  相似文献   

4.
Exposure to hostile conditions results in a series of coordinated responses aimed at enhancing the probability of survival. The activation of the hypothalamo-pituitary-adrenocortical (HPA) axis plays a pivotal role in the stress response. While the short-term activation of the HPA axis allows adaptive responses to the challenge, in the long run this can be devastating for the organism. In particular, life events occurring during the perinatal period have strong long-term effects on the behavioral and neuroendocrine response to stressors. In male and female rats exposed to prenatal restraint stress (PRS), these effects include a long-lasting hyperactivation of the HPA response associated with an altered circadian rhythm of corticosterone secretion. Furthermore, male animals exhibit sleep disturbances. In males, these HPA dysfunctions have been reported in infant, young, adult and aged animals, thus suggesting a permanent effect of early stress. Interestingly, after exposure to an intense inescapable footshock, female PRS rats durably exhibit a blunted corticosterone secretion response to stress. In male PRS rats exposed to an alcohol challenge, the HPA axis is similarly hyporesponsive. Rats exposed to PRS also show behavioral disturbances. Both male and female PRS rats show high anxiety levels and depression-like behavior during adulthood, although some studies suggest that female PRS rats present low anxiety levels. With ageing, male and female PRS rats exhibit memory impairments in hippocampus-dependent tasks, while female PRS rats improve their memory performance during adulthood. The gender effect on behavior seems to be related to a reduction in hippocampal plasticity in male PRS rats, and an increase in female PRS rats. Despite the permanent imprinting induced by early stress, the dysfunctions observed after PRS can be reversed by environmental or pharmacological strategies such as environmental enrichment or antidepressive and neurotrophic treatments. Mechanisms underlying the effects of PRS on the offspring remain largely unknown. However, previous studies have demonstrated that maternal glucocorticoids during pregnancy play an important role in the HPA disturbances reported in male offspring. Finally, gestational stress has long-lasting effects on the HPA axis and on behavior in the dams. Alterations in maternal behavior could thus also make a strong contribution to the long-term effects of PRS, through epigenetic mechanisms.  相似文献   

5.
Although prolonged stress and corticosteroid exposure induce morphological changes in the hippocampal CA3 area, the adult CA1 area is quite resistant to such changes. Here we addressed the question whether elevated corticosteroid hormone levels change dendritic complexity in young, developing CA1 cells. In organotypic cultures (prepared from P5 rats) that were 14–21 days cultured in vitro, two doses of corticosterone (30 and 100 nM) were tested. Dendritic morphology of CA1 neurons was established by imaging neurons filled with the fluorescent dye Alexa. Application of 100 nM corticosterone for 20 minutes induced atrophy of the apical dendritic tree 1–4 hours later. Fractal analysis showed that total neuronal complexity was reduced twofold when compared with vehicle‐treated neurons. Exposing organotypic slices to 30 nM corticosterone reduced apical length in a more delayed manner: only neurons examined more than 2 hours after exposure to corticosterone showed atrophy of the apical dendritic tree. Neither dose of corticosterone affected the length of basal dendrites or spine density. Corticosterone was ineffective in changing morphology of the apical dendrites when tested in the presence of the glucocorticoid receptor antagonist RU38486. These results suggest that high physiological levels of corticosterone, via activation of the glucocorticoid receptor, can, during the course of only a few hours, reduce the dendritic complexity of CA1 pyramidal neurons in young, developing hippocampal tissue. These findings suggest that it is relevant to maintain plasma corticosterone levels low during hippocampal development. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Exposure to prolonged stress results in structural and functional alterations in the hippocampus including reduced long‐term potentiation (LTP), neurogenesis, spatial learning and working memory impairments, and enhanced anxiety‐like behavior. On the other hand, enriched environment (EE) has beneficial effects on hippocampal structure and function, such as improved memory, increased hippocampal neurogenesis, and progressive synaptic plasticity. It is unclear whether exposure to short‐term EE for 10 days can overcome restraint stress–induced cognitive deficits and impaired hippocampal plasticity. Consequently, the present study explored the beneficial effects of short‐term EE on chronic stress–induced impaired LTP, working memory, and anxiety‐like behavior. Male Wistar rats were subjected to chronic restraint stress (6 hr/day) over a period of 21 days, and then they were exposed to EE (6 hr/day) for 10 days. Restraint stress reduced hippocampal CA1‐LTP, increased anxiety‐like symptoms in elevated plus maze, and impaired working memory in T‐maze task. Remarkably, EE facilitated hippocampal LTP, improved working memory performance, and completely overcame the effect of chronic stress on anxiety behavior. In conclusion, exposure to EE can bring out positive effects on synaptic plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
《Brain research》1998,809(2):763
Repeated stress induces atrophy, or remodeling, of apical dendrites in hippocampal CA3 pyramidal neurons. In rats, the stress effect is blocked by adrenal steroid synthesis inhibitors, and mimicked by daily injection of corticosterone. We report that non-invasive administration of corticosterone in the drinking water (400 μg/ml) also produced atrophy of apical dendrites in CA3. Unexpectedly, the combination of daily stress and oral corticosterone negated the effects of either treatment alone, and no changes in the apical dendritic length or branching pattern of CA3 pyramidal neurons were observed compared to control unstressed rats.  相似文献   

