首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wei X  Ling J  Wu L  Liu L  Xiao Y 《Journal of endodontics》2007,33(6):703-708
There is an increasing interest in the utility of dental pulp stem cells (DPSCs) for dentin regeneration. The mechanisms involved in DPSC differentiation remain poorly understood. The purpose of the study was to investigate the mineralization capacity of human dental pulp cells (DPCs) and identify potential markers for odontoblast differentiation. The isolated DPCs expressed mesenchymal stem-cell markers as shown by flow cytometry and could differentiate in vitro into odontogenic, adipogenic, and chondrogenic lineages. Alkaline phosphatase activity of DPCs elevated over time, with significant upregulation on day 21 in odontogenic induction. Quantitative RT-PCR revealed that osteocalcin, dentin sialophosphoprotein (DSPP), and matrix extracellular phosphoglycoprotein (MEPE) expression also increased time dependently in the induction cultures. In conclusion, we isolated DPCs with stem cell characteristics. MEPE and DSPP showed a similar regulatory pattern of DPCs mineralization. MEPE along with DSPP may be potential odontogenetic differentiation markers.  相似文献   

2.
Dentonin, a fragment of MEPE, enhanced dental pulp stem cell proliferation   总被引:6,自引:0,他引:6  
Matrix extracellular phosphoglycoprotein (MEPE) is a SIBLING protein, found in bone and dental tissues. The purpose of this study was to determine whether a 23-amino-acid peptide derived from MEPE (Dentonin or AC-100) could stimulate dental pulp stem cell (DPSC) proliferation and/or differentiation. DPSCs were isolated from erupted human molars, and the mitogenic potential of Dentonin in DPSCs was measured by BrdU immunoassay and cell-cycle gene SuperArray. Differentiation of DPSCs with Dentonin was characterized by Western blot and by osteogenesis gene SuperArray. Dentonin enhanced DPSC proliferation by down-regulating P16, accompanied by up-regulation of ubiquitin protein ligase E3A and human ubiquitin-related protein SUMO-1. Enhanced cell proliferation required intact RGD and SGDG motifs in the peptide. This study shows that Dentonin can promote DPSC proliferation, with a potential role in pulp repair. Further studies are required to determine the usefulness of this material in vivo.  相似文献   

3.
《Journal of endodontics》2020,46(7):950-956
IntroductionPulpitis is an inflammation of dental pulp caused by bacterial proliferation near or within pulpal tissues. In advanced stages, when the inflammation is associated with pulp necrosis, pulp preservation is dependent on dental pulp stem cells (DPSCs) that can differentiate into odontoblastlike cells and produce reparative dentin. In this study, we evaluated the influence of sensory neurons through calcitonin gene-related peptide (CGRP) on DPSC viability and proliferation and the ability of DPSCs to differentiate into mineralizing cells.MethodsCommercially available DPSCs were treated with varying doses of CGRP, and metabolic activity, viability, proliferation, and cell death were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays, trypan blue staining, 5-bromo-2'-deoxyuridine cell proliferation assay, and caspase-3 staining, respectively. DPSC differentiation was assessed with alizarin red staining and by quantifying messenger RNA expression of odontoblast makers.ResultsCGRP induced a dose-dependent decrease of DPSC metabolic activity that was prevented by the CGRP receptor antagonist CGRP 8-37. The decrease in the proportion of live cells induced by CGRP is associated with a decrease of cell proliferation but not with caspase-3–dependent apoptosis. Interestingly, dexamethasone-induced DPSC differentiation into mineralizing cells was neither inhibited nor enhanced by CGRP treatment.ConclusionsThe neuropeptide CGRP has an inhibitory effect on DPSC proliferation but does not enhance or inhibit the differentiation of DPSCs into mineralizing cells. This suggests that CGRP might negatively influence the ability of DPSCs to contribute to regenerative or tissue repair processes.  相似文献   

