首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have indicated that Treg contribute to the HIV type 1 (HIV‐1)‐related immune pathogenesis. However, it is not clear whether T cells with suppressive properties reside within the HIV‐1‐specific T‐cell population. Here, PBMC from HIV‐1‐infected individuals were stimulated with a 15‐mer Gag peptide pool, and HIV‐1‐specific T cells were enriched by virtue of their secretion of IL‐10 or IFN‐γ using immunomagnetic cell‐sorting. Neither the IL‐10‐secreting cells nor the IFN‐γ‐secreting cells expressed the Treg marker FOXP3, yet the IL‐10‐secreting cells potently suppressed anti‐CD3/CD28‐induced CD4+ as well as CD8+ T‐cell proliferative responses. As shown by intracellular cytokine staining, IL‐10‐ and IFN‐γ‐producing T cells represent distinct subsets of the HIV‐1‐specific T cells. Our data collectively suggest that functionally defined HIV‐1‐specific T‐cell subsets harbor potent immunoregulatory properties that may contribute to HIV‐1‐associated T‐cell dysfunction.  相似文献   

2.
Rheumatoid arthritis (RA) patients under immunosuppressive therapy are particularly susceptible to infections, mainly of the respiratory tract, thus vaccination may represent a strategy to reduce their incidence in this vulnerable population. In the 2009–10 influenza season, the safety and immunogenicity of co‐administered non‐adjuvanted seasonal and MF59‐adjuvanted pandemic influenza vaccines were evaluated in this study in 30 RA patients under therapy with anti‐tumour necrosis factor (TNF)‐α agents or Abatacept and in 13 healthy controls (HC). Patients and HC underwent clinical and laboratory evaluation before (T0), 1 (T1) and 6 months (T2) after vaccinations. No severe adverse reactions, but a significant increase in total mild side effects in patients versus HC were observed. Both influenza vaccines fulfilled the three criteria of the Committee for Proprietary Medicinal Products (CPMP). Seroconversion rate for any viral strain in patients and HC was, respectively, 68 versus 45 for H1‐A/Brisbane/59/07, 72 versus 81 for H3‐A/Brisbane/10/07, 68 versus 54 for B/Brisbane/60/08 and 81 versus 54 for A/California/7/2009. A slight increase in activated interferon (IFN)‐γ‐, TNF‐α‐ or interleukin (IL)‐17A‐secreting T cells at T1 compared to T0, followed by a reduction at T2 in both patients and HC, was registered. In conclusion, simultaneous administration of adjuvanted pandemic and non‐adjuvanted seasonal influenza vaccines is safe and highly immunogenic. The largely overlapping results between patients and HC, in terms of antibody response and cytokine‐producing T cells, may represent further evidence for vaccine safety and immunogenicity in RA patients on biologicals.  相似文献   

3.
4.
The dual erbB1/2 tyrosine kinase inhibitor lapatinib as well as the anthracycline doxorubicin are both used in the therapy of HER2‐positive breast cancer. Using MMTV‐neu mice as an animal model for HER2‐positive breast cancer, we observed enhanced tumor infiltration by IFN‐γ‐secreting T cells after treatment with doxorubicin and/or lapatinib. Antibody depletion experiments revealed a contribution of CD8+ but not CD4+ T cells to the antitumor effect of these drugs. Doxorubicin treatment additionally decreased the content of immunosuppressive tumor‐associated macrophages (TAMs) in the tumor bed. In contrast, Stat1‐deficient mice were resistant to tumor growth inhibition by lapatinib and/or doxorubicin and exhibited impaired T‐cell activation and reduced T‐cell infiltration of the tumor in response to drug treatment. Furthermore, Stat1‐deficiency resulted in reduced expression of the T‐cell chemotactic factors CXCL9, CXCL10, and CXCL11 in the tumor epithelium. The inhibition of TAM infiltration of the tumor by doxorubicin and the immunosuppressive function of TAMs were found to be Stat1 independent. Taken together, the results point to an important contribution toward enhancing T‐cell and IFN‐γ‐based immunity by lapatinib as well as doxorubicin and emphasize the role of Stat1 in building an effective antitumor immune response.  相似文献   