8.
Chronic stress may have different effects on hippocampal CA3 and CA1 neuronal morphology and function depending upon hormonal status, but rarely are manipulations of stress and gonadal steroids combined. Experiment 1 investigated the effects of chronic restraint and 17β‐estradiol replacement on CA3 and CA1 dendritic morphology and spatial learning in ovariectomized (OVX) female Sprague–Dawley rats. OVX rats were implanted with 25% 17β‐estradiol, 100% cholesterol, or blank silastic capsules and then chronically restrained (6h/d/21d) or kept in home cages. 17β‐Estradiol or cholesterol prevented stress‐induced CA3 dendritic retraction, increased CA1 apical spine density, and altered CA1 spine shape. The combination of chronic stress and 17β‐estradiol facilitated water maze acquisition compared to chronic stress + blank implants and nonstressed controls + 17β‐estradiol. To further investigate the interaction between 17β‐estradiol and stress on hippocampal morphology, experiment 2 was conducted on gonadally intact, cycling female rats that were chronically restrained (6h/d/21d), and then euthanized at proestrus (high ovarian hormones) or estrus (low ovarian hormones). Cycling female rats failed to show chronic stress‐induced CA3 dendritic retraction at either estrous phase. Chronic stress enhanced the ratio of CA1 basal spine heads to headless spines as found in experiment 1. In addition, proestrous rats displayed increased CA1 spine density regardless of stress history. These results show that 17β‐estradiol or cholesterol protect against chronic stress‐induced CA3 dendritic retraction in females. These stress‐ and 17β‐estradiol‐induced morphological changes may provide insight into how dendritic complexity and spine properties contribute to spatial ability. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
It is well established that individual rats exhibit marked differences in behavioral responses to a novel environment. Rats that exhibit high rates of locomotor activity and sustained exploration in such an environment also exhibit high concentrations of stress-induced plasma corticosterone, linking this behavior to the stress system. Furthermore, these high-responding (HR) rats, in contrast to their low-responding (LR) counterparts, have a greater propensity to self-administer drugs. Thus, HR rats have been described as "novelty" seeking in that they are more active and explore novel stimuli more vigorously, despite the fact that this elicits in them high stress responses. In this study, we have further characterized the behavior of HR and LR rats in tests of anxiety and characterized their stress responses to either experimenter- or self-imposed stressors. We then investigated the physiological basis of these individual differences, focusing on stress-related molecules, including the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), corticotropin-releasing hormone (CRH) and pro-opiomelanocortin (POMC) in the context of the limbic-hypothalamo-pituitary adrenal axis. We have found that HR rats did not differ from LR in their basal expression of POMC in the pituitary. However, HR rats exhibited higher levels of CRH mRNA in the hypothalamic paraventricular nucleus but lower basal levels in the central nucleus of the amygdala. The basal expression of hippocampal MR is not different between HR and LR rats. Interestingly, the basal expression of hippocampal GR mRNA is significantly lower in HR than in LR rats. This low level of hippocampal GR expression in HR rats appears to be responsible, at least in part, for their decreased anxiety in exploring novelty. Indeed, the anxiety level of LR rats becomes similar to HR rats after the administration into the hippocampus of a GR antagonist, RU38486. These data indicate that basal differences in gene expression of key stress-related molecules may play an important role in determining individual differences in responsiveness to stress and novelty. They point to a new role of hippocampal GR, strongly implicating this receptor in determining individual differences in anxiety and novelty-seeking behavior.  相似文献   