4.
Stem cell properties of human dental pulp stem cells   总被引:68,自引:0,他引:68  
In this study, we characterized the self-renewal capability, multi-lineage differentiation capacity, and clonogenic efficiency of human dental pulp stem cells (DPSCs). DPSCs were capable of forming ectopic dentin and associated pulp tissue in vivo. Stromal-like cells were reestablished in culture from primary DPSC transplants and re-transplanted into immunocompromised mice to generate a dentin-pulp-like tissue, demonstrating their self-renewal capability. DPSCs were also found to be capable of differentiating into adipocytes and neural-like cells. The odontogenic potential of 12 individual single-colony-derived DPSC strains was determined. Two-thirds of the single-colony-derived DPSC strains generated abundant ectopic dentin in vivo, while only a limited amount of dentin was detected in the remaining one-third. These results indicate that single-colony-derived DPSC strains differ from each other with respect to their rate of odontogenesis. Taken together, these results demonstrate that DPSCs possess stem-cell-like qualities, including self-renewal capability and multi-lineage differentiation.  相似文献   

5.
目的:探讨牙髓干细胞(DPSCs)分化过程中L型钙离子通道羧基末端的表达。方法:利用酶消化法体外分离、培养大鼠牙髓干细胞;吉姆萨染色法检测大鼠牙髓干细胞的克隆形成能力;神经诱导体系下诱导牙髓干细胞向神经样细胞分化,免疫荧光染色检测细胞分化后胶质纤维酸蛋白(glial fibrillary acidic pro-tein,GFAP)的表达和细胞分化前后L型钙离子通道Cav 1.2及羧基末端的表达。结果:牙髓干细胞的克隆形成能力为每1 000个细胞形成2~17个克隆;免疫荧光染色检测诱导后细胞GFAP表达阳性;免疫荧光染色检测显示:牙髓干细胞分化前L型钙离子通道Cav 1.2羧基末端表达于细胞膜上,细胞分化后羧基末端同时表达于细胞膜上和细胞核中。结论:L型钙离子通道Cav 1.2羧基末端在牙髓干细胞分化过程中发生核转位,羧基末端可能在牙髓干细胞的分化过程中发挥着一定的作用。  相似文献   

6.
人恒牙牙髓干细胞体外定向诱导分化为成骨细胞的研究   总被引:1,自引:1,他引:0  
目的:研究人恒牙牙髓组织来源的牙髓干细胞在体外分化为成骨细胞的能力,探讨其作为骨组织工程种子细胞的可行性.方法:从正畸治疗减数拔除的恒前磨牙中分离牙髓组织,应用酶消化法获得牙髓细胞.单抗Stro-1标记、免疫磁珠阳性分选系统分选获得牙髓干细胞,第3代牙髓干细胞用成骨向诱导培养基向成骨细胞诱导分化.用碱性磷酸酶染色和Vo...  相似文献   

7.
Comparison of stem-cell-mediated osteogenesis and dentinogenesis   总被引:11,自引:0,他引:11  
The difference between stem-cell-mediated bone and dentin regeneration is not yet well-understood. Here we use an in vivo stem cell transplantation system to investigate differential regulation mechanisms of bone marrow stromal stem cells (BMSSCs) and dental pulp stem cells (DPSCs). Elevated expression of basic fibroblast growth factor (bFGF) and matrix metalloproteinase 9 (MMP-9, gelatinase B) was found to be associated with the formation of hematopoietic marrow in BMSSC transplants, but not in the connective tissue of DPSC transplants. The expression of dentin sialoprotein (DSP) specifically marked dentin synthesis in DPSC transplants. Moreover, DPSCs were found to be able to generate reparative dentin-like tissue on the surface of human dentin in vivo. This study provided direct evidence to suggest that osteogenesis and dentinogenesis mediated by BMSSCs and DPSCs, respectively, may be regulated by distinct mechanisms, leading to the different organization of the mineralized and non-mineralized tissues.  相似文献   