5.
Previous studies have shown that EAE can be elicited by the adoptive transfer of either IFN‐γ‐producing (Th1) or IL‐17‐producing (Th17) myelin‐specific CD4+ T‐cell lines. Paradoxically, mice deficient in either IFN‐γ or IL‐17 remain susceptible to EAE following immunization with myelin antigens in CFA. These observations raise questions about the redundancy of IFN‐γ and IL‐17 in autoimmune demyelinating disease mediated by a diverse, polyclonal population of autoreactive T cells. In this study, we show that an atypical form of EAE, induced in C57BL/6 mice by the adoptive transfer of IFN‐γ‐deficient effector T cells, required IL‐17 signaling for the development of brainstem infiltrates. In contrast, classical EAE, characterized by predominant spinal cord inflammation, occurred in the combined absence of IFN‐γ and IL‐17 signaling, but was dependent on GM‐CSF and CXCR2. Our findings contribute to a growing body of data, indicating that individual cytokines vary in their importance across different models of CNS autoimmunity.  相似文献   

6.
A role for NKT cells has been implicated in sepsis, but the mechanism by which NKT cells contribute to sepsis remains unclear. Here, we examined WT and NKT‐cell‐deficient mice of C57BL/6 background during cecal ligation and puncture‐induced sepsis. The levels of C5a, IFN‐γ, and IL‐10 were higher in the serum and peritoneal fluid of WT mice than in those of CD1d?/? mice, while the mortality rate was lower in CD1d?/? mice than in WT mice. C5a blockade decreased mortality of WT mice during sepsis, whereas it did not alter that of CD1d?/? mice. As assessed by intracellular staining, NKT cells expressed IFN‐γ, while neutrophils expressed IL‐10. Upon coculture, IL‐10‐deficient NKT cells enhanced IL‐10 production by WT, but not IFN‐γR‐deficient, neutrophils. Meanwhile, CD1d?/? mice exhibited high CD55 expression on neutrophils during sepsis, whereas those cells from WT mice expressed minimal levels of CD55. Recombinant IL‐10 administration into CD1d?/? mice reduced CD55 expression on neutrophils. Furthermore, adoptive transfer of sorted WT, but not IFN‐γ‐deficient, NKT cells into CD1d?/? mice suppressed CD55 expression on neutrophils, but increased IL‐10 and C5a levels. Taken together, IFN‐γ‐producing NKT cells enhance C5a generation via IL‐10‐mediated inhibition of CD55 expression on neutrophils, thereby exacerbating sepsis.  相似文献   

7.
Regulatory CD4+ T cells are important for the homeostasis of immune cells, and their absence correlates with autoimmune disorders. However, how the immune system regulates Treg homeostasis remains unclear. We found that IFN‐γ‐deficient‐mice had more forkhead box P3 (FOXP3+) cells than WT mice in all secondary lymphoid organs except the thymus. However, T‐bet‐ or IL‐4Rα‐deficient mice did not show a similar increase. In vitro differentiation studies showed that conversion of naïve T cells into FOXP3+ cells (neo‐generated inducible Treg (iTreg)) by TGF‐β was significantly inhibited by IFN‐γ in a STAT‐1‐dependent manner. Moreover, an in vivo adoptive transfer study showed that inhibition of FOXP3+ iTreg generation by IFN‐γ was a T‐cell autocrine effect. This inhibitory effect of IFN‐γ on iTreg generation was significantly abrogated after N‐acetyl‐L ‐cysteine treatment both in vitro and in vivo, indicating that IFN‐γ regulation of iTreg generation is dependent on ROS‐mediated apoptosis. Therefore, our results suggest that autocrine IFN‐γ can negatively regulate the neo‐generation of FOXP3+ iTreg through ROS‐mediated apoptosis in the periphery.  相似文献   