10.
Previous studies have shown a relationship between adversity in adolescence and health outcomes in adulthood in a sex‐specific manner. Adolescence is characterized by major changes in stress‐responsive regions of the brain, including the hippocampus, the site of ongoing neurogenesis throughout the lifespan. Prepubertal male and female rats exhibit different acute reactions to chronic stress compared to adults, but less is known about whether these stress‐induced changes persist into adulthood. Therefore, in this study, we investigated the effects of chronic, intermittent stress during adolescence on basal corticosterone levels, dentate gyrus (DG) volume, and neurogenesis in the hippocampus of adult male and female Sprague‐Dawley rats. Adolescent male and female rats were either restrained for 1 h every other day for 3 weeks from postnatal days (PDs) 30–52 at unpredictable times or left undisturbed. All rats received a single injection of bromodeoxyuridine (BrdU; 200 mg/kg) in adulthood on PD70 and were perfused 3 weeks later. Brains were processed for Ki67 (endogenous marker of cell proliferation) and BrdU (to estimate effects on cell survival). In addition, blood samples were taken during the restraint stress period and in adulthood. Results show that males and females exhibit different corticosterone responses to chronic stress during adolescence and that only adult female rats exposed to stress during adolescence show higher basal corticosterone levels compared to nonstressed controls. Furthermore, stressed females showed a reduced number of proliferating and surviving cells in the DG in adulthood compared to nonstressed same‐sex controls. The majority of BrdU‐labeled cells were co‐labeled with NeuN, an endogenous marker of mature neurons, indicating that neurogenesis was decreased in the DG of adult female rats that had undergone chronic restraint stress in adolescence. Although male rats were more responsive to the chronic stress as adolescents showing higher corticosterone levels and reduced body weight, as adults they showed a slight increase in cellsurvival and no effect of adolescent stress on basal corticosterone levels. These results suggest that stress during adolescence can have effects on hypothalamic‐pituitary‐adrenal axis function and hippocampus plasticity in adulthood, particularly in female rats. ©2010 Wiley‐Liss,Inc.  相似文献   

11.
Stress‐induced allostatic load affects a variety of biological processes including synaptic plasticity, angiogenesis, oxidative stress, and inflammation in the brain, especially in the hippocampus. Erythropoietin (EPO) is a pleiotropic cytokine that has shown promising neuroprotective effects. Recombinant human EPO is currently highlighted as a new candidate treatment for cognitive impairment in neuropsychiatric disorders. Because EPO enhances synaptic plasticity, attenuates oxidative stress, and inhibits generation of proinflammatory cytokines, EPO may be able to modulate the effects of stress‐induced allostatic load at the molecular level. The aim of this study was therefore to investigate how EPO and repeated restraint stress, separately and combined, influence (i) behavior in the novelty‐suppressed feeding test of depression/anxiety‐related behavior; (ii) mRNA levels of genes encoding proteins involved in synaptic plasticity, angiogenesis, oxidative stress, and inflammation; and (iii) remodeling of the dendritic structure of the CA3c area of the hippocampus in male rats. As expected, chronic restraint stress lowered the number of CA3c apical dendritic terminals, and EPO treatment reversed this effect. Interestingly, these effects seemed to be mechanistically distinct, as stress and EPO had differential effects on gene expression. While chronic restraint stress lowered the expression of spinophilin, tumor necrosis factor α, and heat shock protein 72, EPO increased expression of hypoxia‐inducible factor‐2α and lowered the expression of vascular endothelial growth factor in hippocampus. These findings indicate that the effects of treatment with EPO follow different molecular pathways and do not directly counteract the effects of stress in the hippocampus.  相似文献   