8.
ObjectiveOrthodontic treatment induces dental tissue remodeling; however, dental pulp stem cell (DPSC)-mediated pulp micro-environmental alteration is still largely uncharacterized. In the present study, we identified elevated interleukin-17A (IL17A) in the dental pulp, which induced the osteogenesis of DPSCs after orthodontic force loading.DesignTooth movement animal models were established in Sprague-Dawley rats, and samples were harvested at 1, 4, 7, 14, and 21 days after orthodontic treatment loading. DPSC self-renewal and differentiation at different time points were examined, as well as the alteration of the microenvironment of dental pulp tissue by histological analysis and the systemic serum IL17A expression level by an ELISA assay. In vitro recombinant IL17A treatment was used to confirm the effect of IL17A on the enhancement of DPSC self-renewal and differentiation.ResultsOrthodontic treatment altered the dental pulp microenvironment by activation of the pro-inflammatory cytokine IL17A in vivo. Orthodontic loading significantly promoted the self-renewal and differentiation of DPSCs. Inflammation and elevated IL17A secretion occurred in the dental pulp during orthodontic tooth movement. Moreover, in vitro recombinant IL17A treatment mimicked the enhancement of the self-renewal and differentiation of DPSCs.ConclusionsOrthodontic treatment enhanced the differentiation and self-renewal of DPSCs, mediated by orthodontic-induced inflammation and subsequent elevation of IL17A level in the dental pulp microenvironment.  相似文献   

9.
Human dental pulp stem cells (DPSCs) are oral mesenchymal stem cells with potential to differentiate into various cell types. Recent studies of DPSCs have focused on microRNAs (miRNAs), a class of small noncoding RNAs that play crucial roles in regulating DPSC phenotypes. In the current study, the expression of miR‐140‐5p was significantly decreased during lipopolysaccharide (LPS)‐mediated differentiation of DPSCs in vitro. Overexpression of miR‐140‐5p enhanced proliferation of DPSCs and inhibited DPSC differentiation, whereas suppression of miR‐140‐5p produced the opposite effect. Moreover, the expression of toll‐like receptor 4 (TLR‐4), a critical regulator of DPSCs, was negatively correlated with the levels of miR‐140‐5p. A luciferase reporter analysis confirmed that miR‐140‐5p could regulate TLR‐4 by directly binding to the 3′‐untranslated region (3′‐UTR) of the TLR4 mRNA. Additionally, we suppressed TLR‐4 expression by treating cells with a TLR‐4 inhibitor, CLI‐095, and demonstrated that the effect of the miR‐140‐5p inhibitor on DPSC proliferation and differentiation could be partially reversed by blocking TLR‐4. Taken together, our data suggest that miR‐140‐5p is a novel miRNA that regulates DPSC proliferation and differentiation.  相似文献   

10.
目的:研究CD146在人牙髓干细胞及其诱导分化过程中的表达情况。方法:体外培养人牙髓干细胞,免疫荧光及流式细胞术检测CD146的表达。矿化诱导人牙髓干细胞分化,检测牙本质唾蛋白的表达,从mRNA及蛋白水平检测诱导过程中CD146的表达。结果:免疫荧光及流式细胞术证明人牙髓干细胞中CD146表达阳性。使用矿化诱导液培养人牙髓干细胞,通过检测到牙本质唾蛋白的表达,证明细胞已向成牙本质细胞方向分化;在此诱导过程中,CD146在人牙髓干细胞中的表达逐渐下调。CD146在人牙髓干细胞中有较特异性的表达,有可能作为其特异性标志物。  相似文献   

11.
《Journal of endodontics》2022,48(10):1232-1240
IntroductionThe aim of this review is to provide a narrative review on the determinants of dental pulp stem cell (DPSC) heterogeneity that may affect the regenerative properties of these cells.MethodsPubMed, Scopus, and MEDLINE (Ovid) literature searches were done on human dental pulp stem cell heterogeneity. The focus was on human dental pulp stem cells with a primary focus on DPSC heterogeneity.ResultsDPSCs display significant heterogeneity as illustrated by the various subpopulations reported, including differences in proliferation and differentiation capabilities and the impact of various intrinsic and extrinsic factors.ConclusionsThe lack of consistent and reliable results in the clinical setting may be due to the heterogeneous nature of DPSC populations. Standardization in isolation techniques and criteria to characterize DPSCs should lead to less variability in results reported and improve comparison of findings between studies. Single-cell RNA sequencing holds promise in elucidating DPSC heterogeneity and may contribute to the establishment of standardized techniques.  相似文献   