8.
γδ T cells are a potent source of innate IL‐17A and IFN‐γ, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24low CD44high effector γδ T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ γδ T cells produced IL‐17A, while NK1.1+ γδ T cells were efficient producers of IFN‐γ but not of IL‐17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ γδ T cells. Accordingly, both γδ T‐cell subsets were rare in gut‐associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL‐17A and IFN‐γ in response to TCR‐specific and TCR‐independent stimuli. IL‐12 and IL‐18 induced IFN‐γ and IL‐23 induced IL‐17A production by NK1.1+ or CCR6+ γδ T cells, respectively. Importantly, we show that CCR6+ γδ T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL‐17A‐producing γδ T cells derive from less TCR‐dependent selection events than IFN‐γ‐producing NK1.1+ γδ T cells.  相似文献   

9.
10.
Inducible Treg (iTreg) cells generated from Ag‐stimulated naïve CD4+ T cells in the periphery play an important role in regulating immune responses. TGF‐β is a key cytokine that promotes this conversion process; however, how this process is regulated in vivo remains unclear. Here, we report that γδ T cells play a crucial role in controlling iTreg generation and suppressor function. Ag‐induced iTreg generation was significantly enhanced in C57BL/6 mice in the absence of γδ T cells. Inhibition of iTreg conversion was mediated by IFN‐γ produced by activated γδ T cells but not by activated CD4+ T cells. BM chimera experiments further confirmed γδ‐derived IFN‐γ‐dependent mechanism in regulating iTreg generation in vivo. Lastly, human peripheral blood γδ T cells also interfere with iTreg conversion via IFN‐γ. Our results suggest a novel function of γδ T cells in limiting the generation of iTreg cells, potentially balancing immunity and tolerance.  相似文献   

11.
Clinical efficacy in the treatment of rheumatoid arthritis with anti‐CD20 (Rituximab)‐mediated B‐cell depletion has garnered interest in the mechanisms by which B cells contribute to autoimmunity. We have reported that B‐cell depletion in a murine model of proteoglycan‐induced arthritis (PGIA) leads to an increase in Treg cells that correlate with decreased autoreactivity. Here, we demonstrate that the increase in Treg cells after B‐cell depletion is due to an increase in the differentiation of naïve CD4+ T cells into Treg cells. Since the development of PGIA is dependent on IFN‐γ and B cells are reported to produce IFN‐γ, we hypothesized that B‐cell‐specific IFN‐γ plays a role in the development of PGIA. Accordingly, mice with B‐cell‐specific IFN‐γ deficiency were as resistant to the induction of PGIA as mice that were completely IFN‐γ deficient. Importantly, despite a normal frequency of IFN‐γ‐producing CD4+ T cells, B‐cell‐specific IFN‐γ‐deficient mice exhibited a higher percentage of Treg cells compared with that in WT mice. These data indicate that B‐cell IFN‐γ production inhibits Treg‐cell differentiation and exacerbates arthritis. Thus, we have established that IFN‐γ, specifically derived from B cells, uniquely contributes to the pathogenesis of autoimmunity through prevention of immunoregulatory mechanisms.  相似文献   

12.
Although CD8+ Treg‐mediated suppression has been described, CD8+ Treg remain poorly characterized. Here we identify a novel subset of CD8+ Treg that express latency‐associated peptide (LAP) on their cell surface (CD8+LAP+ cells) and exhibit regulatory activity in vitro and in vivo. Only a small fraction of CD8+LAP+ cells express Foxp3 or CD25, although the expression levels of Foxp3 for these cells are higher than their LAP? counterparts. In addition to TGF‐β, CD8+LAP+ cells produce IFN‐γ, and these cells suppress EAE that is dependent on both TGF‐β and IFN‐γ. In an adoptive co‐transfer model, CD8+LAP+ cells suppress myelin oligodendrocyte glycoprotein (MOG)‐specific immune responses by inducing or expanding Foxp3+ cells and by inhibiting proliferation and IFN‐γ production in vivo. Furthermore, in vivo neutralization of IFN‐γ and studies with IFN‐γ‐deficient mice demonstrate an important role for IFN‐γ production in the function of CD8+LAP+ cells. Our findings identify the underlying mechanisms that account for the immunoregulatory activity of CD8+ T cells and suggest that induction or amplification of CD8+LAP+ cells may be a therapeutic strategy to help control autoimmune processes.  相似文献   