12.
Postpartum depression (PPD) is a common complication following childbirth experienced by one in every five new mothers. Pregnancy stress enhances vulnerability to PPD and has also been shown to increase depressive‐like behavior in postpartum rats. Thus, gestational stress may be an important translational risk factor that can be used to investigate the neurobiological mechanisms underlying PPD. Here we examined the effects of gestational stress on depressive‐like behavior during the early/mid and late postpartum periods and evaluated whether this was accompanied by altered structural plasticity in the nucleus accumbens (NAc), a brain region that has been linked to PPD. We show that early/mid (postpartum day 8) postpartum female rats exhibited more depressive‐like behavior in the forced swim test as compared with late postpartum females (postpartum day 22). However, 2 weeks of restraint stress during pregnancy increased depressive‐like behavior regardless of postpartum timepoint. In addition, dendritic length, branching and spine density on medium spiny neurons in the NAc shell were diminished in postpartum rats that experienced gestational stress although stress‐induced reductions in spine density were evident only in early/mid postpartum females. In the NAc core, structural plasticity was not affected by gestational stress but late postpartum females exhibited lower spine density and reduced dendritic length. Overall, these data not only demonstrate structural changes in the NAc across the postpartum period, they also show that postpartum depressive‐like behavior following exposure to gestational stress is associated with compromised structural plasticity in the NAc and thus may provide insight into the neural changes that could contribute to PPD.  相似文献   

13.
Adversity during development is a reliable predictor of psychiatric disorders such as depression and anxiety which are increasingly recognized to have an immune component. We have previously demonstrated that chronic adolescent stress (CAS) in rats leads to depressive-like behavior in adulthood along with long-lasting changes to the hypothalamic-pituitary-adrenal axis and pro-inflammatory cytokine induction in the hippocampus. However, the mechanisms by which CAS promotes hippocampal inflammation are not yet defined. Here we tested the hypothesis that a history of CAS exaggerates induction of the pro-inflammatory NFκB pathway in the adult rat hippocampus without compromising the peripheral immune response. We also assessed potential sex differences because it is unclear whether females, who are twice as likely to suffer from mood disorders as males, are disproportionally affected by stress-primed inflammation. Male and female adolescent rats underwent a CAS paradigm or received no stress. Six weeks following the last stressor, all rats received a single systemic injection of either lipopolysaccharide or vehicle to unmask possible immune-priming effects of CAS. An NFκB signaling PCR array demonstrated that CAS exaggerated the expression of NFκB-related genes in the hippocampus of both males and females. Interestingly, targeted qPCR demonstrated that CAS potentiated the induction of hippocampal IL1B and REL mRNA in female rats only, suggesting that some immune effects of CAS are indeed sex-specific. In contrast to the hippocampal findings, indices of peripheral inflammation such as NFκB activity in the spleen, plasma IL-1β, IL-6, TNF-α, and corticosterone were not impacted by CAS in female rats. Despite showing no pro-inflammatory changes to hippocampal mRNA, male CAS rats displayed lower plasma corticosterone response to LPS at 2 h after injection followed by an exaggerated plasma IL-1β response at 4 h. This potentially blunted corticosterone response coupled with excessive innate immune signaling in the periphery is consistent with possible glucocorticoid resistance in males. In contrast, the effects of CAS manifested as excessive hippocampal immune reactivity in females. We conclude that while a history of exposure to chronic adolescent stress enhances adult immune reactivity in both males and females, the mechanism and manifestation of such alterations are sex-specific.  相似文献   

14.
Environmental enrichment attenuates hippocampal synaptic injury induced by prenatal stress in offspring. However, the influence of hippocampal synaptic changes and regional differences in prenatal stress remains poorly understood. The present study induced stress in Sprague Dawley rats, which were at gestational age 13-19 days. Following weaning, the offspring were raised in an enriched environment to establish models of stress + enriched environment. Dendritic spine density and synaptophysin expression were detected in hippocampal neurons using Golgi staining and western blot analysis, respectively. Results showed that enriched environment increased dendritic spine density of apical dendrites in CA1 pyramidal cells and basal dendrites of granular cells in the outer layer of the dentate gyrus. In addition, hippocampal synaptophysin expression increased and the effects of prenatal stress on neuronal dendritic spines were reversed in adolescence.  相似文献   