12.
Notch signaling plays a critical role in development and cell fate specification. Notch receptors and ligands have been found to be expressed in dental epithelium or mesenchyme in the developing tooth, suggesting that Notch signaling may regulate odontogenesis. Post-natal human dental pulp stem cells (DPSCs) isolated from the dental pulp have characteristics of mesenchymal stem cells and can differentiate into odontoblasts. In this study, we examined whether Notch signaling regulated the odontoblastic differentiation of DPSCs. We found that over-expression of the Notch ligand, Jagged-1, activated the Notch signaling pathway in DPSCs. Jagged-1 inhibited the odontoblastic differentiation of DPSCs in vitro. Jagged-1-expressing DPSCs could not form mineralized tissues in vivo. Moreover, over-expression of the constitutively activated Notch1 intracellular domain (Notch-ICD) also inhibited odontoblastic differentiation of DPSCs. Taken together, our results demonstrate that Notch signaling can inhibit the odontoblastic differentiation of DPSCs.  相似文献   

13.
14.
成体人牙髓干细胞的分离与鉴定   总被引:8,自引:2,他引:8  
目的从成体人牙髓组织中分离培养牙髓干细胞,初步探讨其分化潜能。方法选取年轻患者因正畸或阻生拔除的健康第三磨牙,取出牙髓,采用酶消化及过滤法得到单细胞悬液,有限稀释法原代培养。扩大培养细胞克隆,检测STRO-1的表达。体外诱导分化后对各克隆从碱性磷酸酶(ALP)活性、矿化结节形成、牙本质涎蛋白(DSP)表达、Oil Red—O染色、PPARr2基因表达等方面进行检测。结果克隆来源细胞STRO-1表达阳性。在矿化液诱导下,克隆细胞呈现明显高的ALP活性;能够形成矿化结节;可以分泌表达DSP,已向成牙本质细胞方向发生了分化。成脂肪诱导后,Oil Red—O染色阳性,可检测到PPARr2基因表达。结论从成体人牙髓组织中可以分离培养出干细胞,在体外能有效增殖并保持低分化状态。  相似文献   

15.
ObjectiveStem cells from pulp tissue are a promising cell-based therapy for neurodegenerative patients based on their origin in the neural crest. The aim of this study was to differentiate and evaluate the ability of human dental pulp stem cells from permanent teeth (DPSC) and stem cells from human exfoliated deciduous teeth (SHED) to differentiate into spiral ganglion neurons.DesignAfter isolation and characterization of mesenchymal stem cell properties, DPSC and SHED were treated with the neurotrophins brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and glial cell-derived neurotrophic factor (GDNF). The differentiation was identified by immunostaining and qRT-PCR analysis of neuronal markers and measuring intracellular calcium activity.ResultsAfter 2 weeks of induction, morphological changes were observed in both DPSC and SHED. The differentiated cells expressed neuron-specific class III beta-tubulin, GATA binding protein 3 (GATA3) and tropomyosin receptor kinase B, protein markers of spiral ganglion neurons. These cells also showed upregulation of the genes encoding these proteins, namely GATA3 and neurotrophic receptor tyrosine kinase 2. Intracellular calcium dynamics that reflect neurotransmitter release were observed in differentiated DPSC and SHED.ConclusionThese results demonstrate that dental pulp stem cells from permanent and deciduous teeth can differentiate into spiral ganglion neuron-like cells.  相似文献   

16.
人恒牙牙髓干细胞分化为脂肪细胞的体外实验研究   总被引:1,自引:0,他引:1  
目的验证人恒牙牙髓组织来源的牙髓干细胞在体外向脂肪细胞的定向分化,并对分化后的细胞进行鉴定。方法从正畸治疗减数拔除的恒前磨牙中分离牙髓组织,应用酶消化法获得牙髓细胞。单抗Stro-1标记、免疫磁珠阳性分选系统分选获得牙髓干细胞,第3代牙髓干细胞用成脂肪向诱导培养基向脂肪细胞诱导分化。用油红O染色鉴定成脂肪向分化,RT-PCR检测脂肪细胞的特异相关或标志基因。以同期培养的未诱导的普通培养基培养的DPSCs做阴性对照;以同期培养的骨髓间充质干细胞成脂肪向分化的结果做阳性对照。结果人恒牙牙髓干细胞经成脂肪向培养基诱导后表现出脂肪细胞特性,油红O染色结果为阳性,RT-PCR检测成脂肪向分化相关基因过氧化物酶增殖物激活受体γ2、脂肪酶结合蛋白aP2和脂蛋白脂酶均有阳性表达。结论人恒牙牙髓干细胞在体外具有分化为脂肪细胞的潜能。  相似文献   