13.
IL‐17, produced by a distinct lineage of CD4+ helper T (Th) cells termed Th17 cells, induces the production of pro‐inflammatory cytokines from resident cells and it has been demonstrated that over‐expression of IL‐17 plays a crucial role in the onset of several auto‐immune diseases. Here we examined the role of IL‐17 in the pathogenesis of autoimmune gastritis, a disease that was previously believed to be mediated by IFN‐γ. Significantly higher levels of IL‐17 and IFN‐γ were found in the stomachs and stomach‐draining lymph nodes of mice with severe autoimmune gastritis. Unlike IL‐17, which was produced solely by CD4+ T cells in gastritic mice, the majority of IFN‐γ‐producing cells were CD8+ T cells. However, CD8+ T cells alone were not able to induce autoimmune gastritis. T cells that were deficient in IL‐17 or IFN‐γ production were able to induce autoimmune gastritis but to a much lower extent compared with the disease induced by wild‐type T cells. These data demonstrate that production of neither IL‐17 nor IFN‐γ by effector T cells is essential for the initiation of autoimmune gastritis, but suggest that both are required for the disease to progress to the late pathogenic stage that includes significant tissue disruption.  相似文献   

14.
γδ T cells play a crucial role in controlling malaria parasites. Dendritic cell (DC) activation via CD40 ligand (CD40L)‐CD40 signaling by γδ T cells induces protective immunity against the blood‐stage Plasmodium berghei XAT (PbXAT) parasites in mice. However, it is unknown which γδ T‐cell subset has an effector role and is required to control the Plasmodium infection. Here, using antibodies to deplete TCR Vγ1+ cells, we saw that Vγ1+ γδ T cells were important for the control of PbXAT infection. Splenic Vγ1+ γδ T cells preferentially expand and express CD40L, and both Vγ1+ and Vγ4+ γδ T cells produce IFN‐γ during infection. Although expression of CD40L on Vγ1+ γδ T cells is maintained during infection, the IFN‐γ positivity of Vγ1+ γδ T cells is reduced in late‐phase infection due to γδ T‐cell dysfunction. In Plasmodium‐infected IFN‐γ signaling‐deficient mice, DC activation is reduced, resulting in the suppression of γδ T‐cell dysfunction and the dampening of γδ T‐cell expansion in the late phase of infection. Our data suggest that Vγ1+ γδ T cells represent a major subset responding to PbXAT infection and that the Vγ1+ γδ T‐cell response is dependent on IFN‐γ‐activated DCs.  相似文献   

15.
Atherosclerosis and its associated coronary artery disease (CAD) represent another chronic low‐grade inflammatory disorder. Regulatory B cells (Bregs) possess essential functions in maintaining peripheral tolerance and inhibiting pathogenic inflammation through IL‐10. Here, we investigated one subset of Bregs, Tim‐1+ B cell, and its role in atherosclerosis and CAD patients. In healthy individuals, IL‐10‐producing B cells were predominantly found in the Tim‐1+ B cells. Upon stimulation of the B cell receptor (BCR) and Toll‐like receptor 9 (TLR‐9) by anti‐BCR antibodies and CpG, respectively, the Tim‐1+ B cells could further upregulate IL‐10 expression. In contrast, the Tim‐1+ B cells were present at normal frequency in CAD patients, but showed impaired capacity to upregulate IL‐10 with or without BCR + CpG stimulation. The stimulated Tim‐1+ B cells from healthy individuals also suppressed expression of interferon gamma (IFN‐γ), an atherogenic cytokine in T cells, in an IL‐10‐dependent fashion, and strongly promoted the expression of Foxp3 in naive CD4+CD45RO? T cells. In contrast, the Tim‐1+ B cells from CAD patients were unable to suppress IFN‐γ secretion, and only minimally increased the expression of Foxp3 in naive CD4+CD45RO? T cells. Despite this, the frequency of Tim‐1+ B cells in the atherosclerotic lesions from CAD patients was inversely correlated with the frequency of IFN‐γ‐expressing T cells. Together, these results demonstrated that CAD patients presented an inflammatory disorder in regulatory B cells, which could be used as a therapeutic target.  相似文献   