15.
Mice born from high care‐giving females show, as adults, low anxiety levels, decreased responsiveness to stress, and substantial improvements in cognitive function and hippocampal plasticity. Given the relevance of this issue for preventing emotional and cognitive abnormalities in high‐risk subjects, this study examines the possibility to further enhance the beneficial effects observed in the progeny by augmenting maternal care beyond the highest levels females can display in standard laboratory conditions. This was produced by placing a second female with the dam and its litter in the rearing cage from the partum until pups weaning. Maternal behavior of all females was scored during the first week postpartum, and behavioral indices of emotionality, prestress and poststress corticosterone levels, cognitive performance, and hippocampal morphology were assessed in the adult offspring. We found that pups reared by female dyads received more maternal care than pups reared by dams alone, but as adults, they did not exhibit alterations in emotionality or corticosterone response estimated in basal condition or following restraint stress. Conversely, they showed enhanced performance in hippocampal‐dependent tasks including long‐term object discrimination, reactivity to spatial change, and fear conditioning together with an increase in dendritic length and spine density in the CA1 region of the hippocampus. In general, the beneficial effects of dyadic maternal care were stronger when both the females were lactating. This study demonstrates that double‐mothering exerts a long‐term positive control on cognitive function and hippocampal neuronal connectivity. This experimental manipulation, especially if associated with increased feeding, might offer a concrete possibility to limit or reverse the consequences of negative predisposing conditions for normal cognitive development. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The present study aimed to identify morphological correlates of environment‐induced changes at excitatory synapses of the primary auditory cortex (A1). We used the Golgi‐Cox stain technique to compare pyramidal cells dendritic properties of Sprague‐Dawley rats exposed to different environmental manipulations. Sholl analysis, dendritic length measures, and spine density counts were used to monitor the effects of sensory deafness and an auditory version of environmental enrichment (EE). We found that deafness decreased apical dendritic length leaving basal dendritic length unchanged, whereas EE selectively increased basal dendritic length without changing apical dendritic length. On the contrary, deafness decreased while EE increased spine density in both basal and apical dendrites of A1 Layer 2/3 (LII/III) neurons. To determine whether stress contributed to the observed morphological changes in A1, we studied neural morphology in a restraint‐induced model that lacked behaviorally relevant acoustic cues. We found that stress selectively decreased apical dendritic length in the auditory but not in the visual primary cortex. Similar to the acoustic manipulation, stress‐induced changes in dendritic length possessed a layer‐specific pattern displaying LII/III neurons from stressed animals with normal apical dendrites but shorter basal dendrites, while infragranular neurons (Layers V and VI) displayed shorter apical dendrites but normal basal dendrites. The same treatment did not induce similar changes in the visual cortex, demonstrating that the auditory cortex is an exquisitely sensitive target of neocortical plasticity, and that prolonged exposure to different acoustic as well as emotional environmental manipulation may produce specific changes in dendritic shape and spine density. Synapse 64:97–110, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Early life experiences are crucial factors that shape brain development and function due to their ability to induce structural and functional plasticity. Among these experiences, early‐life stress (ELS) is known to interfere with brain development and maturation, increasing the risk of future psychopathologies, including depression, anxiety, and personality disorders. Moreover, ELS may contribute to the emergence of these psychopathologies during adolescence. In this present study, we investigated the effects of ELS, in the form of maternal separation (MS), on the structural and functional plasticity of the medial prefrontal cortex (mPFC) and anxiety‐like behavior in adolescent male rats. We found that the MS procedure resulted in disturbances in mother–pup interactions that lasted until weaning and were most strongly demonstrated by increases in nursing behavior. Moreover, MS caused atrophy of the basal dendritic tree and reduced spine density on both the apical and basal dendrites in layer II/III pyramidal neurons of the mPFC. The structural changes were accompanied by an impairment of long‐term potentiation processes and increased expression of key proteins, specifically glutamate receptor 1, glutamate receptor 2, postsynaptic density protein 95, αCa2+/calmodulin‐dependent protein kinase II and αCa2+/calmodulin‐dependent protein kinase II phosphorylated at residue Thr305, that are engaged in long‐term potentiation induction and maintenance in the mPFC. We also found that the MS animals were more anxious in the light/dark exploration test. The results of this study indicate that ELS has a significant impact on the structural and functional plasticity of the mPFC in adolescents. ELS‐induced adaptive plasticity may underlie the pathomechanisms of some early‐onset psychopathologies observed in adolescents.  相似文献   