17.
《Journal of endodontics》2020,46(8):1091-1098.e2
IntroductionDental pulp stem cells (DPSC) are very attractive in regenerative medicine. In this study, we focused on the characterization of the functional properties of mesenchymal stem cells derived from DPSCs. Currently, it is unknown whether inflammatory conditions present in an inflamed dental pulp tissue could alter the immunomodulatory properties of DPSCs. This study aimed to evaluate the immunomodulatory capacity in vitro of DPSCs derived from healthy and inflamed dental pulp.MethodsDPSCs from 10 healthy and inflamed dental pulps (irreversible pulpitis) were characterized according to the minimal criteria of the International Society for Cell Therapy, proliferation, differential potential, and colony-forming units. Furthermore, the immunomodulatory capacity of DPSCs was tested on the proliferation of T lymphocytes by flow cytometry and the in vitro enzyme activity of indoleamine 2, 3-dioxygenase.ResultsThere were no significant differences in the DPSC characteristics and properties such as immunophenotype, tridifferentiation, colony-forming units, and proliferation of the DPSCs derived from normal and inflamed pulp tissue. Furthermore, there were significant differences in the immunomodulatory capacity of DPSCs obtained from human healthy dental pulp and with the diagnosis of irreversible pulpitis.ConclusionsOur results showed that DPSCs isolated from inflamed dental pulp showed typical characteristics of MSCs and diminished immunosuppressive capacity in vitro in comparison with MSCs derived from healthy dental pulp. Further investigation in vivo is needed to clarify the mechanism of this diminished immunosuppressive capacity.  相似文献   

18.
19.
IntroductionThe transplantation of dental pulp stem cells (DPSCs) has emerged as a novel strategy for the regeneration of lost dental pulp after pulpitis and trauma. Dental pulp regeneration of the young permanent tooth with a wide tooth apical foramen has achieved significant progress in the clinical trials. However, because of the narrow apical foramen, dental pulp regeneration in adult teeth using stem cells remains difficult in the clinic. Finding out how to promote vascular reconstitution is essential for the survival of stem cells and the regeneration of dental pulp after transplantation into the adult tooth.MethodsAdipose tissue–derived microvascular fragments (ad-MVFs) were isolated from human adipose tissues. The apoptosis and senescence of DPSCs cultured in conditioned media were evaluated to explore the effects of ad-MVFs on DPSCs. DPSCs combined with ad-MVFs were inserted into the human tooth root segments and implanted subcutaneously into immunodeficient mice. Regenerated pulplike tissues were analyzed by hematoxylin and eosin and immunohistochemistry. The vessels in regenerated tissues were analyzed by Micro-CT and immunofluorescence.ResultsThe isolated ad-MVFs contained endothelial cells and pericytes. ad-MVFs effectively prevented the apoptosis and senescence of the transplanted DPSCs both in vivo and in vitro. Combined with DPSCs, ad-MVFs obviously facilitated the formation of vascular networks in the transplants. DPSCs combined with ad-MVFs formed dental pulp–like tissues with abundant cells and matrix after 4 weeks of implantation. The supplementation of ad-MVFs led to more odontoblastlike cells and increased the formation of mineralized substance around the root canal.ConclusionsCotransplantation with ad-MVFs promotes the angiogenesis and revascularization of transplanted DPSC aggregates, leading to robust regeneration of dental pulp.  相似文献   

20.
牙髓干细胞是一类存在于牙髓组织中,保持着高度的增殖和分化潜能,受到刺激后能向终末细胞分化的细胞。在牙髓干细胞的研究过程中,常需要根据成牙本质细胞分子标记物的表达来判断牙髓干细胞的分化进程。随着研究的进展,可供选择的成牙本质细胞分子标记物也越来越广泛。下面就成牙本质细胞分化的特异分子标记物的研究进展作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号