16.
Interleukin‐10 (IL‐10) plays a key role in regulating proinflammatory immune responses to infection but can interfere with pathogen clearance. Although IL‐10 is upregulated throughout HIV‐1 infection in multiple cell subsets, whether this is a viral immune evasion strategy or an appropriate response to immune activation is unresolved. Analysis of IL‐10 production at the single cell level in 51 chronically infected subjects (31 antiretroviral (ART) naïve and 20 ART treated) showed that a subset of CD8+ T cells with a CD25neg FoxP3neg phenotype contributes substantially to IL‐10 production in response to HIV‐1 gag stimulation. The frequencies of gag‐specific IL‐10‐ and IFN‐γ‐producing T cells in ART‐naïve subjects were strongly correlated and the majority of these IL‐10+ CD8+ T cells co‐produced IFN‐γ; however, patients with a predominant IL‐10+/IFN‐γneg profile showed better control of viraemia. Depletion of HIV‐specific CD8+ IL‐10+ cells from PBMCs led to upregulation of CD38 on CD14+ monocytes together with increased IL‐6 production, in response to gag stimulation. Increased CD38 expression was positively correlated with the frequency of the IL‐10+ population and was also induced by exposure of monocytes to HIV‐1 in vitro. Production of IL‐10 by HIV‐specific CD8+ T cells may represent an adaptive regulatory response to monocyte activation during chronic infection.  相似文献   

17.
IL‐35 is a recently identified cytokine exhibiting potent immunosuppressive properties. The therapeutic potential and effects of IL‐35 on pathogenic T effector cells (Teff) and Foxp3+ Treg, however, are ill defined. We tested the capacity of IL‐35 to suppress ongoing autoimmunity in NOD mice. For this purpose, an adeno‐associated virus vector in which IL‐35 transgene expression is selectively targeted to β cells via an insulin promoter (AAV8mIP‐IL35) was used. AAV8mIP‐IL35 vaccination of NOD mice at a late preclinical stage of type 1 diabetes (T1D) suppressed β‐cell autoimmunity and prevented diabetes onset. Numbers of islet‐resident conventional CD4+ and CD8+ T cells, and DCs were reduced within 4 weeks of AAV8mIP‐IL35 treatment. The diminished islet T‐cell pool correlated with suppressed proliferation, and a decreased frequency of IFN‐γ‐expressing Teff. Ectopic IL‐35 also reduced islet Foxp3+ Treg numbers and proliferation, and protection was independent of induction/expansion of adaptive islet immunoregulatory T cells. These findings demonstrate that IL‐35‐mediated suppression is sufficiently robust to block established β‐cell autoimmunity, and support the use of IL‐35 to treat T1D and other T‐cell‐mediated autoimmune diseases.  相似文献   

18.
19.
20.
Systemic autoimmune diseases, such as systemic lupus erythematosus (SLE), are often characterized by a failure of self‐tolerance and result in an uncontrolled activation of B cells and effector T cells. Interleukin (IL)‐2 critically maintains homeostasis of regulatory T cells (Treg) and effector T cells in the periphery. Previously, we identified the cAMP‐responsive element modulator α (CREMα) as a major factor responsible for decreased IL‐2 production in T cells from SLE patients. Additionally, using a transgenic mouse that specifically over‐expresses CREMα in T cells (CD2CREMαtg), we provided in‐vivo evidence that CREMα indeed suppresses IL‐2 production. To analyse the effects of CREMα in an autoimmune prone mouse model we introduced a Fas mutation in the CD2CREMαtg mice (FVB/Fas–/–CD2CREMαtg). Overexpression of CREMα strongly accelerated the lymphadenopathy and splenomegaly in the FVB/Fas–/– mice. This was accompanied by a massive expansion of double‐negative (DN) T cells, enhanced numbers of interferon (IFN)‐γ‐producing T cells and reduced percentages of Tregs. Treatment of FVB/Fas–/–CD2CREMαtg mice with IL‐2 restored the percentage of Tregs and reversed increased IFN‐γ production, but did not affect the number of DNTs. Our data indicate that CREMα contributes to the failure of tolerance in SLE by favouring effector T cells and decreasing regulatory T cells, partially mediated by repression of IL‐2 in vivo .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号