18.
Social isolation (SI) rearing, a model of early life stress, results in profound behavioral alterations, including increased anxiety‐like behavior, impaired sensorimotor gating and increased self‐administration of addictive substances. These changes are accompanied by alterations in mesolimbic dopamine function, such as increased dopamine and metabolite tissue content, increased dopamine responses to cues and psychostimulants, and increased dopamine neuron burst firing. Using voltammetric techniques, we examined the effects of SI rearing on dopamine transporter activity, vesicular release and dopamine D2‐type autoreceptor activity in the nucleus accumbens core. Long–Evans rats were housed in group (GH; 4/cage) or SI (1/cage) conditions from weaning into early adulthood [postnatal day (PD) 28–77]. After this initial housing period, rats were assessed on the elevated plus‐maze for an anxiety‐like phenotype, and then slice voltammetry experiments were performed. To study the enduring effects of SI rearing on anxiety‐like behavior and dopamine terminal function, another cohort of similarly reared rats was isolated for an additional 4 months (until PD 174) and then tested. Our findings demonstrate that SI rearing results in lasting increases in anxiety‐like behavior, dopamine release and dopamine transporter activity, but not D2 activity. Interestingly, GH‐reared rats that were isolated as adults did not develop the anxiety‐like behavior or dopamine changes seen in SI‐reared rats. Together, our data suggest that early life stress results in an anxiety‐like phenotype, with lasting increases in dopamine terminal function.  相似文献   

19.
Several studies have supported the idea that ionotropic glutamate N-methyl-d-aspartate receptor (NMDA) is an important player in the etiology of psychopathologies, such as anxiety disorders and major depression. Additionally, studies have shown that ketamine induces antidepressant effects in humans as well as in rodents subjected to animal models of depression. In this context, the present study was aimed to evaluate behavioral and physiological effects of acute and chronic administration of ketamine, a NMDA receptor antagonist, in rats exposed to chronic mild stress (CMS). After 40 days of CMS, rats were treated with ketamine (15 mg/kg) and sweet food consumption, body and adrenal gland weight, corticosterone and adrenocorticotropic (ACTH) hormone levels, and hippocampal BDNF protein levels were assessed. Our findings demonstrated that CMS evoked anhedonia, induced hypertrophy of adrenal gland, impaired gain of body weight and increased corticosterone and ACTH circulating levels in rats. Acute and chronic treatment with ketamine reversed the increase in adrenal gland weight, promoted regain of body weight, and normalized corticosterone and ACTH circulating levels. Repeated, but not acute, administration of ketamine reversed anhedonia-like behavior, although the treatment with ketamine per se increased sweet food consumption in non-stressed rats. Finally, acute and chronic ketamine treatment did not alter hippocampal BDNF protein levels in stressed rats. In conclusion, these findings support the idea of a putative role of NMDA receptors in mood-related symptoms, and rapid and robust effects of ketamine in reverting mainly physiological alterations induced by chronic mild stressful situations in rats.  相似文献   

20.
The peripartum period is a time of high susceptibility for mood and anxiety disorders, some of which have recently been associated with alterations in hippocampal neurogenesis. Several factors including stress, aging, and, perhaps unexpectedly, lactation have been shown to decrease hippocampal neurogenesis. Intriguingly, lactation is also a time of reduced stress responsivity suggesting that the effect of stress on neurogenic processes may differ during this period. Therefore, the aim of the present study was to assess the effect of repeated stress during lactation [2 h restraint stress from lactation day (LD) 2 to LD13] on brain weight, hippocampal volume, cell proliferation and survival, and on neuronal and astroglial differentiation. In addition to confirming the known lactation‐associated decrease in cell proliferation and survival, we could reveal that stress reversed the lactation‐induced decrease in cell proliferation, while it did not affect survival of newly born cells, nor the number of mature neurons , nor did it alter immature neuron production or the number of astroglial cells in lactation. Stress exposure increased relative brain weight and hippocampal volume mirroring the observed changes in neurogenesis. Interestingly, hippocampal volume and relative brain weight were lower in lactation as compared to nulliparous females under nonstressed conditions. This study assessed the effect of stress during lactation on hippocampal neurogenesis and indicates that stress interferes with important peripartum adaptations at the level of the hippocampus. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号